Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 615(7952): 490-498, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890227

RESUMEN

Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-ß production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.


Asunto(s)
Fumarato Hidratasa , Interferón beta , Macrófagos , Mitocondrias , ARN Mitocondrial , Humanos , Argininosuccinato Sintasa/metabolismo , Ácido Argininosuccínico/metabolismo , Ácido Aspártico/metabolismo , Respiración de la Célula , Citosol/metabolismo , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Interferón beta/biosíntesis , Interferón beta/inmunología , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Lupus Eritematoso Sistémico/enzimología , Macrófagos/enzimología , Macrófagos/inmunología , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial , Metabolómica , Mitocondrias/genética , Mitocondrias/metabolismo , ARN Mitocondrial/metabolismo
2.
Basic Res Cardiol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864895

RESUMEN

The mitochondrial metabolite succinate is a key driver of ischemia/reperfusion injury (IRI). Targeting succinate metabolism by inhibiting succinate dehydrogenase (SDH) upon reperfusion using malonate is an effective therapeutic strategy to achieve cardioprotection in the short term (< 24 h reperfusion) in mouse and pig in vivo myocardial infarction (MI) models. We aimed to assess whether inhibiting IRI with malonate given upon reperfusion could prevent post-MI heart failure (HF) assessed after 28 days. Male C57BL/6 J mice were subjected to 30 min left anterior coronary artery (LAD) occlusion, before reperfusion for 28 days. Malonate or without-malonate control was infused as a single dose upon reperfusion. Cardiac function was assessed by echocardiography and fibrosis by Masson's trichrome staining. Reperfusion without malonate significantly reduced ejection fraction (~ 47%), fractional shortening (~ 23%) and elevated collagen deposition 28 days post-MI. Malonate, administered as a single infusion (16 mg/kg/min for 10 min) upon reperfusion, gave a significant cardioprotective effect, with ejection fraction (~ 60%) and fractional shortening (~ 30%) preserved and less collagen deposition. Using an acidified malonate formulation, to enhance its uptake into cardiomyocytes via the monocarboxylate transporter 1, both 1.6 and 16 mg/kg/min 10 min infusion led to robust long-term cardioprotection with preserved ejection fraction (> 60%) and fractional shortening (~ 30%), as well as significantly less collagen deposition than control hearts. Malonate administration upon reperfusion prevents post-MI HF. Acidification of malonate enables lower doses of malonate to also achieve long-term cardioprotection post-MI. Therefore, the administration of acidified malonate upon reperfusion is a promising therapeutic strategy to prevent IRI and post-MI HF.

3.
Circ Res ; 131(6): 528-541, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35959683

RESUMEN

BACKGROUND: Inhibiting SDH (succinate dehydrogenase), with the competitive inhibitor malonate, has shown promise in ameliorating ischemia/reperfusion injury. However, key for translation to the clinic is understanding the mechanism of malonate entry into cells to enable inhibition of SDH, its mitochondrial target, as malonate itself poorly permeates cellular membranes. The possibility of malonate selectively entering the at-risk heart tissue on reperfusion, however, remains unexplored. METHODS: C57BL/6J mice, C2C12 and H9c2 myoblasts, and HeLa cells were used to elucidate the mechanism of selective malonate uptake into the ischemic heart upon reperfusion. Cells were treated with malonate while varying pH or together with transport inhibitors. Mouse hearts were either perfused ex vivo (Langendorff) or subjected to in vivo left anterior descending coronary artery ligation as models of ischemia/reperfusion injury. Succinate and malonate levels were assessed by liquid chromatography-tandem mass spectrometry LC-MS/MS, in vivo by mass spectrometry imaging, and infarct size by TTC (2,3,5-triphenyl-2H-tetrazolium chloride) staining. RESULTS: Malonate was robustly protective against cardiac ischemia/reperfusion injury, but only if administered at reperfusion and not when infused before ischemia. The extent of malonate uptake into the heart was proportional to the duration of ischemia. Malonate entry into cardiomyocytes in vivo and in vitro was dramatically increased at the low pH (≈6.5) associated with ischemia. This increased uptake of malonate was blocked by selective inhibition of MCT1 (monocarboxylate transporter 1). Reperfusion of the ischemic heart region with malonate led to selective SDH inhibition in the at-risk region. Acid-formulation greatly enhances the cardioprotective potency of malonate. CONCLUSIONS: Cardioprotection by malonate is dependent on its entry into cardiomyocytes. This is facilitated by the local decrease in pH that occurs during ischemia, leading to its selective uptake upon reperfusion into the at-risk tissue, via MCT1. Thus, malonate's preferential uptake in reperfused tissue means it is an at-risk tissue-selective drug that protects against cardiac ischemia/reperfusion injury.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Cromatografía Liquida , Células HeLa , Humanos , Isquemia , Malonatos/farmacología , Malonatos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos , Espectrometría de Masas en Tándem
4.
Nature ; 556(7699): 113-117, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29590092

RESUMEN

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Asunto(s)
Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , Succinatos/metabolismo , Alquilación , Animales , Carboxiliasas , Bovinos , Cisteína/química , Cisteína/metabolismo , Citocinas/biosíntesis , Citocinas/inmunología , Retroalimentación Fisiológica , Femenino , Células HEK293 , Humanos , Hidroliasas/biosíntesis , Interferón beta/inmunología , Interferón beta/farmacología , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Proteínas/metabolismo , Ratas , Ratas Wistar , Succinatos/química
5.
Basic Res Cardiol ; 118(1): 34, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37639068

RESUMEN

In the context of myocardial infarction, the burst of superoxide generated by reverse electron transport (RET) at complex I in mitochondria is a crucial trigger for damage during ischaemia/reperfusion (I/R) injury. Here we outline the necessary conditions for superoxide production by RET at complex I and how it can occur during reperfusion. In addition, we explore various pathways that are implicated in generating the conditions for RET to occur and suggest potential therapeutic strategies to target RET, aiming to achieve cardioprotection.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión , Humanos , Transporte de Electrón , Superóxidos , Fosforilación Oxidativa , Mitocondrias , Infarto del Miocardio/prevención & control
6.
J Exp Biol ; 226(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37066839

RESUMEN

Extremely anoxia-tolerant animals, such as freshwater turtles, survive anoxia and reoxygenation without sustaining tissue damage to their hearts. In contrast, for mammals, the ischemia-reperfusion (IR) injury that leads to tissue damage during a heart attack is initiated by a burst of superoxide (O2·-) production from the mitochondrial respiratory chain upon reperfusion of ischemic tissue. Whether turtles avoid oxidative tissue damage because of an absence of mitochondrial superoxide production upon reoxygenation, or because the turtle heart is particularly protected against this damage, is unclear. Here, we investigated whether there was an increase in mitochondrial O2·- production upon the reoxygenation of anoxic red-eared slider turtle hearts in vivo and in vitro. This was done by measuring the production of H2O2, the dismutation product of O2·-, using the mitochondria-targeted mass-spectrometric probe in vivo MitoB, while in parallel assessing changes in the metabolites driving mitochondrial O2·- production, succinate, ATP and ADP levels during anoxia, and H2O2 consumption and production rates of isolated heart mitochondria. We found that there was no excess production of in vivo H2O2 during 1 h of reoxygenation in turtles after 3 h anoxia at room temperature, suggesting that turtle hearts most likely do not suffer oxidative injury after anoxia because their mitochondria produce no excess O2·- upon reoxygenation. Instead, our data support the conclusion that both the low levels of succinate accumulation and the maintenance of ADP levels in the anoxic turtle heart are key factors in preventing the surge of O2·- production upon reoxygenation.


Asunto(s)
Tortugas , Animales , Especies Reactivas de Oxígeno/metabolismo , Tortugas/metabolismo , Superóxidos/metabolismo , Peróxido de Hidrógeno/metabolismo , Hipoxia/metabolismo , Mitocondrias Cardíacas/metabolismo , Ácido Succínico/metabolismo , Succinatos/metabolismo , Mamíferos/metabolismo
7.
J Biol Chem ; 296: 100169, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33298526

RESUMEN

The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of genes involved in antioxidant defenses to modulate fundamental cellular processes such as mitochondrial function and GSH metabolism. Previous reports proposed that mitochondrial reactive oxygen species production and disruption of the GSH pool activate the Nrf2 pathway, suggesting that Nrf2 senses mitochondrial redox signals and/or oxidative damage and signals to the nucleus to respond appropriately. However, until now, it has not been possible to disentangle the overlapping effects of mitochondrial superoxide/hydrogen peroxide production as a redox signal from changes to mitochondrial thiol homeostasis on Nrf2. Recently, we developed mitochondria-targeted reagents that can independently induce mitochondrial superoxide and hydrogen peroxide production mitoParaquat (MitoPQ) or selectively disrupt mitochondrial thiol homeostasis MitoChlorodinitrobenzoic acid (MitoCDNB). Using these reagents, here we have determined how enhanced generation of mitochondrial superoxide and hydrogen peroxide or disruption of mitochondrial thiol homeostasis affects activation of the Nrf2 system in cells, which was assessed by the Nrf2 protein level, nuclear translocation, and expression of its target genes. We found that selective disruption of the mitochondrial GSH pool and inhibition of its thioredoxin system by MitoCDNB led to Nrf2 activation, whereas using MitoPQ to enhance the production of mitochondrial superoxide and hydrogen peroxide alone did not. We further showed that Nrf2 activation by MitoCDNB requires cysteine sensors of Kelch-like ECH-associated protein 1 (Keap1). These findings provide important information on how disruption to mitochondrial redox homeostasis is sensed in the cytoplasm and signaled to the nucleus.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Superóxidos/metabolismo , Animales , Células Cultivadas , Cisteína/metabolismo , Glutatión/metabolismo , Homeostasis , Ratones , Mitocondrias/patología , Oxidación-Reducción , Transducción de Señal
8.
Cardiovasc Drugs Ther ; 36(1): 1-13, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32648168

RESUMEN

PURPOSE: Mitochondrial reactive oxygen species (ROS) production upon reperfusion of ischemic tissue initiates the ischemia/reperfusion (I/R) injury associated with heart attack. During ischemia, succinate accumulates and its oxidation upon reperfusion by succinate dehydrogenase (SDH) drives ROS production. Inhibition of succinate accumulation and/or oxidation by dimethyl malonate (DMM), a cell permeable prodrug of the SDH inhibitor malonate, can decrease I/R injury. However, DMM is hydrolysed slowly, requiring administration to the heart prior to ischemia, precluding its administration to patients at the point of reperfusion, for example at the same time as unblocking a coronary artery following a heart attack. To accelerate malonate delivery, here we developed more rapidly hydrolysable malonate esters. METHODS: We synthesised a series of malonate esters and assessed their uptake and hydrolysis by isolated mitochondria, C2C12 cells and in mice in vivo. In addition, we assessed protection against cardiac I/R injury by the esters using an in vivo mouse model of acute myocardial infarction. RESULTS: We found that the diacetoxymethyl malonate diester (MAM) most rapidly delivered large amounts of malonate to cells in vivo. Furthermore, MAM could inhibit mitochondrial ROS production from succinate oxidation and was protective against I/R injury in vivo when added at reperfusion. CONCLUSIONS: The rapidly hydrolysed malonate prodrug MAM can protect against cardiac I/R injury in a clinically relevant mouse model.


Asunto(s)
Cardiotónicos/farmacología , Malonatos/farmacología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Animales , Cardiotónicos/síntesis química , Cardiotónicos/química , Línea Celular , Modelos Animales de Enfermedad , Ésteres/química , Femenino , Humanos , Masculino , Malonatos/síntesis química , Malonatos/química , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Profármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Ácido Succínico/metabolismo
9.
J Cell Mol Med ; 24(11): 5937-5954, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384583

RESUMEN

Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.


Asunto(s)
Terapia Molecular Dirigida , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Animales , Metabolismo Energético , Humanos , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/patología
10.
Mol Pharm ; 17(9): 3526-3540, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32692564

RESUMEN

Many mitochondrial metabolites and bioactive molecules contain two carboxylic acid moieties that make them unable to cross biological membranes. Hence, there is considerable interest in facilitating the uptake of these molecules into cells and mitochondria to modify or report on their function. Conjugation to the triphenylphosphonium (TPP) lipophilic cation is widely used to deliver molecules selectively to mitochondria in response to the membrane potential. However, permanent attachment to the cation can disrupt the biological function of small dicarboxylates. Here, we have developed a strategy using TPP to release dicarboxylates selectively within mitochondria. For this, the dicarboxylate is attached to a TPP compound via a single ester bond, which is then cleaved by intramitochondrial esterase activity, releasing the dicarboxylate within the organelle. Leaving the second carboxylic acid free also means mitochondrial uptake is dependent on the pH gradient across the inner membrane. To assess this strategy, we synthesized a range of TPP monoesters of the model dicarboxylate, malonate. We then tested their mitochondrial accumulation and ability to deliver malonate to isolated mitochondria and to cells, in vitro and in vivo. A TPP-malonate monoester compound, TPP11-malonate, in which the dicarboxylate group was attached to the TPP compound via a hydrophobic undecyl link, was most effective at releasing malonate within mitochondria in cells and in vivo. Therefore, we have developed a TPP-monoester platform that enables the selective release of bioactive dicarboxylates within mitochondria.


Asunto(s)
Ácidos Carboxílicos/química , Cationes/química , Mitocondrias/efectos de los fármacos , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Ésteres/química , Femenino , Células HeLa , Compuestos Heterocíclicos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Malonatos/química , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Compuestos Organofosforados/química , Ratas , Ratas Wistar
11.
Cardiovasc Drugs Ther ; 34(6): 823-834, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32979176

RESUMEN

PURPOSE: HFpEF (heart failure with preserved ejection fraction) is a major consequence of diabetic cardiomyopathy with no effective treatments. Here, we have characterized Akita mice as a preclinical model of HFpEF and used it to confirm the therapeutic efficacy of the mitochondria-targeted dicarbonyl scavenger, MitoGamide. METHODS AND RESULTS: A longitudinal echocardiographic analysis confirmed that Akita mice develop diastolic dysfunction with reduced E peak velocity, E/A ratio and extended isovolumetric relaxation time (IVRT), while the systolic function remains comparable with wild-type mice. The myocardium of Akita mice had a decreased ATP/ADP ratio, elevated mitochondrial oxidative stress and increased organelle density, compared with that of wild-type mice. MitoGamide, a mitochondria-targeted 1,2-dicarbonyl scavenger, exhibited good stability in vivo, uptake into cells and mitochondria and reactivity with dicarbonyls. Treatment of Akita mice with MitoGamide for 12 weeks significantly improved the E/A ratio compared with the vehicle-treated group. CONCLUSION: Our work confirms that the Akita mouse model of diabetes replicates key clinical features of diabetic HFpEF, including cardiac and mitochondrial dysfunction. Furthermore, in this independent study, MitoGamide treatment improved diastolic function in Akita mice.


Asunto(s)
Benzamidas/farmacología , Fármacos Cardiovasculares/farmacología , Cardiomiopatías Diabéticas/prevención & control , Insuficiencia Cardíaca/prevención & control , Volumen Sistólico/efectos de los fármacos , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Animales , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Productos Finales de Glicación Avanzada/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
14.
Redox Biol ; 72: 103161, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677214

RESUMEN

Ischaemia-reperfusion (IR) injury is the paradoxical consequence of the rapid restoration of blood flow to an ischaemic organ. Although reperfusion is essential for tissue survival in conditions such as myocardial infarction and stroke, the excessive production of mitochondrial reactive oxygen species (ROS) upon reperfusion initiates the oxidative damage that underlies IR injury, by causing cell death and inflammation. This ROS production is caused by an accumulation of the mitochondrial metabolite succinate during ischaemia, followed by its rapid oxidation upon reperfusion by succinate dehydrogenase (SDH), driving superoxide production at complex I by reverse electron transport. Inhibitors of SDH, such as malonate, show therapeutic potential by decreasing succinate oxidation and superoxide production upon reperfusion. To better understand the mechanism of mitochondrial ROS production upon reperfusion and to assess potential therapies, we set up an in vitro model of IR injury. For this, isolated mitochondria were incubated anoxically with succinate to mimic ischaemia and then rapidly reoxygenated to replicate reperfusion, driving a burst of ROS formation. Using this system, we assess the factors that contribute to the magnitude of mitochondrial ROS production in heart, brain, and kidney mitochondria, as well as screening for inhibitors of succinate oxidation with therapeutic potential.


Asunto(s)
Mitocondrias , Daño por Reperfusión , Superóxidos , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Animales , Superóxidos/metabolismo , Mitocondrias/metabolismo , Ácido Succínico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Oxidación-Reducción , Malonatos/farmacología , Malonatos/metabolismo , Masculino , Ratas , Ratones
15.
Nat Commun ; 15(1): 2204, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538579

RESUMEN

The naked mole-rat Heterocephalus glaber is a eusocial mammal exhibiting extreme longevity (37-year lifespan), extraordinary resistance to hypoxia and absence of cardiovascular disease. To identify the mechanisms behind these exceptional traits, metabolomics and RNAseq of cardiac tissue from naked mole-rats was compared to other African mole-rat genera (Cape, Cape dune, Common, Natal, Mahali, Highveld and Damaraland mole-rats) and evolutionarily divergent mammals (Hottentot golden mole and C57/BL6 mouse). We identify metabolic and genetic adaptations unique to naked mole-rats including elevated glycogen, thus enabling glycolytic ATP generation during cardiac ischemia. Elevated normoxic expression of HIF-1α is observed while downstream hypoxia responsive-genes are down-regulated, suggesting adaptation to low oxygen environments. Naked mole-rat hearts show reduced succinate levels during ischemia compared to C57/BL6 mouse and negligible tissue damage following ischemia-reperfusion injury. These evolutionary traits reflect adaptation to a unique hypoxic and eusocial lifestyle that collectively may contribute to their longevity and health span.


Asunto(s)
Longevidad , Oxígeno , Animales , Ratones , Longevidad/genética , Hipoxia/genética , Ratas Topo/genética , Isquemia
16.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38906677

RESUMEN

Mitochondrial dysfunction is a common feature of C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several Drosophila models of C9orf72-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue C9orf72 locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of Keap1 or pharmacological inhibition by dimethyl fumarate significantly rescued the C9orf72-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in C9orf72 patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to C9orf72 pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for C9orf72-related ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Modelos Animales de Enfermedad , Demencia Frontotemporal , Proteína 1 Asociada A ECH Tipo Kelch , Mitocondrias , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Fenotipo , Transducción de Señal , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Mitocondrias/metabolismo , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Especies Reactivas de Oxígeno/metabolismo , Mitofagia/genética , Dimetilfumarato/farmacología , Masculino
17.
FEBS Lett ; 597(2): 246-261, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36217875

RESUMEN

The compartmentation and distribution of metabolites between mitochondria and the rest of the cell is a key parameter of cell signalling and pathology. Here, we have developed a rapid fractionation procedure that enables us to take mouse heart and liver from in vivo and within ~ 30 s stabilise the distribution of metabolites between mitochondria and the cytosol by rapid cooling, homogenisation and dilution. This is followed by centrifugation of mitochondria through an oil layer to separate mitochondrial and cytosolic fractions for subsequent metabolic analysis. Using this procedure revealed the in vivo compartmentation of mitochondrial metabolites and will enable the assessment of the distribution of metabolites between the cytosol and mitochondria during a range of situations in vivo.


Asunto(s)
Corazón , Mitocondrias , Ratones , Animales , Citosol/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias Cardíacas/metabolismo , Fraccionamiento Celular/métodos
18.
Redox Biol ; 59: 102600, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36630820

RESUMEN

Current treatments for acute ischemic stroke aim to reinstate a normal perfusion in the ischemic territory but can also cause significant ischemia-reperfusion (IR) injury. Previous data in experimental models of stroke show that ischemia leads to the accumulation of succinate, and, upon reperfusion, the accumulated succinate is rapidly oxidized by succinate dehydrogenase (SDH) to drive superoxide production at mitochondrial complex I. Despite this process initiating IR injury and causing further tissue damage, the potential of targeting succinate metabolism to minimize IR injury remains unexplored. Using both quantitative and untargeted high-resolution metabolomics, we show a time-dependent accumulation of succinate in both human and mouse brain exposed to ischemia ex vivo. In a mouse model of ischemic stroke/mechanical thrombectomy mass spectrometry imaging (MSI) shows that succinate accumulation is confined to the ischemic region, and that the accumulated succinate is rapidly oxidized upon reperfusion. Targeting succinate oxidation by systemic infusion of the SDH inhibitor malonate upon reperfusion leads to a dose-dependent decrease in acute brain injury. Together these findings support targeting succinate metabolism upon reperfusion to decrease IR injury as a valuable adjunct to mechanical thrombectomy in ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Ratones , Animales , Humanos , Isquemia , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/metabolismo , Ácido Succínico/metabolismo , Trombectomía
19.
Science ; 376(6600): eabh2841, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35737799

RESUMEN

Tumor necrosis factor (TNF) is a critical host resistance factor against tuberculosis. However, excess TNF produces susceptibility by increasing mitochondrial reactive oxygen species (mROS), which initiate a signaling cascade to cause pathogenic necrosis of mycobacterium-infected macrophages. In zebrafish, we identified the mechanism of TNF-induced mROS in tuberculosis. Excess TNF in mycobacterium-infected macrophages elevates mROS production by reverse electron transport (RET) through complex I. TNF-activated cellular glutamine uptake leads to an increased concentration of succinate, a Krebs cycle intermediate. Oxidation of this elevated succinate by complex II drives RET, thereby generating the mROS superoxide at complex I. The complex I inhibitor metformin, a widely used antidiabetic drug, prevents TNF-induced mROS and necrosis of Mycobacterium tuberculosis-infected zebrafish and human macrophages; metformin may therefore be useful in tuberculosis therapy.


Asunto(s)
Complejo I de Transporte de Electrón , Macrófagos , Metformina , Mycobacterium tuberculosis , Especies Reactivas de Oxígeno , Tuberculosis , Factor de Necrosis Tumoral alfa , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Transporte de Electrón , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Metformina/farmacología , Mycobacterium tuberculosis/metabolismo , Necrosis , Especies Reactivas de Oxígeno/metabolismo , Ácido Succínico/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiología , Tuberculosis/patología , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra
20.
Cell Chem Biol ; 29(7): 1232-1244.e5, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868236

RESUMEN

During metabolism, carboxylic acids are often activated by conjugation to the thiol of coenzyme A (CoA). The resulting acyl-CoAs comprise a group of ∼100 thioester-containing metabolites that could modify protein behavior through non-enzymatic N-acylation of lysine residues. However, the importance of many potential acyl modifications remains unclear because antibody-based methods to detect them are unavailable and the in vivo concentrations of their respective acyl-CoAs are poorly characterized. Here, we develop cysteine-triphenylphosphonium (CysTPP), a mass spectrometry probe that uses "native chemical ligation" to sensitively detect the major acyl-CoAs present in vivo through irreversible modification of its amine via a thioester intermediate. Using CysTPP, we show that longer-chain (C13-C22) acyl-CoAs often constitute ∼60% of the acyl-CoA pool in rat tissues. These hydrophobic longer-chain fatty acyl-CoAs have the potential to non-enzymatically modify protein residues.


Asunto(s)
Acilcoenzima A , Coenzima A , Acilcoenzima A/metabolismo , Acilación , Animales , Coenzima A/metabolismo , Cisteína/metabolismo , Espectrometría de Masas , Proteínas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA