Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(5): 3675-84, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26757829

RESUMEN

Organic layers chemically grafted on silicon offer excellent interfaces that may open up the way for new organic-inorganic hybrid nanoelectronic devices. However, technological achievements rely on the precise electronic characterization of such organic layers. We have prepared ordered grafted organic monolayers (GOMs) on Si(111), sometimes termed self-assembled monolayers (SAMs), by a hydrosilylation reaction with either a 7-carbon or an 11-carbon alkyl chain, with further modification to obtain amine-terminated surfaces. X-ray photoelectron spectroscopy (XPS) is used to determine the band bending (∼ 0.3 eV), and ultraviolet photoelectron spectroscopy (UPS) to measure the work function (∼ 3.4 eV) and the HOMO edge. Scanning tunneling microscopy (STM) confirms that the GOM surface is clean and smooth. Finally, conductive AFM is used to measure electron transport through the monolayer and to identify transition between the tunneling and the field emission regimes. These organic monolayers offer a promising alternative to silicon dioxide thin films for fabricating metal-insulator-semiconductor (MIS) junctions. We show that gold nanoparticles can be covalently attached to mimic metallic nano-electrodes and that the electrical quality of the GOMs is completely preserved in the process.

2.
Dalton Trans ; 53(23): 9952-9963, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38809151

RESUMEN

The structural, spectroscopic and electronic properties of Na and K birnessites were investigated from ambient conditions (birA) to complete dehydration, and the involved mechanisms were scrutinized. Density Functional Theory (DFT) simulations were employed to derive structural models for lamellar A0.33MnO2·xH2O (A = Na+ or K+, x = 0 or 0.66), subsequently compared with the experimental results obtained for Na0.30MnO2·0.75H2O and K0.22MnO2·0.77H2O materials. Thermal analysis (TGA-DSC), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Near Ambient Pressure X-ray Photoemission Spectroscopy (NAP-XPS) measurements were conducted for both birnessites. Dehydration under vacuum, annealing, or controlled relative humidity were considered. Results indicated that complete birnessite dehydration was a two-stage process. In the first stage, water removal from the interlayer of fully hydrated birnessite (birA) down to a molar H2O/A ratio of ∼2 (birB) led to the progressive shrinkage of the interlayer distance (3% for Na birnessite, 1% for K birnessite). In the second stage, water-free (birC) domains with a shorter interlayer distance (20% for Na birnessite, 10% for K birnessite) appeared and coexisted with birB domains. Then, birB was essentially transformed into birC when complete dehydration was achieved. The vibrational properties of birA were consistent with strong intermolecular interactions among water molecules, whereas partially dehydrated birnessite (birB) showed a distinct feature, with 3 (for Na-bir) and 2 (for K-bir) vibrations that were reproduced by DFT calculations for organized water into the interlayer (x = 0.66). The study also demonstrated that the electronic structure of Na birnessite depends on the interlayer water content. The external Na+ electronic level (Na 2p) was slightly destabilized (+0.3 eV binding energy) under near ambient conditions (birA) compared to drier conditions (birB and birC).

3.
J Synchrotron Radiat ; 18(Pt 2): 245-50, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21335912

RESUMEN

Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera-based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photoemitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station.

4.
Sci Rep ; 7(1): 14257, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079787

RESUMEN

Despite thermal silicon oxide desorption is a basic operation in semiconductor nanotechnology, its detailed chemical analysis has not been yet realized via time-resolved photoemission. Using an advanced acquisition system and synchrotron radiation, heating schedules with velocities as high as 100 K.s-1 were implemented and highly resolved Si 2p spectra in the tens of millisecond range were obtained. Starting from a Si(111)-7 × 7 surface oxidized in O2 at room temperature (1.4 monolayer of oxygen), changes in the Si 2p spectral shape enabled a detailed chemical analysis of the oxygen redistribution at the surface and of the nucleation, growth and reconstruction of the clean silicon areas. As desorption is an inhomogeneous surface process, the Avrami formalism was adapted to oxide desorption via an original mathematical analysis. The extracted kinetic parameters (the Avrami exponent equal to ~2, the activation energy of ~4.1 eV and a characteristic frequency) were found remarkably stable within a wide (~110 K) desorption temperature window, showing that the Avrami analysis is robust. Both the chemical and kinetic information collected from this experiment can find useful applications when desorption of the oxide layer is a fundamental step in nanofabrication processes on silicon surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA