Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(10): e2214561120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36853940

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped positive stranded RNA virus which has caused the recent deadly pandemic called COVID-19. The SARS-CoV-2 virion is coated with a heavily glycosylated Spike glycoprotein which is responsible for attachment and entry into target cells. One, as yet unexploited strategy for preventing SARS-CoV-2 infections, is the targeting of the glycans on Spike. Lectins are carbohydrate-binding proteins produced by plants, algae, and cyanobacteria. Some lectins can neutralize enveloped viruses displaying external glycoproteins, offering an alternative therapeutic approach for the prevention of infection with virulent ß-coronaviruses, such as SARS-CoV-2. Here we show that the cyanobacterial lectin cyanovirin-N (CV-N) can selectively target SARS-CoV-2 Spike oligosaccharides and inhibit SARS-CoV-2 infection in vitro and in vivo. CV-N neutralizes Delta and Omicron variants in vitro better than earlier circulating viral variants. CV-N binds selectively to Spike with a Kd as low as 15 nM and a stoichiometry of 2 CV-N: 1 Spike but does not bind to the receptor binding domain (RBD). Further mapping of CV-N binding sites on Spike shows that select high-mannose oligosaccharides in the S1 domain of Spike are targeted by CV-N. CV-N also reduced viral loads in the nares and lungs in vivo to protect hamsters against a lethal viral challenge. In summary, we present an anti-coronavirus agent that works by an unexploited mechanism and prevents infection by a broad range of SARS-CoV-2 strains.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Oligosacáridos/farmacología , Lectinas
2.
BMC Med ; 22(1): 17, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38185624

RESUMEN

BACKGROUND: Slower paces of aging are related to lower risk of developing diseases and premature death. Therefore, the greatest challenge of modern societies is to ensure that the increase in lifespan is accompanied by an increase in health span. To better understand the differences in human lifespan, new insight concerning the relationship between lifespan and the age of onset of diseases, and the ability to avoid them is needed. We aimed to comprehensively study, at a population-wide level, the sex-specific disease patterns associated with human lifespan. METHODS: Observational data from the SIDIAP database of a cohort of 482,058 individuals that died in Catalonia (Spain) at ages over 50 years old between the 1st of January 2006 and the 30th of June 2022 were included. The time to the onset of the first disease in multiple organ systems, the prevalence of escapers, the percentage of life free of disease, and their relationship with lifespan were evaluated considering sex-specific traits. RESULTS: In the study cohort, 50.4% of the participants were women and the mean lifespan was 83 years. The results show novel relationships between the age of onset of disease, health span, and lifespan. The key findings include: Firstly, the onset of both single and multisystem diseases is progressively delayed as lifespan increases. Secondly, the prevalence of escapers is lower in lifespans around life expectancy. Thirdly, the number of disease-free systems decreases until individuals reach lifespans around 87-88 years old, at which point it starts to increase. Furthermore, long-lived women are less susceptible to multisystem diseases. The associations between health span and lifespan are system-dependent, and disease onset and the percentage of life spent free of disease at the time of death contribute to explaining lifespan variability. Lastly, the study highlights significant system-specific disparities between women and men. CONCLUSIONS: Health interventions focused on delaying aging and age-related diseases should be the most effective in increasing not only lifespan but also health span. The findings of this research highlight the relevance of Electronic Health Records in studying the aging process and open up new possibilities in age-related disease prevention that should assist primary care professionals in devising individualized care and treatment plans.


Asunto(s)
Longevidad , Resiliencia Psicológica , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano de 80 o más Años , Estudios de Cohortes , Estudios Retrospectivos , Envejecimiento
3.
J Neurochem ; 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401737

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord. Glial cells, including astrocytes and microglia, have been shown to contribute to neurodegeneration in ALS, and metabolic dysfunction plays an important role in the progression of the disease. Glycogen is a soluble polymer of glucose found at low levels in the central nervous system that plays an important role in memory formation, synaptic plasticity, and the prevention of seizures. However, its accumulation in astrocytes and/or neurons is associated with pathological conditions and aging. Importantly, glycogen accumulation has been reported in the spinal cord of human ALS patients and mouse models. In the present work, using the SOD1G93A mouse model of ALS, we show that glycogen accumulates in the spinal cord and brainstem during symptomatic and end stages of the disease and that the accumulated glycogen is associated with reactive astrocytes. To study the contribution of glycogen to ALS progression, we generated SOD1G93A mice with reduced glycogen synthesis (SOD1G93A GShet mice). SOD1G93A GShet mice had a significantly longer life span than SOD1G93A mice and showed lower levels of the astrocytic pro-inflammatory cytokine Cxcl10, suggesting that the accumulation of glycogen is associated with an inflammatory response. Supporting this, inducing an increase in glycogen synthesis reduced life span in SOD1G93A mice. Altogether, these results suggest that glycogen in reactive astrocytes contributes to neurotoxicity and disease progression in ALS.

4.
Neuropathol Appl Neurobiol ; 48(1): e12747, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34237158

RESUMEN

AIMS: Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor-interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1- mouse model of X-linked adrenoleukodystrophy (X-ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation. METHODS AND RESULTS: We provide evidence that RIP140 is modulated through a redox-dependent mechanism driven by very long-chain fatty acids (VLCFAs), the levels of which are increased in X-ALD. Genetic inactivation of RIP140 prevented mitochondrial depletion and dysfunction, bioenergetic failure, inflammatory dysregulation, axonal degeneration and associated locomotor disabilities in vivo in X-ALD mouse models. CONCLUSIONS: Together, these findings show that aberrant overactivation of RIP140 promotes neurodegeneration in X-ALD, underscoring its potential as a therapeutic target for X-ALD and other neurodegenerative disorders that present with metabolic and inflammatory dyshomeostasis.


Asunto(s)
Adrenoleucodistrofia , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/uso terapéutico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animales , Modelos Animales de Enfermedad , Homeostasis , Ratones , Mitocondrias/metabolismo , Proteína de Interacción con Receptores Nucleares 1
5.
Acta Neuropathol ; 144(2): 241-258, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35778568

RESUMEN

Aberrant endocannabinoid signaling accompanies several neurodegenerative disorders, including multiple sclerosis. Here, we report altered endocannabinoid signaling in X-linked adrenoleukodystrophy (X-ALD), a rare neurometabolic demyelinating syndrome caused by malfunction of the peroxisomal ABCD1 transporter, resulting in the accumulation of very long-chain fatty acids (VLCFAs). We found abnormal levels of cannabinoid receptor 2 (CB2r) and related endocannabinoid enzymes in the brain and peripheral blood mononuclear cells (PBMCs) of X-ALD patients and in the spinal cord of a murine model of X-ALD. Preclinical treatment with a selective agonist of CB2r (JWH133) halted axonal degeneration and associated locomotor deficits, along with normalization of microgliosis. Moreover, the drug improved the main metabolic disturbances underlying this model, particularly in redox and lipid homeostatic pathways, including increased lipid droplets in motor neurons, through the modulation of the GSK-3ß/NRF2 axis. JWH133 inhibited Reactive Oxygen Species elicited by excess VLCFAs in primary microglial cultures of Abcd1-null mice. Furthermore, we uncovered intertwined redox and CB2r signaling in the murine spinal cords and in patient PBMC samples obtained from a phase II clinical trial with antioxidants (NCT01495260). These findings highlight CB2r signaling as a potential therapeutic target for X-ALD and perhaps other neurodegenerative disorders that present with dysregulated redox and lipid homeostasis.


Asunto(s)
Adrenoleucodistrofia , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Adrenoleucodistrofia/tratamiento farmacológico , Animales , Ensayos Clínicos Fase II como Asunto , Endocannabinoides/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Leucocitos Mononucleares/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Receptores de Cannabinoides/metabolismo , Receptores de Cannabinoides/uso terapéutico
6.
Gut ; 70(12): 2283-2296, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33514598

RESUMEN

BACKGROUND: Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. METHODS: We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. RESULTS: An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor's bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient's mice. CONCLUSION: These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Carbono/metabolismo , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiología , Inhibición Psicológica , Obesidad/complicaciones , Adulto , Anciano , Animales , Estudios Transversales , Hígado Graso/microbiología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fenotipo , Transcriptoma
7.
J Neurochem ; 158(2): 482-499, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33905537

RESUMEN

Nucleocytosolic transport, a membrane process, is impaired in motor neurons in amyotrophic lateral sclerosis (ALS). This study analyzes the nuclear lipidome in motor neurons in ALS and examines molecular pathways linked to the major lipid alterations. Nuclei were obtained from the frozen anterior horn of the lumbar spinal cord of ALS patients and age-matched controls. Lipidomic profiles of this subcellular fraction were obtained using liquid chromatography and mass spectrometry. We validated the mechanisms behind presumable lipidomic changes by exploring ALS surrogate models including human motor neurons (derived from ALS lines and controls) subjected to oxidative stress, the hSOD-G93A transgenic mice, and samples from an independent cohort of ALS patients. Among the differential lipid species, we noted 41 potential identities, mostly belonging to phospholipids (particularly ether phospholipids, as plasmalogens), as well as diacylglycerols and triacylglycerides. Decreased expression of alkyldihydroxyacetonephosphate synthase (AGPS)-a critical peroxisomal enzyme in plasmalogen synthesis-is found in motor neuron disease models; this occurs in parallel with an increase in the expression of sterol carrier protein 2 (SCP2) mRNA in ALS and Scp2 levels in G93A transgenic mice. Further, we identified diminished expression of diacylglycerol-related enzymes, such as phospholipase C ßI (PLCßI) and protein kinase CßII (PKCßII), linked to diacylglycerol metabolism. Finally, lipid droplets were recognized in the nuclei, supporting the identification of triacylglycerides as differential lipids. Our results point to the potentially pathogenic role of altered composition of nuclear membrane lipids and lipids in the nucleoplasm in the anterior horn of the spinal cord in ALS. Overall, these data support the usefulness of subcellular lipidomics applied to neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Núcleo Celular/genética , Lipidómica , Anciano , Animales , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Diglicéridos/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Neuronas Motoras/metabolismo , Estrés Oxidativo , Proyectos Piloto , Médula Espinal/citología , Médula Espinal/metabolismo , Fracciones Subcelulares/metabolismo , Superóxido Dismutasa-1
8.
Expert Rev Proteomics ; 18(5): 333-344, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34098823

RESUMEN

INTRODUCTION: Human prefrontal cortex (hPFC) is a recent evolutionarily developed brain region involved in cognitive functions. Human cognitive functions decline during aging. Yet the molecular mechanisms underlying the functional deterioration of the neural cells of this brain region still remain to be fully described. AREAS COVERED: In this review, we explore the role of lipids in hPFC aging. Firstly, we briefly consider the approaches used to identify lipid species in brain tissue with special attention paid to a lipidomics analysis. Then, as the evolution process has conferred a specific lipid profile on the hPFC, we consider the lipidome of hPFC. In addition, the role of lipids in hPFC aging, and in particular, the cognitive decline associated with aging, is discussed. Finally, nutritional and pharmacological interventions designed to modulate this process are examined. It is suggested that the dysfunction of key cellular processes secondarily to the damage of lipid membrane underlies the cognitive decline of hPFC during aging. EXPERT OPINION: Lipidomics methods are and will continue to be key tools in the effort to gain additional insights into the aging of the human brain.


Asunto(s)
Envejecimiento , Lipidómica , Encéfalo , Humanos , Neuronas , Corteza Prefrontal
9.
Neuropathol Appl Neurobiol ; 47(4): 544-563, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33332650

RESUMEN

AIM: Peroxisomes play a key role in lipid metabolism, and peroxisome defects have been associated with neurodegenerative diseases such as X-adrenoleukodystrophy and Alzheimer's disease. This study aims to elucidate the contribution of peroxisomes in lipid alterations of area 8 of the frontal cortex in the spectrum of TDP43-proteinopathies. Cases of frontotemporal lobar degeneration-TDP43 (FTLD-TDP), manifested as sporadic (sFTLD-TDP) or linked to mutations in various genes including expansions of the non-coding region of C9ORF72 (c9FTLD), and of sporadic amyotrophic lateral sclerosis (sALS) as the most common TDP43 proteinopathies, were analysed. METHODS: We used transcriptomics and lipidomics methods to define the steady-state levels of gene expression and lipid profiles. RESULTS: Our results show alterations in gene expression of some components of peroxisomes and related lipid pathways in frontal cortex area 8 in sALS, sFTLD-TDP and c9FTLD. Additionally, we identify a lipidomic pattern associated with the ALS-FTLD-TDP43 proteinopathy spectrum, notably characterised by down-regulation of ether lipids and acylcarnitine among other lipid species, as well as alterations in the lipidome of each phenotype of TDP43 proteinopathy, which reveals commonalities and disease-dependent differences in lipid composition. CONCLUSION: Globally, lipid alterations in the human frontal cortex of the ALS-FTLD-TDP43 proteinopathy spectrum, which involve cell membrane composition and signalling, vulnerability against cellular stress and possible glucose metabolism, are partly related to peroxisome impairment.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Lóbulo Frontal/metabolismo , Metabolismo de los Lípidos , Peroxisomas/metabolismo , Proteinopatías TDP-43/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas/metabolismo
10.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445555

RESUMEN

Previous evidence links the formation of extranuclear inclusions of transcription factors, such as ERK, Jun, TDP-43, and REST, with oxidative, endoplasmic-reticulum, proteasomal, and osmotic stress. To further characterize its extranuclear location, we performed a high-content screening based on confocal microscopy and automatized image analyses of an epithelial cell culture treated with hydrogen peroxide, thapsigargin, epoxomicin, or sorbitol at different concentrations and times to recreate the stresses mentioned above. We also performed a subcellular fractionation of the brain from transgenic mice overexpressing the Q331K-mutated TARDBP, and we analyzed the REST-regulated mRNAs. The results show that these nuclear proteins exhibit a mitochondrial location, together with significant nuclear/extranuclear ratio changes, in a protein and stress-specific manner. The presence of these proteins in enriched mitochondrial fractions in vivo confirmed the results of the image analyses. TDP-43 aggregation was associated with alterations in the mRNA levels of the REST target genes involved in calcium homeostasis, apoptosis, and metabolism. In conclusion, cell stress increased the mitochondrial translocation of nuclear proteins, increasing the chance of proteostasis alterations. Furthermore, TDP-43 aggregation impacts REST target genes, disclosing an exciting interaction between these two transcription factors in neurodegenerative processes.


Asunto(s)
Encéfalo/patología , Estrés del Retículo Endoplásmico , Glándulas Mamarias Humanas/patología , Mitocondrias/patología , Estrés Oxidativo , Factores de Transcripción/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Glándulas Mamarias Humanas/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo
11.
Int J Mol Sci ; 22(22)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34830402

RESUMEN

Lipids are closely associated with brain structure and function. However, the potential changes in the lipidome induced by aging remain to be elucidated. In this study, we used chromatographic techniques and a mass spectrometry-based approach to evaluate age-associated changes in the lipidome of the frontal cortex and cerebellum obtained from adult male Wistar rats (8 months), aged male Wistar rats (26 months), and aged male Wistar rats submitted to a methionine restriction diet (MetR)-as an anti-aging intervention-for 8 weeks. The outcomes revealed that only small changes (about 10%) were observed in the lipidome profile in the cerebellum and frontal cortex during aging, and these changes differed, in some cases, between regions. Furthermore, a MetR diet partially reversed the effects of the aging process. Remarkably, the most affected lipid classes were ether-triacylglycerols, diacylglycerols, phosphatidylethanolamine N-methylated, plasmalogens, ceramides, and cholesterol esters. When the fatty acid profile was analyzed, we observed that the frontal cortex is highly preserved during aging and maintained under MetR, whereas in the cerebellum minor changes (increased monounsaturated and decreased polyunsaturated contents) were observed and not reversed by MetR. We conclude that the rat cerebellum and frontal cortex have efficient mechanisms to preserve the lipid profile of their cell membranes throughout their adult lifespan in order to maintain brain structure and function. A part of the small changes that take place during aging can be reversed with a MetR diet applied in old age.


Asunto(s)
Envejecimiento/genética , Lóbulo Frontal/metabolismo , Lípidos/genética , Metionina/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cerebelo/metabolismo , Cerebelo/patología , Cromatografía , Lóbulo Frontal/patología , Humanos , Lipidómica/normas , Espectrometría de Masas , Estrés Oxidativo/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo
12.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31771102

RESUMEN

Prolonged caloric intake above energy needs disturbs the body's ability to store and manage the excess of energy intake, leading to the onset of chronic degenerative diseases. This study aimed to compare the effect of three foods, which contain demonstrated bioactive compounds in the treatment of obesity and as an adjuvant in obesity energy restriction treatments. In a mice obesity model induced through a high-fat diet; fish oil, soluble fibre, and soy were incorporated to evaluate its capacity to modulate metabolic factors in adipose tissue during a continued fat intake or weight reduction through a normocaloric diet. As a result, fish oil improved mitochondrial related, adipose tissue hormone expression, and oxidation products when high-fat diets are consumed; while soluble fibre improved glucose and inflammation pathways during high-fat diet intake. In weight reduction treatments few differential features, as a treatment adjuvant, were observed for fish oil and soy; while soluble fibre was able to improve the weight reduction effects induced by a normocaloric diet. As a conclusion, soluble fibre supplementation compared to an energy reduction program, was the only treatment able to induce a significant additional effect in the improvement of weight loss and adipose tissue metabolism.


Asunto(s)
Tejido Adiposo , Dieta Reductora , Mitocondrias , Obesidad , Pérdida de Peso , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Modelos Animales de Enfermedad , Ingestión de Energía/efectos de los fármacos , Aceites de Pescado/farmacología , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Obesidad/inducido químicamente , Obesidad/dietoterapia , Obesidad/metabolismo , Obesidad/patología , Glycine max
13.
Cell Physiol Biochem ; 51(1): 142-153, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30448824

RESUMEN

BACKGROUND/AIMS: Thyroid hormones have been recently linked to senescence and longevity. Given the recent description of TSHB mRNA in human adipose tissue (AT), we aimed to investigate the relationship between local AT TSH and adipose tissue senescence. METHODS: TSHB mRNA (measured by real-time PCR) and markers of adipose tissue senescence [BAX, DBC1, TP53, TNF (real-time PCR), telomere length (Telo TAGGG Telomere Length Assay) and lipidomics (liquid chromatography mass spectrometry)] were analysed in subcutaneous (SAT) and visceral (VAT) AT from euthyroid subjects. The chronic effects of TSH were also investigated in AT from hypothyroid rats and after recombinant human TSH (rhTSH) administration in human adipocytes. RESULTS: Both VAT and SAT TSHB gene expression negatively correlated with markers of AT cellular senescence (BAX, DBC1, TP53, TNF gene expression and specific glucosylceramides) and positively associated with telomere length. Supporting these observations, both rhTSH administration in human adipocytes and increased TSH in hypothyroid rats resulted in decreased markers of cellular senescence (Bax and Tp53 mRNA) in both gonadal and subcutaneous white adipose tissue. CONCLUSION: These data point to a possible role of TSH in AT cellular senescence.


Asunto(s)
Senescencia Celular , Hipotiroidismo/patología , Grasa Intraabdominal/metabolismo , Grasa Subcutánea/metabolismo , Tirotropina de Subunidad beta/metabolismo , Adulto , Animales , Biomarcadores/metabolismo , Glucemia/análisis , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipotiroidismo/veterinaria , Grasa Intraabdominal/citología , Grasa Intraabdominal/efectos de los fármacos , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Grasa Subcutánea/citología , Grasa Subcutánea/efectos de los fármacos , Homeostasis del Telómero , Tirotropina/genética , Tirotropina/metabolismo , Tirotropina/farmacología , Tirotropina de Subunidad beta/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
14.
FASEB J ; 31(10): 4482-4491, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28646016

RESUMEN

Subclinical hypothyroidism is known to be associated with increased serum cholesterol. Since thyroid-stimulating hormone (TSH) exerts an inductor effect on cholesterol biosynthesis, we aimed to investigate the relationship between TSH mRNA and cholesterol metabolism in human adipose tissue (AT). Cross-sectionally, AT TSH-ß (TSHB) mRNA was evaluated in 4 independent cohorts in association with serum total and LDL cholesterol, and AT lipidomics. Longitudinally, the effects of statins and of diet and exercise on AT TSHB mRNA were also examined. The bidirectional relationship between cholesterol and TSHB were studied in isolated human adipocytes. TSHB mRNA was consistently detected in AT from euthyroid subjects, and positively associated with serum total- and LDL-cholesterol, and with AT-specific cholesterol metabolism-associated lipids [arachidonoyl cholesteryl ester, C8-dihydroceramide, N-stearoyl-d-sphingosine, and GlcCer(18:0, 24:1)]. Reduction of cholesterol with statins and with diet and exercise interventions led to decreased TSHB mRNA in human AT, whereas excess cholesterol up-regulated TSHB mRNA in human adipocytes. In addition, recombinant human TSH α/ß administration resulted in increased HMGCR mRNA levels in human adipocytes. In mice, subcutaneous AT Tshb expression levels correlated directly with circulating cholesterol levels. In summary, current results provide novel evidence of TSHB as a paracrine factor that is modulated in parallel with cholesterol metabolism in human AT.-Moreno-Navarrete, J. M., Moreno, M., Ortega, F., Xifra, G., Hong, S., Asara, J. M., Serrano, J. C. E., Jové, M., Pissios, P., Blüher, M., Ricart, W., Portero-Otin, M., Fernández-Real, J. M. TSHB mRNA is linked to cholesterol metabolism in adipose tissue.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos/sangre , Tirotropina de Subunidad beta/genética , Tirotropina/metabolismo , Animales , Colesterol/metabolismo , Humanos , Hipotiroidismo/metabolismo , Ratones
15.
Biochim Biophys Acta ; 1862(4): 526-535, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26820774

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Here we show that a mouse model of haploinsufficiency in the lipid and protein phosphatase and tensin homolog protein (PTEN(+/-)) exhibits hepatomegaly, increased liver lipogenic gene expression (SREBP-1C and PPARγ) and hepatic lesions analogous to human NAFLD. The livers of PTEN(+/-) mice also contained lower levels of retinoic acid (RA) than normal, similarly to human NAFLD patients. The RA signaling pathway thus offers a novel therapeutic target for the treatment of NAFLD although the impact of nutrition in this context is unclear. We therefore fed PTEN(+/-) mice for 36weeks a diet containing genetically engineered high-carotenoid corn (HCAR) to investigate its potential beneficial effects on the hepatic symptoms of NAFLD. The HCAR diet reduced hepatomegaly and promoted the repartitioning of fatty acids in the liver, away from triacylglycerol storage. At the molecular level, the HCAR diet clearly reduced lipogenic gene expression, boosted catabolism, and increased hepatic RA levels. These results set the stage for human trials to evaluate the use of high-carotenoid foods for the reduction or prevention of steatosis in NAFLD.


Asunto(s)
Carotenoides/farmacología , Alimentos Modificados Genéticamente , Haploinsuficiencia , Hepatomegalia/prevención & control , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Fosfohidrolasa PTEN/genética , Zea mays , Alimentación Animal , Animales , Femenino , Hepatomegalia/genética , Hepatomegalia/metabolismo , Hepatomegalia/patología , Ratones , Ratones Mutantes , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , PPAR gamma/genética , PPAR gamma/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
16.
Hum Mol Genet ; 24(24): 6861-76, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26370417

RESUMEN

X-linked adrenomyeloneuropathy (AMN) is an inherited neurometabolic disorder caused by malfunction of the ABCD1 gene, characterized by slowly progressing spastic paraplegia affecting corticospinal tracts, and adrenal insufficiency. AMN is the most common phenotypic manifestation of adrenoleukodystrophy (X-ALD). In some cases, an inflammatory cerebral demyelination occurs associated to poor prognosis in cerebral AMN (cAMN). Though ABCD1 codes for a peroxisomal transporter of very long-chain fatty acids, the molecular mechanisms that govern disease onset and progression, or its transformation to a cerebral, inflammatory demyelinating form, remain largely unknown. Here we used an integrated -omics approach to identify novel biomarkers and altered network dynamic characteristic of, and possibly driving, the disease. We combined an untargeted metabolome assay of plasma and peripheral blood mononuclear cells (PBMC) of AMN patients, which used liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-Q-TOF), with a functional genomics analysis of spinal cords of Abcd1(-) mouse. The results uncovered altered nodes in lipid-driven proinflammatory cascades, such as glycosphingolipid and glycerophospholipid synthesis, governed by the ß-1,4-galactosyltransferase (B4GALT6), the phospholipase 2γ (PLA2G4C) and the choline/ethanolamine phosphotransferase (CEPT1) enzymes. Confirmatory investigations revealed a non-classic, inflammatory profile, consisting on the one hand of raised plasma levels of several eicosanoids derived from arachidonic acid through PLA2G4C activity, together with also the proinflammatory cytokines IL6, IL8, MCP-1 and tumor necrosis factor-α. In contrast, we detected a more protective, Th2-shifted response in PBMC. Thus, our findings illustrate a previously unreported connection between ABCD1 dysfunction, glyco- and glycerolipid-driven inflammatory signaling and a fine-tuned inflammatory response underlying a disease considered non-inflammatory.


Asunto(s)
Adrenoleucodistrofia/sangre , Glicerofosfolípidos/sangre , Glucolípidos/sangre , Mediadores de Inflamación/metabolismo , Transducción de Señal , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/genética , Adrenoleucodistrofia/genética , Adulto , Animales , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 485-495, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28185952

RESUMEN

Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach. To this end, we compared 12 different regions of CNS of healthy adult subjects, and the fatty acid profile and vulnerability to lipid peroxidation, were determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), respectively. In addition, different components involved in PUFA biosynthesis, as well as adaptive defense mechanisms against lipid peroxidation, were also measured by western blot and immunohistochemistry, respectively. We found that: i) four fatty acids (18.1n-9, 22:6n-3, 20:1n-9, and 18:0) are significant discriminators among CNS regions; ii) these differential fatty acid profiles generate a differential selective neural vulnerability (expressed by the peroxidizability index); iii) the cross-regional differences for the fatty acid profiles follow a caudal-cranial gradient which is directly related to changes in the biosynthesis pathways which can be ascribed to neuronal cells; and iv) the higher the peroxidizability index for a given human brain region, the lower concentration of the protein damage markers, likely supported by the presence of adaptive antioxidant mechanisms. In conclusion, our results suggest that there is a region-specific vulnerability to lipid peroxidation and offer evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the human central nervous system.


Asunto(s)
Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Lípidos/aislamiento & purificación , Estrés Oxidativo , Adipogénesis/genética , Adulto , Autopsia , Encéfalo/patología , Sistema Nervioso Central/química , Sistema Nervioso Central/patología , Cromatografía de Gases y Espectrometría de Masas , Humanos , Peroxidación de Lípido , Lípidos/efectos adversos , Lipogénesis/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/metabolismo , Neuronas/patología
18.
Diabetologia ; 59(4): 822-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26831303

RESUMEN

AIMS/HYPOTHESIS: We aimed to investigate the potential mechanisms involved in the compromised adipogenesis of visceral (VAT) vs subcutaneous adipose tissue (SAT) using comparative metabolomics. Based on the differentially identified metabolites, we focused on the relationship between the active form of vitamin B6 (pyridoxal 5-phosphate [PLP]), known to be generated through pyridoxal kinase (PDXK), and adipogenesis. METHODS: Non-targeted metabolomics analyses were performed in paired VAT and SAT (n = 14, discovery cohort). PDXK gene expression was evaluated in two validation cohorts of paired SAT and VAT samples in relation to obesity status and insulin sensitivity, and mechanistically after weight loss in vivo and in 3T3-L1 cells in vitro. RESULTS: Comparative metabolomics showed that PLP was significantly decreased in VAT vs SAT. Concordantly, PDXK mRNA levels were significantly decreased in VAT vs SAT, specifically in adipocytes. The decrease was specially marked in obese individuals. PDXK mRNA levels showed a strong association with adipogenic, lipid-droplet-related and lipogenic genes. At a functional level, systemic insulin sensitivity positively associated with PDXK expression, and surgically-induced weight loss (improving insulin sensitivity) led to increased SAT PDXK mRNA levels in parallel with adipogenic genes. In human pre-adipocytes, PDXK mRNA levels increased during adipocyte differentiation and after administration of peroxisome proliferator-activated receptor-γ agonists, and decreased under inflammatory stimuli. Mechanistic studies in 3T3-L1 cells showed that PLP administration resulted in increased adipogenic mRNA markers during early adipogenesis, whereas the PLP antagonist 4-deoxypyridoxine exerted opposite effects. CONCLUSIONS/INTERPRETATION: Overall, these results support the notion that in situ production of PLP is required for physiological adipogenesis.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolómica/métodos , Piridoxal Quinasa/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Adulto , Animales , Femenino , Humanos , Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Vitamina B 6/metabolismo
19.
Glia ; 64(5): 853-74, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26880229

RESUMEN

The clinical challenge in acute injury as in traumatic brain injury (TBI) is to halt the delayed neuronal loss that occurs hours and days after the insult. Here we report that the activation of CREB-dependent transcription in reactive astrocytes prevents secondary injury in cerebral cortex after experimental TBI. The study was performed in a novel bitransgenic mouse in which a constitutively active CREB, VP16-CREB, was targeted to astrocytes with the Tet-Off system. Using histochemistry, qPCR, and gene profiling we found less neuronal death and damage, reduced macrophage infiltration, preserved mitochondria, and rescued expression of genes related to mitochondrial metabolism in bitransgenic mice as compared to wild type littermates. Finally, with meta-analyses using publicly available databases we identified a core set of VP16-CREB candidate target genes that may account for the neuroprotective effect. Enhancing CREB activity in astrocytes thus emerges as a novel avenue in acute brain post-injury therapeutics.


Asunto(s)
Astrocitos/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/terapia , Proteína de Unión a CREB/metabolismo , Animales , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Astrocitos/efectos de los fármacos , Proteína de Unión a CREB/genética , Células Cultivadas , Modelos Animales de Enfermedad , Etopósido/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Inflamación/etiología , Inflamación/prevención & control , Masculino , Metaanálisis como Asunto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Neurofilamentos/metabolismo
20.
Neurobiol Dis ; 88: 148-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26805387

RESUMEN

BACKGROUND: Docosahexaenoic acid (DHA), a key lipid in nervous system homeostasis, is depleted in the spinal cord of sporadic amyotrophic lateral sclerosis (sALS) patients. However, the basis for such loss was unknown. METHODS: DHA synthetic machinery was evaluated in spinal cord samples from ALS patients and controls by immunohistochemistry and western blot. Further, lipid composition was measured in organotypic spinal cord cultures by gas chromatography and liquid chromatography coupled to mass spectrometry. In these samples, mitochondrial respiratory functions were measured by high resolution respirometry. Finally, Neuro2-A and stem cell-derived human neurons were used for evaluating mechanistic relationships between TDP-43 aggregation, oxidative stress and cellular changes in DHA-related proteins. RESULTS: ALS is associated to changes in the spinal cord distribution of DHA synthesis enzymatic machinery comparing ten ALS cases and eight controls. We found increased levels of desaturases (ca 95% increase, p<0.001), but decreased amounts of DHA-related ß-oxidation enzymes in ALS samples (40% decrease, p<0.05). Further, drebrin, a DHA-dependent synaptic protein, is depleted in spinal cord samples from ALS patients (around 40% loss, p<0.05). In contrast, chronic excitotoxicity in spinal cord increases DHA acid amount, with both enhanced concentrations of neuroprotective docosahexaenoic acid-derived resolvin D, and higher lipid peroxidation-derived molecules such as 8-iso-prostaglandin-F2-α (8-iso-PGF2α) levels. Since α-tocopherol improved mitochondrial respiratory function and motor neuron survival in these conditions, it is suggested that oxidative stress could boost motor neuron loss. Cell culture and metabolic flux experiments, showing enhanced expression of desaturases (FADS2) and ß-oxidation enzymes after H2O2 challenge suggest that DHA production can be an initial response to oxidative stress, driven by TDP-43 aggregation and drebrin loss. Interestingly, these changes were dependent on cell type used, since human neurons exhibited losses of FADS2 and drebrin after oxidative stress. These features (drebrin loss and FADS2 alterations) were also produced by transfection by aggregation prone C-terminal fragments of TDP-43. CONCLUSIONS: sALS is associated with tissue-specific DHA-dependent synthetic machinery alteration. Furthermore, excitotoxicity sinergizes with oxidative stress to increase DHA levels, which could act as a response over stress, involving the expression of DHA synthetic enzymes. Later on, this allostatic overload could exacerbate cell stress by contributing to TDP-43 aggregation. This, at its turn, could blunt this protective response, overall leading to DHA depletion and neuronal dysfunction.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Encéfalo/metabolismo , Proteínas de Unión al ADN/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Médula Espinal/metabolismo , Esclerosis Amiotrófica Lateral/enzimología , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Ácidos Docosahexaenoicos/farmacología , Ácidos Grasos/metabolismo , Femenino , Humanos , Peróxido de Hidrógeno/farmacología , Técnicas In Vitro , Peroxidación de Lípido/efectos de los fármacos , Masculino , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Neuroblastoma/patología , Oxidantes/farmacología , Ratas , Células Madre/efectos de los fármacos , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA