Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Eur Phys J E Soft Matter ; 43(10): 64, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33009958

RESUMEN

Drying-induced cracking is widely encountered in nature and is of fundamental interest in industrial applications. During desiccation, the evolution of water content is nonlinear. Considering the inhomogeneous procedure of desiccation, it is worth considering whether water content will affect the crack pattern formation. To address this concern, in this paper, we report an experimental investigation on the effect of water content on the failure mode in drying colloidal films. A distinct failure transition from random cracking to curling is found when the initial water content increases gradually. When the water content is below a critical value for given film thickness, random desiccation cracking driven by shrinkage is observed. Beyond this critical water content, the film curls with the advent of several main cracks. It is also found that the critical water content corresponding to the transition point depends on the film thickness. In order to qualitatively interpret the experimental observation, a theoretical model is established by adopting the fracture mechanics based on the energy method. The model is found to agree well with the experimental results, elucidating the effects of initial water content on the crack patterns and the transition of failure modes.

2.
Langmuir ; 35(7): 2692-2701, 2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30719921

RESUMEN

During evaporative drying of a colloidal dispersion, the structural behavior at the air-dispersion interface is of particular relevance to the understanding of the consolidation mechanism and the final structural and mechanical properties of the porous media. The drying interface constitutes the region of initial drying stress that, when accumulated over a critical thickness, leads to crack formation. This work presents an experimental study of top-down drying of colloidal silica dispersions with three different sizes (radius 5, 8, and 13 nm). Using specular neutron reflectivity, we focus on the structural evolution at the free drying front of the dispersion with a macroscopic drying surface and demonstrate the existence of a thick concentrated surface layer induced by heterogeneous evaporation. The reflectivity profile contains a strong structure peak due to scattering from particles in the interfacial region, from which the interparticle distance is deduced. A notable advantage of these measurements is the direct extraction of the corresponding dispersion concentration from the critical total reflection edge, providing a straightforward access to a structure-concentration relation during the drying process. The bulk reservoir of this experimental configuration renders it possible to verify the evaporation-diffusion balance to construct the surface layer and also to check reversibility of particle ordering. We follow the structural evolution of this surface layer from a sol to a soft wet-gel that is the precursor of a fragile skin and the onset of significant particle aggregation that precedes formation of the wet-crust. Separate complementary measurements on the structural evolution in the bulk dispersion are also carried out by small-angle neutron scattering, where the particle concentration is also extracted directly from the experimental curves. The two sets of data reveal similar structural evolution with concentration at the interface and in the bulk and an increase in the degree of ordering with the particle size.

3.
Soft Matter ; 15(11): 2381-2390, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30768119

RESUMEN

The drying of colloidal suspensions is a very complex process leading to a sol-gel transition induced by solvent evaporation. The resulting film can even crack and delaminate. In this study, we investigate the drying process of a colloidal suspension with a highly volatile solvent and we show for initially millimeter-thick layers that the resulting pattern of delaminated plates considerably differs from what is usually observed for aqueous colloidal suspensions. Visualization using an IR camera reveals that hexagonal convection cells can develop during the drying of suspensions with a highly volatile solvent and may persist until the film consolidation. This leads to the formation of non-homogeneous films presenting surface corrugations. Thus, we highlight the importance of the hydrodynamics during the first phase of strong solvent evaporation and its consequences for the following drying steps. A criterion predicting whether or not Bénard-Marangoni instability effectively occurs will be discussed. Finally, we report a non-classical delamination mode generating fragments with convex surfaces, whereas buckle-driven delamination usually results in concave shapes.

4.
Soft Matter ; 15(30): 6190-6199, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31328216

RESUMEN

The evaporation of colloidal solutions is frequently observed in nature and in everyday life. The investigation of the mechanisms taking place during the desiccation of biological fluids is currently a scientific challenge with potential biomedical and industrial applications. In the last few decades, seminal works have been performed mostly on dried droplets of saliva, urine and plasma. However, the full understanding of the drying process in biocolloids is far from being achieved and, notably, the impact of solute properties on the morphological characteristics of the evaporating droplets, such as colloid segregation, skin formation and crack pattern development, is still to be elucidated. For this purpose, the use of model colloidal solutions, whose rheological behavior is more easily deducible, could represent a significant boost. In this work, we compare the drying of droplets of whey proteins and casein micelles, the two main milk protein classes, to that of dispersions of silica particles and polymer-coated silica particles, respectively. The mechanical behavior of such biological colloids and model silica dispersions was investigated through the analysis of crack formation, and the measurements of their mechanical properties using indentation testing. The study reveals numerous analogies between dairy and the corresponding model systems, thus confirming the latter as a plausible powerful tool to highlight the signature of the matter at the molecular scale during the drying process.


Asunto(s)
Caseínas/química , Productos Lácteos/análisis , Desecación , Micelas , Proteína de Suero de Leche/química , Fenómenos Mecánicos , Modelos Químicos , Reología
5.
Soft Matter ; 15(10): 2277-2283, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30768090

RESUMEN

Solvent penetration in porous layers was analyzed using dynamical and mechanical characterization. Spreading dynamics of a solvent drop in a porous substrate provided parameters of the porous medium such as permeability and porosity. These measurements are relevant for many porous systems, for example paintings or porous varnishes and resins… We present direct visualizations of the drop as well as of the wet zone during the imbibition process and we evidence three distinct regimes. Experiments performed with various porous systems and different solvents highlight a universal behavior. The mechanical properties during the imbibition process are deduced through indentation testing measurements. We show that solvent penetration is responsible for the appearance of a viscous component in the system. A characteristic time depending on the solvent and on the porous medium is then deduced. The system recovers its initial mechanical properties and no swelling nor cracking is observed contrary to the case of paintings. This result tends to prove that visco-plastic properties are required to observe swelling or cracking.

6.
Eur Phys J E Soft Matter ; 41(8): 94, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30128834

RESUMEN

The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art.

7.
Soft Matter ; 13(34): 5802-5808, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28828434

RESUMEN

Shrinkage cracks are observed in many materials, particularly in paintings where great interest lies in deducing quantitative information on the material with the aim of proposing authentication methods. We present experimental measurements on the crack opening induced by the drying of colloidal layers and compare these results to the case of a pictorial layer. We propose a simple model to predict the crack width as a function of the thickness of the drying layer, based on the balance between the drying stress buildup and the shear frictional stress with the substrate. Key parameters of the model include the mechanical properties that are measured experimentally using micro-indentation testing. A good agreement between theory and experimental data for both colloidal layers and the real painting is found. These results, by comparing the shrinkage cracks in model layers and in pictorial layers, validate the method based on the use of colloidal systems to simulate and to reproduce drying cracks in paintings.

9.
Phys Rev E ; 103(3-1): 032602, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33862708

RESUMEN

Desiccation cracks in colloidal deposits occur to release the excess strain energy arising from the competition between the drying induced shrinkage of the deposit and its adhesion to the substrate. Here we report remarkably different morphology of desiccation cracks in the dried patterns formed by the evaporation of sessile drops containing colloids on elastomer (soft) or glass (stiff) substrates. The change in the crack pattern, i.e., from radial cracks on stiff substrates to circular cracks on soft substrates, is shown to arise solely due to the variation in elasticity of the underlying substrates. Our experiments and calculations reveal an intricate correlation between the desiccation crack patterns and the substrate's elasticity. The mismatch in modulus of elasticity between the substrate and that of the particulate deposit significantly alters the energy release rate during the nucleation and propagation of cracks. The stark variation in crack morphology is attributed to the tensile or compressive nature of the drying-induced in-plane stresses.

10.
J Colloid Interface Sci ; 565: 474-482, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31982714

RESUMEN

HYPOTHESIS: Colloidal silica dispersions dried under controlled conditions form solid gels that display mechanical properties similar to those observed in several practical processes. An understanding of their structural characteristics and liquid flow properties can therefore help establish these gels as an alternative family of model materials to study practical porous systems. EXPERIMENTS: Neutron radiography is a non-destructive technique well-adapted to study hydrogen-rich domains in porous materials due to the high attenuation power of hydrogen. We apply this technique to study gels prepared from silica nanoparticles of radii 5-40 nm. FINDINGS: The water content in the gels have been quantified and different types of porosities have been determined: total porosity, effective porosity that contributes to liquid flow, and residual porosity that contains bound residual water. This residual water increases with decrease in particle size and constitutes an important fraction of the gel. The dynamics of water imbibition follows a √t law, from which the effective pore size and permeability are evaluated. We highlight the role of particle size on water retention, on particle organization and its impact on mechanical resistance. Quantitative analysis of the propagating liquid front shows front broadening that suggests elongated pores with reduced correlated liquid menisci.

11.
Langmuir ; 25(12): 6672-7, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19408894

RESUMEN

We present an experimental investigation of drying suspensions of both hard and soft nanolatex spheres. The crack formation is examined as a function of the proportion of hard and soft deformable particles, leading to tunable elastic properties of the drying film. In our experimental systems, no crack formation could be observed below an onset value of the proportion in hard spheres phi approximately 0.45 . During the drying process, the mass of films with various compositions in hard and soft spheres is measured as a function of time. The results suggest that the soft particles undergo deformation that releases the internal stresses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA