Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 587(7833): 270-274, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32726801

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the rapidly unfolding coronavirus disease 2019 (COVID-19) pandemic1,2. Clinical manifestations of COVID-19 vary, ranging from asymptomatic infection to respiratory failure. The mechanisms that determine such variable outcomes remain unresolved. Here we investigated CD4+ T cells that are reactive against the spike glycoprotein of SARS-CoV-2 in the peripheral blood of patients with COVID-19 and SARS-CoV-2-unexposed healthy donors. We detected spike-reactive CD4+ T cells not only in 83% of patients with COVID-19 but also in 35% of healthy donors. Spike-reactive CD4+ T cells in healthy donors were primarily active against C-terminal epitopes in the spike protein, which show a higher homology to spike glycoproteins of human endemic coronaviruses, compared with N-terminal epitopes. Spike-protein-reactive T cell lines generated from SARS-CoV-2-naive healthy donors responded similarly to the C-terminal region of the spike proteins of the human endemic coronaviruses 229E and OC43, as well as that of SARS-CoV-2. This results indicate that spike-protein cross-reactive T cells are present, which were probably generated during previous encounters with endemic coronaviruses. The effect of pre-existing SARS-CoV-2 cross-reactive T cells on clinical outcomes remains to be determined in larger cohorts. However, the presence of spike-protein cross-reactive T cells in a considerable fraction of the general population may affect the dynamics of the current pandemic, and has important implications for the design and analysis of upcoming trials investigating COVID-19 vaccines.


Asunto(s)
Betacoronavirus/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19 , Línea Celular , Coronavirus Humano 229E/inmunología , Coronavirus Humano NL63/inmunología , Coronavirus Humano OC43/inmunología , Reacciones Cruzadas , Epítopos de Linfocito T/inmunología , Femenino , Voluntarios Sanos , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2
2.
J Transl Med ; 21(1): 123, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788606

RESUMEN

BACKGROUND: The infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has unpredictable manifestations of coronavirus disease (COVID-19) and variable clinical course with some patients being asymptomatic whereas others experiencing severe respiratory distress, or even death. We aimed to evaluate the immunoglobulin G (IgG) response towards linear peptides on a peptide array containing sequences from SARS-CoV-2, Middle East respiratory syndrome-related coronavirus (MERS) and common-cold coronaviruses 229E, OC43, NL63 and HKU1 antigens, in order to identify immunological indicators of disease outcome in SARS-CoV-2 infected patients. METHODS: We included in the study 79 subjects, comprising 19 pediatric and 30 adult SARS-CoV-2 infected patients with increasing disease severity, from mild to critical illness, and 30 uninfected subjects who were vaccinated with one dose of SARS-CoV-2 spike mRNA BNT162b2 vaccine. Serum samples were analyzed by a peptide microarray containing 5828 overlapping 15-mer synthetic peptides corresponding to the full SARS-CoV-2 proteome and selected linear epitopes of spike (S), envelope (E) and membrane (M) glycoproteins as well as nucleoprotein (N) of MERS, SARS and coronaviruses 229E, OC43, NL63 and HKU1 (isolates 1, 2 and 5). RESULTS: All patients exhibited high IgG reactivity against the central region and C-terminus peptides of both SARS-CoV-2 N and S proteins. Setting the threshold value for serum reactivity above 25,000 units, 100% and 81% of patients with severe disease, 36% and 29% of subjects with mild symptoms, and 8% and 17% of children younger than 8-years reacted against N and S proteins, respectively. Overall, the total number of peptides in the SARS-CoV-2 proteome targeted by serum samples was much higher in children compared to adults. Notably, we revealed a differential antibody response to SARS-CoV-2 peptides of M protein between adults, mainly reacting against the C-terminus epitopes, and children, who were highly responsive to the N-terminus of M protein. In addition, IgG signals against NS7B, NS8 and ORF10 peptides were found elevated mainly among adults with mild (63%) symptoms. Antibodies towards S and N proteins of other coronaviruses (MERS, 229E, OC43, NL63 and HKU1) were detected in all groups without a significant correlation with SARS-CoV-2 antibody levels. CONCLUSIONS: Overall, our results showed that antibodies elicited by specific linear epitopes of SARS-CoV-2 proteome are age dependent and related to COVID-19 clinical severity. Cross-reaction of antibodies to epitopes of other human coronaviruses was evident in all patients with distinct profiles between children and adult patients. Several SARS-CoV-2 peptides identified in this study are of particular interest for the development of vaccines and diagnostic tests to predict the clinical outcome of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Epítopos , Adulto , Niño , Humanos , Anticuerpos Antivirales , Vacuna BNT162 , Coronavirus Humano 229E , COVID-19/inmunología , Inmunoglobulina G , Coronavirus del Síndrome Respiratorio de Oriente Medio , Proteoma , SARS-CoV-2
3.
Mol Cell Proteomics ; 20: 100135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34391889

RESUMEN

Protein-protein interactions mediated by intrinsically disordered regions are often based on short linear motifs (SLiMs). SLiMs are implicated in signal transduction and gene regulation yet remain technically laborious and notoriously challenging to study. Here, we present an optimized method for a protein interaction screen on a peptide matrix (PRISMA) in combination with quantitative MS. The protocol was benchmarked with previously described SLiM-based protein-protein interactions using peptides derived from EGFR, SOS1, GLUT1, and CEBPB and extended to map binding partners of kinase activation loops. The detailed protocol provides practical considerations for setting up a PRISMA screen and subsequently implementing PRISMA on a liquid-handling robotic platform as a cost-effective high-throughput method. Optimized PRISMA can be universally applied to systematically study SLiM-based interactions and associated post-translational modifications or mutations to advance our understanding of the largely uncharacterized interactomes of intrinsically disordered protein regions.


Asunto(s)
Proteómica/métodos , Secuencias de Aminoácidos , Células HeLa , Humanos , Péptidos/química , Mutación Puntual , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional
4.
Mol Cell Proteomics ; 20: 100124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34303857

RESUMEN

Standardization of immunopeptidomics experiments across laboratories is a pressing issue within the field, and currently a variety of different methods for sample preparation and data analysis tools are applied. Here, we compared different software packages to interrogate immunopeptidomics datasets and found that Peaks reproducibly reports substantially more peptide sequences (~30-70%) compared with Maxquant, Comet, and MS-GF+ at a global false discovery rate (FDR) of <1%. We noted that these differences are driven by search space and spectral ranking. Furthermore, we observed differences in the proportion of peptides binding the human leukocyte antigen (HLA) alleles present in the samples, indicating that sequence-related differences affected the performance of each tested engine. Utilizing data from single HLA allele expressing cell lines, we observed significant differences in amino acid frequency among the peptides reported, with a broadly higher representation of hydrophobic amino acids L, I, P, and V reported by Peaks. We validated these results using data generated with a synthetic library of 2000 HLA-associated peptides from four common HLA alleles with distinct anchor residues. Our investigation highlights that search engines create a bias in peptide sequence depth and peptide amino acid composition, and resulting data should be interpreted with caution.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Péptidos/química , Motor de Búsqueda , Alelos , Secuencia de Aminoácidos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Espectrometría de Masas , Biblioteca de Péptidos , Péptidos/genética , Proteómica/métodos
5.
Anal Chem ; 94(20): 7181-7190, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35549156

RESUMEN

The prediction of fragment ion intensities and retention time of peptides has gained significant attention over the past few years. However, the progress shown in the accurate prediction of such properties focused primarily on unlabeled peptides. Tandem mass tags (TMT) are chemical peptide labels that are coupled to free amine groups usually after protein digestion to enable the multiplexed analysis of multiple samples in bottom-up mass spectrometry. It is a standard workflow in proteomics ranging from single-cell to high-throughput proteomics. Particularly for TMT, increasing the number of confidently identified spectra is highly desirable as it provides identification and quantification information with every spectrum. Here, we report on the generation of an extensive resource of synthetic TMT-labeled peptides as part of the ProteomeTools project and present the extension of the deep learning model Prosit to accurately predict the retention time and fragment ion intensities of TMT-labeled peptides with high accuracy. Prosit-TMT supports CID and HCD fragmentation and ion trap and Orbitrap mass analyzers in a single model. Reanalysis of published TMT data sets show that this single model extracts substantial additional information. Applying Prosit-TMT, we discovered that the expression of many proteins in human breast milk follows a distinct daily cycle which may prime the newborn for nutritional or environmental cues.


Asunto(s)
Aprendizaje Profundo , Espectrometría de Masas en Tándem , Humanos , Recién Nacido , Péptidos/química , Proteolisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
6.
Eur J Immunol ; 51(7): 1839-1849, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33772767

RESUMEN

Humoral immunity to the Severe Adult Respiratory Syndrome (SARS) Coronavirus (CoV)-2 is not fully understood yet but is a crucial factor of immune protection. The possibility of antibody cross-reactivity between SARS-CoV-2 and other human coronaviruses (HCoVs) would have important implications for immune protection but also for the development of specific diagnostic ELISA tests. Using peptide microarrays, n = 24 patient samples and n = 12 control samples were screened for antibodies against the entire SARS-CoV-2 proteome as well as the Spike (S), Nucleocapsid (N), VME1 (V), R1ab, and Protein 3a (AP3A) of the HCoV strains SARS, MERS, OC43, and 229E. While widespread cross-reactivity was revealed across several immunodominant regions of S and N, IgG binding to several SARS-CoV-2-derived peptides provided statistically significant discrimination between COVID-19 patients and controls. Selected target peptides may serve as capture antigens for future, highly COVID-19-specific diagnostic antibody tests.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Análisis por Matrices de Proteínas/métodos , SARS-CoV-2/inmunología , Proteínas Virales/inmunología , Adulto , Anciano , Secuencia de Aminoácidos/genética , Anticuerpos Antivirales/inmunología , Coronavirus Humano 229E/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Coronavirus Humano OC43/inmunología , Reacciones Cruzadas/inmunología , Pruebas Diagnósticas de Rutina , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Fosfoproteínas/inmunología , Proteoma/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
7.
Nat Methods ; 16(6): 509-518, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31133760

RESUMEN

In mass-spectrometry-based proteomics, the identification and quantification of peptides and proteins heavily rely on sequence database searching or spectral library matching. The lack of accurate predictive models for fragment ion intensities impairs the realization of the full potential of these approaches. Here, we extended the ProteomeTools synthetic peptide library to 550,000 tryptic peptides and 21 million high-quality tandem mass spectra. We trained a deep neural network, termed Prosit, resulting in chromatographic retention time and fragment ion intensity predictions that exceed the quality of the experimental data. Integrating Prosit into database search pipelines led to more identifications at >10× lower false discovery rates. We show the general applicability of Prosit by predicting spectra for proteases other than trypsin, generating spectral libraries for data-independent acquisition and improving the analysis of metaproteomes. Prosit is integrated into ProteomicsDB, allowing search result re-scoring and custom spectral library generation for any organism on the basis of peptide sequence alone.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Fragmentos de Péptidos/análisis , Biblioteca de Péptidos , Proteoma/análisis , Programas Informáticos , Espectrometría de Masas en Tándem/métodos , Animales , Caenorhabditis elegans/metabolismo , Bases de Datos de Proteínas , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Fragmentos de Péptidos/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
J Neurol Neurosurg Psychiatry ; 93(9): 960-971, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835468

RESUMEN

BACKGROUND: SARS-CoV-2 mRNA vaccination of healthy individuals is highly immunogenic and protective against severe COVID-19. However, there are limited data on how disease-modifying therapies (DMTs) alter SARS-CoV-2 mRNA vaccine immunogenicity in patients with autoimmune diseases. METHODS: As part of a prospective cohort study, we investigated the induction, stability and boosting of vaccine-specific antibodies, B cells and T cells in patients with multiple sclerosis (MS) on different DMTs after homologous primary, secondary and booster SARS-CoV-2 mRNA vaccinations. Of 126 patients with MS analysed, 105 received either anti-CD20-based B cell depletion (aCD20-BCD), fingolimod, interferon-ß, dimethyl fumarate, glatiramer acetate, teriflunomide or natalizumab, and 21 were untreated MS patients for comparison. RESULTS: In contrast to all other MS patients, and even after booster, most aCD20-BCD- and fingolimod-treated patients showed no to markedly reduced anti-S1 IgG, serum neutralising activity and a lack of receptor binding domain-specific and S2-specific B cells. Patients receiving fingolimod additionally lacked spike-reactive CD4+ T cell responses. The duration of fingolimod treatment, rather than peripheral blood B and T cell counts prior to vaccination, determined whether a humoral immune response was elicited. CONCLUSIONS: The lack of immunogenicity under long-term fingolimod treatment demonstrates that functional immune responses require not only immune cells themselves, but also access of these cells to the site of inoculation and their unimpeded movement. The absence of humoral and T cell responses suggests that fingolimod-treated patients with MS are at risk for severe SARS-CoV-2 infections despite booster vaccinations, which is highly relevant for clinical decision-making and adapted protective measures, particularly considering additional recently approved sphingosine-1-phosphate receptor antagonists for MS treatment.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Clorhidrato de Fingolimod/uso terapéutico , Humanos , Inmunidad Celular , Esclerosis Múltiple/tratamiento farmacológico , Estudios Prospectivos , ARN Mensajero , SARS-CoV-2 , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
9.
Proteomics ; 20(10): e2000007, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32267065

RESUMEN

Targeted proteomics depends on the availability of stable isotope labeled (SIL) peptide standards, which for absolute protein quantification need to be absolutely quantified. In the present study, three new approaches for absolute quantification of SIL peptides are developed. All approaches rely on a quantification tag (Qtag) with a specific UV absorption. The Qtag is attached to the peptide during synthesis and is removed by tryptic digestion under standard proteomics workflow conditions. While one quantification method (method A) is designed to allow the fast and economic production of absolutely quantified SIL peptides, two other methods (methods B and C) are developed to enable the straightforward re-quantification of SIL peptides after reconstitution to control and monitor known problems related to peptide solubility, precipitation, and adhesion to vials. All methods yield consistent results when compared to each other and when compared to quantification by amino acid analysis. The precise quantitation methods are used to characterize the in vivo specificity of the H3 specific histone methyltransferase EZH2.


Asunto(s)
Marcaje Isotópico/normas , Péptidos/aislamiento & purificación , Proteínas/genética , Proteómica/normas , Aminoácidos/genética , Humanos , Espectrometría de Masas , Péptidos/química , Péptidos/genética , Proteínas/química , Rayos Ultravioleta
10.
Nat Methods ; 14(3): 259-262, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28135259

RESUMEN

We describe ProteomeTools, a project building molecular and digital tools from the human proteome to facilitate biomedical research. Here we report the generation and multimodal liquid chromatography-tandem mass spectrometry analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products, and we exemplify the utility of these data in several applications. The resource (available at http://www.proteometools.org) will be extended to >1 million peptides, and all data will be shared with the community via ProteomicsDB and ProteomeXchange.


Asunto(s)
Cromatografía Liquida/métodos , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Bases de Datos de Proteínas , Genoma Humano/genética , Humanos
11.
Nature ; 509(7502): 582-7, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24870543

RESUMEN

Proteomes are characterized by large protein-abundance differences, cell-type- and time-dependent expression patterns and post-translational modifications, all of which carry biological information that is not accessible by genomics or transcriptomics. Here we present a mass-spectrometry-based draft of the human proteome and a public, high-performance, in-memory database for real-time analysis of terabytes of big data, called ProteomicsDB. The information assembled from human tissues, cell lines and body fluids enabled estimation of the size of the protein-coding genome, and identified organ-specific proteins and a large number of translated lincRNAs (long intergenic non-coding RNAs). Analysis of messenger RNA and protein-expression profiles of human tissues revealed conserved control of protein abundance, and integration of drug-sensitivity data enabled the identification of proteins predicting resistance or sensitivity. The proteome profiles also hold considerable promise for analysing the composition and stoichiometry of protein complexes. ProteomicsDB thus enables navigation of proteomes, provides biological insight and fosters the development of proteomic technology.


Asunto(s)
Bases de Datos de Proteínas , Espectrometría de Masas , Proteoma/análisis , Proteoma/química , Proteómica , Líquidos Corporales/química , Líquidos Corporales/metabolismo , Línea Celular , Perfilación de la Expresión Génica , Genoma Humano/genética , Humanos , Anotación de Secuencia Molecular , Especificidad de Órganos , Proteoma/genética , Proteoma/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética
12.
Mol Cell Proteomics ; 17(9): 1850-1863, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29848782

RESUMEN

The analysis of the post-translational modification (PTM) state of proteins using mass spectrometry-based bottom-up proteomic workflows has evolved into a powerful tool for the study of cellular regulatory events that are not directly encoded at the genome level. Besides frequently detected modifications such as phosphorylation, acetylation and ubiquitination, many low abundant or less frequently detected PTMs are known or postulated to serve important regulatory functions. To more broadly understand the LC-MS/MS characteristics of PTMs, we synthesized and analyzed ∼5,000 peptides representing 21 different naturally occurring modifications of lysine, arginine, proline and tyrosine side chains and their unmodified counterparts. The analysis identified changes in retention times, shifts of precursor charge states and differences in search engine scores between modifications. PTM-dependent changes in the fragmentation behavior were evaluated using eleven different fragmentation modes or collision energies. We also systematically investigated the formation of diagnostic ions or neutral losses for all PTMs, confirming 10 known and identifying 5 novel diagnostic ions for lysine modifications. To demonstrate the value of including diagnostic ions in database searching, we reprocessed a public data set of lysine crotonylation and showed that considering the diagnostic ions increases confidence in the identification of the modified peptides. To our knowledge, this constitutes the first broad and systematic analysis of the LC-MS/MS properties of common and rare PTMs using synthetic peptides, leading to direct applicable utility for bottom-up proteomic experiments.


Asunto(s)
Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Cromatografía de Fase Inversa , Bases de Datos de Proteínas , Iones
13.
Mol Cell Proteomics ; 17(7): 1378-1391, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29610271

RESUMEN

Citrullination is a posttranslational modification of arginine catalyzed by five peptidylarginine deiminases (PADs) in humans. The loss of a positive charge may cause structural or functional alterations, and while the modification has been linked to several diseases, including rheumatoid arthritis (RA) and cancer, its physiological or pathophysiological roles remain largely unclear. In part, this is owing to limitations in available methodology to robustly enrich, detect, and localize the modification. As a result, only a few citrullination sites have been identified on human proteins with high confidence. In this study, we mined data from mass-spectrometry-based deep proteomic profiling of 30 human tissues to identify citrullination sites on endogenous proteins. Database searching of ∼70 million tandem mass spectra yielded ∼13,000 candidate spectra, which were further triaged by spectrum quality metrics and the detection of the specific neutral loss of isocyanic acid from citrullinated peptides to reduce false positives. Because citrullination is easily confused with deamidation, we synthetized ∼2,200 citrullinated and 1,300 deamidated peptides to build a library of reference spectra. This led to the validation of 375 citrullination sites on 209 human proteins. Further analysis showed that >80% of the identified modifications sites were new, and for 56% of the proteins, citrullination was detected for the first time. Sequence motif analysis revealed a strong preference for Asp and Gly, residues around the citrullination site. Interestingly, while the modification was detected in 26 human tissues with the highest levels found in the brain and lung, citrullination levels did not correlate well with protein expression of the PAD enzymes. Even though the current work represents the largest survey of protein citrullination to date, the modification was mostly detected on high abundant proteins, arguing that the development of specific enrichment methods would be required in order to study the full extent of cellular protein citrullination.


Asunto(s)
Citrulinación , Minería de Datos , Especificidad de Órganos , Proteoma/metabolismo , Secuencia de Aminoácidos , Árboles de Decisión , Humanos , Péptidos/metabolismo , Reproducibilidad de los Resultados
14.
Proteomics ; 17(21)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28872757

RESUMEN

Beyond specific applications, such as the relative or absolute quantification of peptides in targeted proteomic experiments, synthetic spike-in peptides are not yet systematically used as internal standards in bottom-up proteomics. A number of retention time standards have been reported that enable chromatographic aligning of multiple LC-MS/MS experiments. However, only few peptides are typically included in such sets limiting the analytical parameters that can be monitored. Here, we describe PROCAL (ProteomeTools Calibration Standard), a set of 40 synthetic peptides that span the entire hydrophobicity range of tryptic digests, enabling not only accurate determination of retention time indices but also monitoring of chromatographic separation performance over time. The fragmentation characteristics of the peptides can also be used to calibrate and compare collision energies between mass spectrometers. The sequences of all selected peptides do not occur in any natural protein, thus eliminating the need for stable isotope labeling. We anticipate that this set of peptides will be useful for multiple purposes in individual laboratories but also aiding the transfer of data acquisition and analysis methods between laboratories, notably the use of spectral libraries.


Asunto(s)
Cromatografía Liquida/normas , Fragmentos de Péptidos/análisis , Proteínas/análisis , Proteómica/normas , Espectrometría de Masas en Tándem/normas , Calibración , Cromatografía Liquida/métodos , Células HeLa , Humanos , Proteómica/métodos , Estándares de Referencia , Espectrometría de Masas en Tándem/métodos
15.
J Biol Chem ; 290(15): 9674-89, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713080

RESUMEN

The protein arginine methyltransferase PRMT5 is complexed with the WD repeat protein MEP50 (also known as Wdr77 or androgen coactivator p44) in vertebrates in a tetramer of heterodimers. MEP50 is hypothesized to be required for protein substrate recruitment to the catalytic domain of PRMT5. Here we demonstrate that the cross-dimer MEP50 is paired with its cognate PRMT5 molecule to promote histone methylation. We employed qualitative methylation assays and a novel ultrasensitive continuous assay to measure enzyme kinetics. We demonstrate that neither full-length human PRMT5 nor the Xenopus laevis PRMT5 catalytic domain has appreciable protein methyltransferase activity. We show that histones H4 and H3 bind PRMT5-MEP50 more efficiently compared with histone H2A(1-20) and H4(1-20) peptides. Histone binding is mediated through histone fold interactions as determined by competition experiments and by high density histone peptide array interaction studies. Nucleosomes are not a substrate for PRMT5-MEP50, consistent with the primary mode of interaction via the histone fold of H3-H4, obscured by DNA in the nucleosome. Mutation of a conserved arginine (Arg-42) on the MEP50 insertion loop impaired the PRMT5-MEP50 enzymatic efficiency by increasing its histone substrate Km, comparable with that of Caenorhabditis elegans PRMT5. We show that PRMT5-MEP50 prefers unmethylated substrates, consistent with a distributive model for dimethylation and suggesting discrete biological roles for mono- and dimethylarginine-modified proteins. We propose a model in which MEP50 and PRMT5 simultaneously engage the protein substrate, orienting its targeted arginine to the catalytic site.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Histonas/química , Estructura Terciaria de Proteína , Proteína-Arginina N-Metiltransferasas/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Algoritmos , Animales , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dominio Catalítico , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Cinética , Metilación , Modelos Moleculares , Mutación , Unión Proteica , Multimerización de Proteína , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
16.
Ann Rheum Dis ; 75(6): 1099-107, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26160441

RESUMEN

OBJECTIVE: To investigate serum antibody reactivity against a panel of post-translationally modified vimentin peptides (PTMPs) in patients with early inflammatory arthritis. METHODS: A panel of PTMPs was developed. Microtitre plates were coated with peptides derived from vimentin that were identical in length and composition except at one amino acid that was changed to introduce one of three post-translational modifications (PTMs)-either a citrullinated, carbamylated or acetylated residue. Sera of 268 treatment-naive patients with early inflammatory arthritis and symptoms ≤3 months' duration were tested. Patients were assigned to one of three outcome categories at 18-month follow-up (rheumatoid arthritis (RA), persistent non-RA arthritis and resolving arthritis). RESULTS: Antibodies against citrullinated, carbamylated and acetylated vimentin peptides were detected in the sera of patients with early inflammatory arthritis. The proportion of patients seropositive for all antibody types was significantly higher in the RA group than in the other groups. Anti cyclic citrullinated peptide (CCP)-positive patients with RA had higher numbers of peptides recognised and higher levels of antibodies against those peptides, representing a distinct profile compared with the other groups. CONCLUSIONS: We show for the first time that antibodies against acetylated vimentin are present in the sera of patients with early RA and confirm and extend previous observations regarding anticitrullinated and anticarbamylated antibodies.


Asunto(s)
Artritis Reumatoide/inmunología , Autoanticuerpos/sangre , Vimentina/inmunología , Adulto , Artritis Reumatoide/sangre , Autoanticuerpos/inmunología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Péptidos Cíclicos/inmunología , Procesamiento Proteico-Postraduccional
17.
J Infect Dis ; 207(2): 248-56, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23125443

RESUMEN

BACKGROUND: Adenovirus serotype 26 (Ad26) has been developed as a novel candidate vaccine vector for human immunodeficiency virus type 1 (HIV-1) and other pathogens. The primary safety and immunogenicity data from the Integrated Preclinical/Clinical AIDS Vaccine Development Program (IPCAVD) 001 trial, the first-in-human evaluation of a prototype Ad26 vector-based vaccine expressing clade A HIV-1 Env (Ad26.ENVA.01), are reported concurrently with this article. Here, we characterize in greater detail the humoral and cellular immune responses elicited by Ad26.ENVA.01 in humans. METHODS: Samples from the IPCAVD 001 trial were used for humoral and cellular immunogenicity assays. RESULTS: We observed a dose-dependent expansion of the magnitude, breadth, and epitopic diversity of Env-specific binding antibody responses elicited by this vaccine. Antibody-dependent cell-mediated phagocytosis, virus inhibition, and degranulation functional activity were also observed. Env-specific cellular immune responses induced by the vaccine included multiple CD8(+) and CD4(+) T-lymphocyte memory subpopulations and cytokine secretion phenotypes, although cellular immune breadth was limited. Baseline vector-specific T-lymphocyte responses were common but did not impair Env-specific immune responses in this study. CONCLUSION: Ad26.ENVA.01 elicited a broad diversity of humoral and cellular immune responses in humans. These data support the further clinical development of Ad26 as a candidate vaccine vector. CLINICAL TRIALS REGISTRATION: NCT00618605.


Asunto(s)
Vacunas contra el SIDA/inmunología , Adenovirus Humanos/genética , Productos del Gen env/inmunología , Anticuerpos Anti-VIH/sangre , VIH-1/inmunología , Inmunidad Celular/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/efectos adversos , Adenovirus Humanos/clasificación , Método Doble Ciego , Productos del Gen env/genética , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Humanos , Leucocitos Mononucleares/inmunología , Resultado del Tratamiento , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología
18.
Methods Mol Biol ; 2768: 29-50, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502386

RESUMEN

The analysis of antigen-specific T-cell responses has become routine in many laboratories. Functional T-cell assays like enzyme-linked-immuno-spot (ELISPOT), which depend on antigen-specific stimulation, increasingly use peptides to represent the antigen of interest. Besides single peptides, mixtures of peptides (peptide pools) are very frequently applied. Such peptide pools may, for example, represent entire proteins (with overlapping peptides covering a protein sequence) or include noncontiguous peptides such as a collection of T-cell-stimulating peptides. The optimum specification of single peptides or peptide pools for T-cell stimulation assays will depend on the purpose of the test, the target T-cell population, the availability of sample, requirements regarding reproducibility, and, last but not least, the available budget, to mention only the most important factors. Because of the way peptides are produced, they will always contain certain amounts of impurities such as peptides with deletions or truncated peptides, and there may be additional by-products of peptide synthesis. Optimized synthesis protocols as well as purification help reduce impurities that might otherwise cause false-positive assay results. However, specific requirements with respect to purity will vary depending on the purpose of an assay. Finally, storage conditions significantly affect the shelf life of peptides, which is relevant especially for longitudinal studies. The present book chapter addresses all of these aspects in detail. It should provide the researcher with all necessary background knowledge for making the right decisions when it comes to choosing, using, and storing peptides for ELISPOT and other T-cell stimulation assays.


Asunto(s)
Péptidos , Linfocitos T , Secuencia de Aminoácidos , Reproducibilidad de los Resultados
19.
Front Immunol ; 14: 1056525, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798117

RESUMEN

Currently available COVID-19 vaccines include inactivated virus, live attenuated virus, mRNA-based, viral vectored and adjuvanted protein-subunit-based vaccines. All of them contain the spike glycoprotein as the main immunogen and result in reduced disease severity upon SARS-CoV-2 infection. While we and others have shown that mRNA-based vaccination reactivates pre-existing, cross-reactive immunity, the effect of vector vaccines in this regard is unknown. Here, we studied cellular and humoral responses in heterologous adenovirus-vector-based ChAdOx1 nCOV-19 (AZ; Vaxzeria, AstraZeneca) and mRNA-based BNT162b2 (BNT; Comirnaty, BioNTech/Pfizer) vaccination and compared it to a homologous BNT vaccination regimen. AZ primary vaccination did not lead to measurable reactivation of cross-reactive cellular and humoral immunity compared to BNT primary vaccination. Moreover, humoral immunity induced by primary vaccination with AZ displayed differences in linear spike peptide epitope coverage and a lack of anti-S2 IgG antibodies. Contrary to primary AZ vaccination, secondary vaccination with BNT reactivated pre-existing, cross-reactive immunity, comparable to homologous primary and secondary mRNA vaccination. While induced anti-S1 IgG antibody titers were higher after heterologous vaccination, induced CD4+ T cell responses were highest in homologous vaccinated. However, the overall TCR repertoire breadth was comparable between heterologous AZ-BNT-vaccinated and homologous BNT-BNT-vaccinated individuals, matching TCR repertoire breadths after SARS-CoV-2 infection, too. The reasons why AZ and BNT primary vaccination elicits different immune response patterns to essentially the same antigen, and the associated benefits and risks, need further investigation to inform vaccine and vaccination schedule development.


Asunto(s)
Vacuna BNT162 , COVID-19 , ChAdOx1 nCoV-19 , Reacciones Cruzadas , Humanos , Vacuna BNT162/inmunología , ChAdOx1 nCoV-19/inmunología , COVID-19/prevención & control , Receptores de Antígenos de Linfocitos T , SARS-CoV-2 , Vacunación
20.
Cell Rep ; 41(6): 111588, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351382

RESUMEN

Claudins are a family of transmembrane proteins expressed in epithelial tissues and are the major components of tight junctions (TJs), which define barrier properties in epithelia and maintain cell polarity. How claudins regulate the formation of TJs and which functions they exert outside of them is not entirely understood. Although the long and unstructured C-terminal tail is essential for regulation, it is unclear how it is involved in these functions beyond interacting with TJ-associated proteins such as TJ protein ZO-1 (TJP1). Here, we present an interactome study of the pan-claudin family in Madin-Darby canine kidney (MDCK)-C7 cells by combining two complementary mass spectrometry-based pull-down techniques creating an interaction landscape of the entire claudin family. The interaction partners of the claudins' C termini reveal their possible implications in localized biological processes in epithelial cells and their regulation by post-translational modifications (PTMs).


Asunto(s)
Claudinas , Uniones Estrechas , Perros , Animales , Claudinas/metabolismo , Línea Celular , Uniones Estrechas/metabolismo , Células de Riñón Canino Madin Darby , Polaridad Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA