Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur J Neurosci ; 47(8): 994-1002, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29461650

RESUMEN

In humans and animal models, sex differences are reported for anxiety-like behavior and response to anxiogenic stimuli. In the current work, we studied anxiety-like behavior and response to the prototypical anti-anxiety drug, diazepam. We used 6th generation outbred lines of adult Long Evans rats with high and low anxiety-like behavior phenotypes to investigate the impact of proestrus on the baseline and diazepam-induced behavior. At three doses of diazepam (0, 0.1, and 1.0 mg/kg, i.p.), we measured anxiogenic responses on the elevated plus maze of adult male and female rats. We assessed parvalbumin and brain-derived neurotrophin protein levels in forebrain and limbic structures implicated in anxiety/stress using immunohistochemistry. At baseline, we saw significant differences between anxiety lines, with high anxiety lines displaying less time on the open arms of the elevated plus maze, and less open arm entries, regardless of sex. During proestrus, high anxiety females showed less anxiety-like behavior at 0.1 mg/kg, while low anxiety females displayed less anxiety-like behavior at 0.1 and 1.0 doses, relative to males. Brain-derived neurotrophin protein was elevated in females in the medial prefrontal cortex and central amygdala, while parvalbumin-immunoreactive cells were greater in males in the medial prefrontal cortex. Parvalbumin-positive cells in high anxiety females were higher in CA2 and dentate gyrus relative to males from the same line. In sum, when tested in proestrus, females showed greater anxiolytic effects of diazepam relative to males, and this correlated with increases in neurotrophin and parvalbumin neuron density in corticolimbic structures.


Asunto(s)
Ansiolíticos/farmacología , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diazepam/farmacología , Neuronas/metabolismo , Parvalbúminas/metabolismo , Caracteres Sexuales , Animales , Animales Endogámicos , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Proestro , Ratas
2.
bioRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461483

RESUMEN

Post-traumatic stress disorder (PTSD) is characterized by intense fear memory formation and is diagnosed more often in women than men. Here, we show that serotonin differentially affects fear learning and communication in the extended amygdala of male and female mice. Females showed higher sensitivity to the effects of pharmacologically increasing serotonin during auditory fear conditioning, which enhanced fear memory recall in both sexes. Optogenetic stimulation of dorsal raphe terminals in the anterior dorsal bed nucleus of the stria terminalis (adBNST) during fear conditioning increased c-Fos expression in the BNST and central nucleus of the amygdala (CeA), and enhanced fear memory recall via activation of adBNST 5-HT2C receptors in females only. Likewise, in females only, serotonin stimulation during learning enhanced adBNST-CeA high gamma (90-140Hz) synchrony and adBNST-to-CeA communication in high gamma during fear memory recall. We conclude that sex differences in the raphe-BNST-CeA circuit may increase risk of PTSD in women.

3.
Biol Psychiatry ; 90(12): 829-842, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32950210

RESUMEN

BACKGROUND: Increased physical activity is a common feature of anorexia nervosa (AN). Although high activity levels are associated with greater risk of developing AN, particularly when combined with dieting, most individuals who diet and exercise maintain a healthy body weight. It is unclear why some individuals develop AN while most do not. A rodent model of resilience and vulnerability to AN would be valuable to research. Dopamine, which is believed to play a crucial role in AN, regulates both reward and activity and may modulate vulnerability. METHODS: Adolescent and young adult female C57BL/6N mice were tested in the activity-based anorexia (ABA) model, with an extended period of food restriction in adult mice. ABA was also tested in dopamine transporter knockdown mice and wild-type littermates. Mice that adapted to conditions and maintained a stable body weight were characterized as resilient. RESULTS: In adults, vulnerable and resilient phenotypes emerged in both the ABA and food-restricted mice without wheels. Vulnerable mice exhibited a pronounced increase in running throughout the light cycle, which dramatically peaked prior to requiring removal from the experiment. Resilient mice exhibited an adaptive decrease in total running, appropriate food anticipatory activity, and increased consumption, thereby achieving stable body weight. Hyperdopaminergia accelerated progression of the vulnerable phenotype. CONCLUSIONS: Our demonstration of distinct resilient and vulnerable phenotypes in mouse ABA significantly advances the utility of the model for identifying genes and neural substrates mediating AN risk and resilience. Modulation of dopamine may play a central role in the underlying circuit.


Asunto(s)
Anorexia Nerviosa , Animales , Anorexia , Anorexia Nerviosa/genética , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Fenotipo
4.
Behav Brain Res ; 383: 112522, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32007493

RESUMEN

Impulsivity and anxiety are psychological traits involved in many aspects of the drug addiction cycle. However, few preclinical models exist for examining both impulsive and anxiety patterns. In the current study, we investigated whether 6th generation rats selectively bred for high anxiety (HAn)-like behavior would display amphetamine (AMPH) hyperactivity. In the same generational line, we also determined if HAn animals would display impulsivity in an operant task. Filial 5 male Long Evans rats phenotyped as HAn and low anxiety (LAn) were tested on the elevated plus maze (EPM) and in locomotor chambers following a low dose of AMPH (0.5 mg/kg, IP). Next, a separate group of F5 animals was exposed to a differential reinforcement of low rate of responding (DRL: 30 s) operant schedule to assess impulsivity. Postmortem, 5-HT1A and α2 adrenergic receptor protein levels were measured in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) core and shell, and α2 adrenergic counts were assessed in the locus coeruleus (LC), and the paraventricular nucleus (PVN) of the hypothalamus. F5 outbred HAn rats had decreased percent open arm time and entries on the EPM and elevated AMPH-induced locomotion. In the DRL, HAn rats displayed an impulsive profile, they attained fewer total rewards, had more inter-response times, and showed greater burst ratios. We found that HAn rats had a higher number of 5-HT1A receptor immunostained cells in the mPFC but were not different than LAn in NAc core or shell. By contrast, levels of the α2 adrenergic receptor protein were no different in the mPFC while HAn rats had greater levels in the LC and lower levels in the PVN. Overall, these data further validate our outbred trait anxiety rats: HAn males show anxiety-like behavior, AMPH hypersensitivity, greater impulsivity, and varying levels of limbic and midbrain 5-HT1A and α2 adrenergic receptor proteins.


Asunto(s)
Ansiedad/metabolismo , Encéfalo/metabolismo , Conducta Impulsiva/fisiología , Locomoción/fisiología , Receptor de Serotonina 5-HT1A/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Adrenérgicos/farmacología , Anfetamina/farmacología , Animales , Ansiedad/fisiopatología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Condicionamiento Operante , Prueba de Laberinto Elevado , Conducta Impulsiva/efectos de los fármacos , Locomoción/efectos de los fármacos , Locus Coeruleus/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Corteza Prefrontal/metabolismo , Ratas Long-Evans
5.
Neuropsychopharmacology ; 44(4): 733-742, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30542090

RESUMEN

Chronic exposure to stress is a well-known risk factor for the development of mood and anxiety disorders. Promoting resilience to stress may prevent the development of these disorders, but resilience-enhancing compounds are not yet clinically available. One compound that has shown promise in the clinical setting is curcumin, a polyphenol compound found in the rhizome of the turmeric plant (Curcuma longa) with known anti-inflammatory and antidepressant properties. Here, we tested the efficacy of 1.5% dietary curcumin at promoting resilience to chronic social defeat stress (CSDS) in 129/SvEv mice, a strain that we show is highly susceptible to this type of stress. We found that administration of curcumin during CSDS produced a 4.5-fold increase in stress resilience, as measured by the social interaction test. Although the overall effects of curcumin were striking, we identified two distinct responses to curcumin. While 64% of defeated mice on curcumin were resilient (responders), the remaining 36% of mice were susceptible to the effects of stress (non-responders). Interestingly, responders released less corticosterone following acute restraint stress and had lower levels of peripheral IL-6 than nonresponders, implicating a role for the NF-κB pathway in treatment response. Importantly, curcumin also prevented anxiety-like behavior in both responders and non-responders in the elevated-plus maze and open field test. Collectively, our findings provide the first preclinical evidence that curcumin promotes resilience to CSDS and suggest that curcumin may prevent the emergence of a range of anxiety-like symptoms when given to individuals during exposure to chronic social stress.


Asunto(s)
Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Fármacos del Sistema Nervioso Central/farmacología , Curcumina/farmacología , Resiliencia Psicológica/efectos de los fármacos , Estrés Psicológico/prevención & control , Animales , Ansiedad/sangre , Ansiedad/dietoterapia , Ansiedad/fisiopatología , Fármacos del Sistema Nervioso Central/administración & dosificación , Corticosterona/sangre , Curcumina/administración & dosificación , Interleucina-6/sangre , Masculino , Ratones , Ratones de la Cepa 129 , Estrés Psicológico/sangre , Estrés Psicológico/dietoterapia , Estrés Psicológico/fisiopatología
6.
Science ; 364(6440): 578-583, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31073064

RESUMEN

Young adult-born granule cells (abGCs) in the dentate gyrus (DG) have a profound impact on cognition and mood. However, it remains unclear how abGCs distinctively contribute to local DG information processing. We found that the actions of abGCs in the DG depend on the origin of incoming afferents. In response to lateral entorhinal cortex (LEC) inputs, abGCs exert monosynaptic inhibition of mature granule cells (mGCs) through group II metabotropic glutamate receptors. By contrast, in response to medial entorhinal cortex (MEC) inputs, abGCs directly excite mGCs through N-methyl-d-aspartate receptors. Thus, a critical function of abGCs may be to regulate the relative synaptic strengths of LEC-driven contextual information versus MEC-driven spatial information to shape distinct neural representations in the DG.


Asunto(s)
Giro Dentado/fisiología , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Animales , Células Cultivadas , Potenciales Evocados , Humanos , Ratones , Ratones Transgénicos , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología
7.
PLoS One ; 12(10): e0187195, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29077745

RESUMEN

White Nose Syndrome (WNS) greatly increases the over-winter mortality of little brown (Myotis lucifugus), Indiana (M. sodalis), northern (M. septentrionalis), and tricolored (Perimyotis subflavus) bats, and is caused by cutaneous infections with Pseudogymnoascus destructans (Pd). Big brown bats (Eptesicus fuscus) are highly resistant to Pd infections. Seven different fatty acids (myristic, pentadecanoic, palmitic, palmitoleic, oleic, and, linoleic acids) occur in the wing epidermis of both M. lucifugus and E. fuscus, 4 of which (myristic, palmitoleic, oleic, and, linoleic acids) inhibit Pd growth. The amounts of myristic and linoleic acids in the epidermis of M. lucifugus decrease during hibernation, thus we predicted that the epidermal fatty acid profile of M. lucifugus during hibernation has a reduced ability to inhibit Pd growth. Laboratory Pd growth experiments were conducted to test this hypothesis. The results demonstrated that the fatty acid profile of M. lucifugus wing epidermis during hibernation has a reduced ability to inhibit the growth of Pd. Additional Pd growth experiments revealed that: a) triacylglycerols composed of known anti-Pd fatty acids do not significantly affect growth, b) pentadecanoic acid inhibits Pd growth, and c) 1-oleoglycerol, which is found in the wing epidermis of E. fuscus, also inhibits the growth of this fungus. Analyses of white adipose from M. lucifugus also revealed the selective retention of oleic and linoleic acids in this tissue during hibernation.


Asunto(s)
Ascomicetos/patogenicidad , Quirópteros/microbiología , Epidermis/metabolismo , Ácidos Grasos/metabolismo , Glicerol/metabolismo , Hibernación , Tejido Adiposo Blanco/metabolismo , Animales , Quirópteros/fisiología , Glicerol/química
8.
PLoS One ; 11(4): e0153535, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27070905

RESUMEN

White Nose Syndrome (WNS) greatly increases the over-winter mortality of little brown (Myotis lucifugus), Indiana (Myotis sodalis), northern (Myotis septentrionalis), and tricolored (Perimyotis subflavus) bats. It is caused by a cutaneous infection with the fungus Pseudogymnoascus destructans (Pd). Big brown bats (Eptesicus fuscus) are much more resistant to cutaneous infection with Pd, however. We thus conducted analyses of wing epidermis from hibernating E. fuscus and M. lucifugus to determine their fatty acid compositions, and laboratory Pd culture experiments at 4.0-13.4°C to determine the effects of these fatty acids on Pd growth. Our analyses revealed that the epidermis of both bat species contain the same 7 fatty acid types (14:0, 15:0, 16:0. 16:1, 18:0, 18:1, & 18:2), but the epidermis of M. lucifugus contains: a) more stearic (18:0) acid, b) less palmitoleic (16:1) acid, c) less myristic (14:0) acid, and, d) less oleic (18:1) acid than that of E. fuscus. The growth of Pd was inhibited by: a) myristic and stearic acids at 10.5-13.4°C, but not at 4.0-5.0°C, b) oleic acid at 5.0-10.6°C, c) palmitoleic acid, and, d) linoleic (18:2) acid at 5.0-10.6°C. One set of factors that enables E. fuscus to better resist cutaneous P. destructans infections (and thus WNS) therefore appears to be the relatively higher myristic, palmitoleic, and oleic acid contents of the epidermis.


Asunto(s)
Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Quirópteros/microbiología , Dermatomicosis/veterinaria , Epidermis/metabolismo , Ácidos Grasos/farmacología , Animales , Ascomicetos/fisiología , Quirópteros/metabolismo , Ácidos Grasos/metabolismo , Alas de Animales
9.
Behav Brain Res ; 270: 68-74, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24815212

RESUMEN

In clinical populations, prevalence rates for a number of anxiety disorders differ between males and females and gonadal hormones are thought to contribute to these differences. While these hormones have been shown to modulate the anxiolytic effects of the benzodiazepine agonist diazepam in some models, findings are inconsistent. Here, we tested for sex differences in response to anxiogenic stimuli following a 30-min diazepam (1.0mg/kg) pre-treatment in male and female rats showing high (HAn) and low (LAn) anxiety-like behavior on the elevated plus maze. Acute diazepam administration resulted in decreased anxiety-like behavior only in HAn males as demonstrated by a significant increase in percent open arm time in the elevated plus maze (EPM). Immunohistochemical analysis for parvalbumin (PV; a calcium-binding protein that selectively stains GABAergic neurons) in central amygdala (CeA), caudate putamen (CPu) and the hippocampus indicated the number of GABAergic interneurons in these areas differed across sex and anxiety trait. In the CPu, females had significantly more PV-immunoreactive (IR) cells than males, and LAn females had greater PV-IR neurons than HAn females. In the CeA, males displayed an increased number of PV-IR neurons compared to females, with no differences found between LAn and HAn. Further, trait differences were evident in the CA2 region of the hippocampus, regardless of sex. Taken together, these data suggest that gonadal hormones and trait anxiety may influence the sensitivity to the anti-anxiety effects of diazepam and these differences may be due in part to the distribution of GABA-containing interneurons.


Asunto(s)
Ansiolíticos/farmacología , Ansiedad/metabolismo , Diazepam/farmacología , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Núcleo Caudado/efectos de los fármacos , Núcleo Caudado/metabolismo , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inmunohistoquímica , Interneuronas/efectos de los fármacos , Masculino , Parvalbúminas/química , Putamen/efectos de los fármacos , Putamen/metabolismo , Ratas , Ratas Long-Evans , Factores Sexuales
10.
Behav Brain Res ; 252: 49-57, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23727174

RESUMEN

Environmental enrichment attenuates the response to psychostimulants and has been shown to reduce both anxiety and stress-related behaviors. Since stress is a major vulnerability factor for addiction, we investigated whether enrichment could reverse stress profiles in high anxious rats as well as reduce their amphetamine sensitivity. Using selectively-bred high and low anxiety males (filial 3) from enriched, social or isolated environments, we tested elevated plus maze exploration, novelty place preference and amphetamine (AMPH; 0.5mg/kg, IP)-induced hyperactivity. We measured plasma corticosterone (CORT) response after forced novel object exposure, phosphorylation of the tropomyosin-related kinase B receptor (pTrkB) in the hippocampus and striatum, and dopamine (D2) receptor mRNA levels in the striatum and nucleus accumbens. Results indicate that high anxiety animals reared in social or enriched environments spent more time on open arms of the EPM while low anxiety animals raised in enriched environments spent more time on open arms when compared to either isolated or social groups. There were no group differences or interactions found for novelty place preference. Enriched environments decreased the response to AMPH and stress-induced CORT regardless of trait but selectively decreased pTrkB and increased D2 mRNA levels in high anxiety animals. The results suggest that selectively-bred trait anxiety rats show state anxiety that is influenced by rearing environments, and D2 protein levels and BDNF/TrkB signaling may differentially contribute to integrating these effects.


Asunto(s)
Ansiedad , Conducta Animal/fisiología , Encéfalo/patología , Ambiente , Animales , Animales Recién Nacidos , Ansiedad/genética , Ansiedad/patología , Ansiedad/fisiopatología , Encéfalo/metabolismo , Corticosterona/sangre , Conducta Exploratoria/fisiología , Femenino , Masculino , Tamizaje Masivo/métodos , Aprendizaje por Laberinto/fisiología , Actividad Motora , Fenotipo , Fosforilación/genética , Fosforilación/fisiología , Ratas , Ratas Long-Evans , Receptor trkB/metabolismo , Estadística como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA