Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 21(7)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32225118

RESUMEN

In this work, we prepared silver nanowires (AgNWs) via the polyol method in the presence or absence of single wall carbon nanotubes (CNTs) and tested their physicochemical, antibacterial and cytotoxic properties. Results showed that the introduction of CNTs lead to the formation of AgNWs at lower temperature, but the final product characteristics of AgNWs and AgNWs-CNT were not significantly different. AgNWs exhibited antibacterial properties against all the studied bacterial species via the formation of oxygen reactive species (ROS) and membrane damage. Furthermore, AgNWs exhibited a dose-dependent and time-dependent toxicity at concentrations ≥ 10 µg/mL. Fibroblasts appeared to be more resistant than human colorectal adenocarcinoma (Caco-2) and osteoblasts to the toxicity of AgNWs. The cytotoxicity of AgNWs was found to be related to the formation of ROS, but not to membrane damage. Overall, these results suggest that AgNWs are potential antibacterial agents against E. coli, S. aureus, MRSA and S. saprophyticus, but their dosage needs to be adjusted according to the route of administration.


Asunto(s)
Antibacterianos/toxicidad , Nanocompuestos/toxicidad , Nanotubos de Carbono/toxicidad , Nanocables/toxicidad , Antibacterianos/química , Células CACO-2 , Membrana Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Nanocompuestos/química , Nanotubos de Carbono/química , Nanocables/química , Especies Reactivas de Oxígeno/metabolismo , Salmonella/efectos de los fármacos , Plata/química
2.
Drug Dev Ind Pharm ; 44(3): 398-406, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29098874

RESUMEN

Novel effective and cosmetically acceptable formulations are needed for the treatment of scalp psoriasis, due to the poor efficacy of the current products. The challenge in developing safe, efficient, and convenient delivery systems for this drug was addressed in the present work by formulating clobetasol propionate-loaded W/O microemulsions (MEs). Pseudo-ternary phase diagrams were constructed by using a combination of biocompatible and biodegradable excipients. Characterization studies demonstrated that selected MEs had suitable technological features such as being Newtonian fluids, possessing low viscosity, and high thermodynamic stability. Photomicrographs showed a significant alteration of the skin structure after treatment with MEs, and a preferential concentration of these in the stratum corneum and epidermis. These data, together with ex vivo permeation results, suggested an enhanced topical targeted effect due to an increased drug retention efficacy in the upper skin layers, as desired. Moreover, the bio-based excipients selected could contribute to the healing of the psoriatic scalp. In this way, the improvement of clobetasol efficacy is combined with the useful properties of the microemulsion components and with environmental safety.


Asunto(s)
Clobetasol/administración & dosificación , Clobetasol/química , Emulsiones/química , Psoriasis/tratamiento farmacológico , Cuero Cabelludo/efectos de los fármacos , Absorción Cutánea/efectos de los fármacos , Piel/metabolismo , Administración Cutánea , Animales , Materiales Biocompatibles/química , Química Farmacéutica/métodos , Epidermis/efectos de los fármacos , Excipientes/química , Tamaño de la Partícula , Permeabilidad , Porcinos
3.
J Mater Sci Mater Med ; 27(8): 126, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27324780

RESUMEN

Age related bone diseases such as osteoporosis are considered among the main causes of reduced bone mechanical stability and bone fractures. In order to restore both biological and mechanical function of diseased/fractured bones, novel bioactive scaffolds that mimic the bone structure are constantly under development in tissue engineering applications. Among the possible candidates, chitosan-based thermosensitive hydrogel scaffolds represent ideal systems due to their biocompatibility, biodegradability, enhanced antibacterial properties, promotion of osteoblast formation and ease of injection, which makes them suitable for less invasive surgical procedures. As a main drawback, these chitosan systems present poor mechanical performance that could not support load-bearing applications. In order to produce more mechanically-competent biomaterials, the combined addition of hydroxyapatite and carbon nanotubes (CNTs) is proposed in this study. Specifically, the aim of this work is to develop thermosensitive chitosan hydrogels containing stabilised single-walled and multi-walled CNTs, where their effect on the mechanical/physiochemical properties, calcium deposition patterns and ability to provide a platform for the controlled release of protein drugs was investigated. It was found that the addition of CNTs had a significant effect on the sol-gel transition time and significantly increased the resistance to compression for the hydrogels. Moreover, in vitro calcification studies revealed that CNTs played a major role in the spatial arrangements of newly formed calcium deposits in the composite materials studied, suggesting that they may have a role in the way the repair of fragile and/or fractured bones occurs in vivo.


Asunto(s)
Regeneración Ósea , Calcio/química , Hidrogeles/química , Nanotubos de Carbono/química , Albúminas/química , Animales , Materiales Biocompatibles/química , Huesos/fisiología , Bovinos , Pollos , Quitosano/química , Sistemas de Liberación de Medicamentos , Durapatita/química , Clara de Huevo/química , Curación de Fractura , Humanos , Microscopía Electrónica de Rastreo , Osteoblastos/metabolismo , Transición de Fase , Estrés Mecánico , Ingeniería de Tejidos/métodos , Microtomografía por Rayos X
4.
J Mater Sci Mater Med ; 26(11): 256, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26449446

RESUMEN

The viability of single and coaxial electrospray techniques to encapsulate model peptide-angiotensin II into near mono-dispersed spherical, nanocarriers comprising N-octyl-O-sulphate chitosan and tristearin, respectively, was explored. The stability of peptide under controlled electric fields (during particle generation) was evaluated. Resulting nanocarriers were analysed using dynamic light scattering and electron microscopy. Cell toxicity assays were used to determine optimal peptide loading concentration (~1 mg/ml). A trout model was used to assess particle behaviour in vivo. A processing limit of 20 kV was determined. A range of electrosprayed nanoparticles were formed (between 100 and 300 nm) and these demonstrated encapsulation efficiencies of ~92 ± 1.8%. For the single needle process, particles were in matrix form and for the coaxial format particles demonstrated a clear core-shell encapsulation of peptide. The outcomes of in vitro experiments demonstrated triphasic activity. This included an initial slow activity period, followed by a rapid and finally a conventional diffusive phase. This was in contrast to results from in vivo cardiovascular activity in the trout model. The results are indicative of the substantial potential for single/coaxial electrospray techniques. The results also clearly indicate the need to investigate both in vitro and in vivo models for emerging drug delivery systems.


Asunto(s)
Nanopartículas , Animales , Línea Celular , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oncorhynchus mykiss , Tamaño de la Partícula
5.
Langmuir ; 30(43): 12977-85, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25296391

RESUMEN

Clinical treatments of significant bone defects involve invasive procedures such as the application of auto- and allografts. These procedures present many limitations including the potential for infection and rejection. There is therefore a need to develop novel therapeutic strategies able to exploit the natural regenerative potential of bone and that can be delivered in a less invasive manner. Among the materials studied for the development of novel scaffolds, stimuli-responsive gels containing hydroxyapatite and carbon nanotubes as nanofillers have generated great interest. In the present work, chitosan gels containing chitosan grafted CNTs and chitosan-hydroxyapatite complex have been formed by cross-linking with glycerol phosphate. The addition of the nanofillers afforded hydrogels with a faster sol/gel transition at 37 °C and enhanced mechanical properties. The thermosensitive composite gels also showed a good bioactivity profile associated with potential for the prolonged delivery of protein drugs. The inclusion of chemically cross-linked CNTs and HA in thermosensitive gels afforded injectable composite materials with enhanced properties, including reduction of gelation time, improved mechanical properties, good bioactivity, and prolonged drug release.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Animales , Ácidos Carboxílicos/química , Bovinos , Fenómenos Químicos , Quitosano/química , Liberación de Fármacos , Durapatita/química , Liofilización , Inyecciones , Fenómenos Mecánicos , Nanocompuestos/química , Nanotubos de Carbono/química , Albúmina Sérica Bovina/química , Propiedades de Superficie , Temperatura
6.
ACS Omega ; 9(19): 21388-21400, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764657

RESUMEN

Focal cartilage defects are a prevalent knee problem affecting people of all ages. Articular cartilage (AC) possesses limited healing potential, and osteochondral defects can lead to pain and long-term complications such as osteoarthritis. Autologous chondrocyte implantation (ACI) has been a successful surgical approach for repairing osteochondral defects over the past two decades. However, a major drawback of ACI is the dedifferentiation of chondrocytes during their in vitro expansion. In this study, we isolated ovine chondrocytes and cultured them in a two-dimensional environment for ACI procedures. We hypothesized that 3D scaffolds would support the cells' redifferentiation without the need for growth factors so we encapsulated them into soft collagen and alginate (col/alg) hydrogels. Chondrocytes embedded into the hydrogels were viable and proliferated. After 7 days, they regained their original rounded morphology (aspect ratio 1.08) and started to aggregate. Gene expression studies showed an upregulation of COL2A1, FOXO3A, FOXO1, ACAN, and COL6A1 (37, 1.13, 22, 1123, and 1.08-fold change expression, respectively) as early as day one. At 21 days, chondrocytes had extensively colonized the hydrogel, forming large cell clusters. They started to replace the degrading scaffold by depositing collagen II and aggrecan, but with limited collagen type I deposition. This approach allows us to overcome the limitations of current approaches such as the dedifferentiation occurring in 2D in vitro expansion and the necrotic formation in spheroids. Further studies are warranted to assess long-term ECM deposition and integration with native cartilage. Though limitations exist, this study suggests a promising avenue for cartilage repair with col/alg hydrogel scaffolds.

7.
Bioengineering (Basel) ; 11(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391648

RESUMEN

We report, for the first time, the full-field 3D strain distribution of the muscle-tendon junction (MTJ). Understanding the strain distribution at the junction is crucial for the treatment of injuries and to predict tear formation at this location. Three-dimensional full-field strain distribution of mouse MTJ was measured using X-ray computer tomography (XCT) combined with digital volume correlation (DVC) with the aim of understanding the mechanical behavior of the junction under tensile loading. The interface between the Achilles tendon and the gastrocnemius muscle was harvested from adult mice and stained using 1% phosphotungstic acid in 70% ethanol. In situ XCT combined with DVC was used to image and compute strain distribution at the MTJ under a tensile load (2.4 N). High strain measuring 120,000 µÎµ, 160,000 µÎµ, and 120,000 µÎµ for the first principal stain (εp1), shear strain (γ), and von Mises strain (εVM), respectively, was measured at the MTJ and these values reduced into the body of the muscle or into the tendon. Strain is concentrated at the MTJ, which is at risk of being damaged in activities associated with excessive physical activity.

8.
Biomater Adv ; 161: 213873, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692180

RESUMEN

The muscle tendon junction (MTJ) plays a crucial role in transmitting the force generated by muscles to the tendon and then to the bone. Injuries such as tears and strains frequently happen at the MTJ, where the regenerative process is limited due to poor vascularization and the complex structure of the tissue. Current solutions for a complete tear at the MTJ have not been successful and therefore, the development of a tissue-engineered MTJ may provide a more effective treatment. In this study, decellularised extracellular matrix (DECM) derived from sheep MTJ was used to provide a scaffold for the MTJ with the relevant mechanical properties and differentiation cues such as the relase of growth factors. Human mesenchymal stem cells (MSCs) were seeded on DECM and 10 % cyclic strain was applied using a bioreactor. MSCs cultured on DECM showed significantly higher gene and protein expression of MTJ markers such as collagen 22, paxillin and talin, than MSCs in 2D culture. Although collagen 22 protein expression was higher in the cells with strain than without strain, reduced gene expression of other MTJ markers was observed when the strain was applied. DECM combined with 10 % strain enhanced myogenic differentiation, while tenogenic differentiation was reduced when compared to static cultures of MSCs on DECM. For the first time, these results showed that DECM derived from the MTJ can induce MTJ marker gene and protein expression by MSCs, however, the effect of strain on the MTJ development in DECM culture needs further investigation.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Tendones , Ingeniería de Tejidos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Tendones/citología , Tendones/metabolismo , Tendones/fisiología , Humanos , Animales , Ingeniería de Tejidos/métodos , Ovinos , Andamios del Tejido/química , Matriz Extracelular Descelularizada/metabolismo , Resistencia a la Tracción , Matriz Extracelular/metabolismo , Células Cultivadas
9.
Biomimetics (Basel) ; 9(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38534844

RESUMEN

Pollen grains, with their resilient sporopollenin exine and defined morphologies, have been explored as bio-templates for the synthesis of calcium phosphate minerals, particularly hydroxyapatite (HAp) and ß-tricalcium phosphate (TCP). Various pollen morphologies from different plant species (black alder, dandelion, lamb's quarters, ragweed, and stargazer lily) were evaluated. Pollen grains underwent acid washing to remove allergenic material and facilitate subsequent calcification. Ragweed and lamb's quarter pollen grains were chosen as templates for calcium phosphate salts deposition due to their distinct morphologies. The calcification process yielded well-defined spherical hollow particles. The washing step, intended to reduce the protein content, did not significantly affect the final product; thus, justifying the removal of this low-yield step from the synthesis process. Characterisation techniques, including X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermal gravimetric analysis, confirmed the successful calcification of pollen-derived materials, revealing that calcified grains were principally composed of calcium deficient HAp. After calcination, biphasic calcium phosphate composed of HAp and TPC was obtained. This study demonstrated the feasibility of using pollen grains as green and sustainable bio-templates for synthesizing biomaterials with controlled morphology, showcasing their potential in biomedical applications such as drug delivery and bone regeneration.

10.
J Mech Behav Biomed Mater ; 152: 106414, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277908

RESUMEN

OBJECTIVE: The pathogenesis of osteoarthritis (OA) is associated with subchondral bone changes, which is linked to abnormal strain distribution in the overlying articular cartilage. This highlights the importance of understanding mechanical interaction at the cartilage-bone interface. The aim of this study is to compare solutions of two contrast-enhancing staining agents (CESA) for combining high-resolution Contrast-Enhanced X-ray microfocus Computed Tomography (CECT) with Digital Volume Correlation (DVC) for full-field strain measurements at the cartilage-bone interface. DESIGN: Bovine osteochondral plugs were stained with phosphotungstic acid (PTA) in 70% ethanol or 1:2 hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) in PBS. Mechanical properties were assessed using micromechanical probing and nanoindentation. Strain uncertainties (from CECT data) were evaluated following two consecutive unloaded scans. Residual strains were computed following unconfined compression (ex situ) testing. RESULTS: PTA and Hf-WD POM enabled the visualisation of structural features in cartilage, allowing DVC computation on the CECT data. Residual strains up to ∼10,000 µÉ› were detected up to the tidemark. Nanoindentation showed that PTA-staining caused an average ∼6-fold increase in articular cartilage stiffness, a ∼19-fold increase in reduced modulus and ∼7-fold increase in hardness, whereas Hf-WD POM-stained specimens had mechanical properties similar to pre-stain tissue. Micromechanical probing showed a 77% increase in cartilage surface stiffness after PTA-staining, in comparison to a 16% increase in stiffness after staining with Hf-WD POM. CONCLUSION: Hf-WD POM is a more suitable CESA solution compared to PTA for CECT imaging combined with DVC as it allowed visualisation of structural features in the cartilage tissue whilst more closely maintaining tissue mechanical properties.


Asunto(s)
Cartílago Articular , Medios de Contraste , Animales , Bovinos , Cartílago Articular/patología , Coloración y Etiquetado , Tomografía Computarizada por Rayos X/métodos , Rayos X
11.
Biodes Manuf ; 7(2): 121-136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497056

RESUMEN

Autograft or metal implants are routinely used in skeletal repair. However, they fail to provide long-term clinical resolution, necessitating a functional biomimetic tissue engineering alternative. The use of native human bone tissue for synthesizing a biomimetic material ink for three-dimensional (3D) bioprinting of skeletal tissue is an attractive strategy for tissue regeneration. Thus, human bone extracellular matrix (bone-ECM) offers an exciting potential for the development of an appropriate microenvironment for human bone marrow stromal cells (HBMSCs) to proliferate and differentiate along the osteogenic lineage. In this study, we engineered a novel material ink (LAB) by blending human bone-ECM (B) with nanoclay (L, Laponite®) and alginate (A) polymers using extrusion-based deposition. The inclusion of the nanofiller and polymeric material increased the rheology, printability, and drug retention properties and, critically, the preservation of HBMSCs viability upon printing. The composite of human bone-ECM-based 3D constructs containing vascular endothelial growth factor (VEGF) enhanced vascularization after implantation in an ex vivo chick chorioallantoic membrane (CAM) model. The inclusion of bone morphogenetic protein-2 (BMP-2) with the HBMSCs further enhanced vascularization and mineralization after only seven days. This study demonstrates the synergistic combination of nanoclay with biomimetic materials (alginate and bone-ECM) to support the formation of osteogenic tissue both in vitro and ex vivo and offers a promising novel 3D bioprinting approach to personalized skeletal tissue repair. Supplementary Information: The online version contains supplementary material available at 10.1007/s42242-023-00265-z.

12.
Bioengineering (Basel) ; 10(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37760097

RESUMEN

Understanding early mechanical changes in articular cartilage (AC) and subchondral bone (SB) is crucial for improved treatment of osteoarthritis (OA). The aim of this study was to develop a method for nanoindentation of fresh, unfixed osteochondral tissue to assess the early changes in the mechanical properties of AC and SB. Nanoindentation was performed throughout the depth of AC and SB in the proximal tibia of Dunkin Hartley guinea pigs at 2 months, 3 months, and 2 years of age. The contralateral tibias were either histologically graded for OA or analyzed using immunohistochemistry. The results showed an increase in the reduced modulus (Er) in the deep zone of AC during early-stage OA (6.0 ± 1.75 MPa) compared to values at 2 months (4.04 ± 1.25 MPa) (*** p < 0.001). In severe OA (2-year) specimens, there was a significant reduction in Er throughout the superficial and middle AC zones, which correlated to increased ADAMTS 4 and 5 staining, and proteoglycan loss in these regions. In the subchondral bone, a 35.0% reduction in stiffness was observed between 2-month and 3-month specimens (*** p < 0.001). The severe OA age group had significantly increased SB stiffness of 36.2% and 109.6% compared to 2-month and 3-month-old specimens respectively (*** p < 0.001). In conclusion, this study provides useful information about the changes in the mechanical properties of both AC and SB during both early- and late-stage OA and indicates that an initial reduction in stiffness of the SB and an increase in stiffness in the deep zone of AC may precede early-stage cartilage degeneration.

13.
J Mech Behav Biomed Mater ; 144: 105999, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37406483

RESUMEN

OBJECTIVE: Strain changes at the cartilage-bone interface play a crucial role in osteoarthritis (OA) development. Contrast-Enhanced X-ray Computed Tomography (CECT) and Digital Volume Correlation (DVC) can measure 3D strain changes at the osteochondral interface. Using lab-based CT systems it is often difficult to visualise soft tissues such as articular cartilage without staining to enhance contrast. Contrast-Enhancing Staining Agents (CESAs), such as Phosphotungstic Acid (PTA) in 70% ethanol, can cause tissue shrinkage and alter tissue mechanics. The aims of this study were, firstly, to assess changes to the mechanical properties of osteochondral tissue after staining with a PTA/PBS solution, and secondly, to visualise articular cartilage during loading and with CECT imaging in order to compare strain across the interface in both healthy and OA joints using DVC. DESIGN: Nanoindentation was used to assess changes to mechanical properties in articular cartilage and subchondral bone before and after staining. Hindlimbs from Dunkin-Hartley guinea pigs were stained with 1% PTA/PBS at room temperature for 6 days. Two consecutive CECT datasets were acquired for DVC error analysis. In-situ compression with a load corresponding to 2x body weight was applied, the specimen was re-imaged, and DVC was performed between the pre- and post-load tomograms. RESULTS: Nanoindentation before and after PTA/PBS staining showed similar cartilage stiffness (p < 0.05), however, staining significantly decreased the stiffness of subchondral bone (∼9-fold; p = 0.0012). In severe OA specimens, third principal/compressive (εp3) strain was 141.7% higher and shear strain (γ) was 98.2% higher in tibial articular cartilage compared to non-OA (2 - month) specimens. A 23.1% increase in third principal stain strain and a 54.5% significant increase in the shear (γ) strain (p = 0.0027) was transferred into the mineralised regions of calcified cartilage and subchondral bone in severe OA specimens. CONCLUSIONS: These results indicate the suitability of PTA in PBS as a contrast agent for the visualisation of cartilage during CECT imaging and allowed DVC computation of strain across the cartilage-bone interface. However, further research is needed to address the reduction in stiffness of subchondral bone after incubation in PBS.


Asunto(s)
Cartílago Articular , Osteoartritis , Cobayas , Animales , Rayos X , Osteoartritis/diagnóstico por imagen , Cartílago Articular/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Huesos , Microtomografía por Rayos X
14.
Bioact Mater ; 19: 406-417, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35574056

RESUMEN

The successful application of magnesium (Mg) alloys as biodegradable bone substitutes for critical-sized defects may be comprised by their high degradation rate resulting in a loss of mechanical integrity. This study investigates the degradation pattern of an open-porous fluoride-coated Mg-based scaffold immersed in circulating Hanks' Balanced Salt Solution (HBSS) with and without in situ cyclic compression (30 N/1 Hz). The changes in morphological and mechanical properties have been studied by combining in situ high-resolution X-ray computed tomography mechanics and digital volume correlation. Although in situ cyclic compression induced acceleration of the corrosion rate, probably due to local disruption of the coating layer where fatigue microcracks were formed, no critical failures in the overall scaffold were observed, indicating that the mechanical integrity of the Mg scaffolds was preserved. Structural changes, due to the accumulation of corrosion debris between the scaffold fibres, resulted in a significant increase (p < 0.05) in the material volume fraction from 0.52 ± 0.07 to 0.47 ± 0.03 after 14 days of corrosion. However, despite an increase in fibre material loss, the accumulated corrosion products appear to have led to an increase in Young's modulus after 14 days as well as lower third principal strain (εp3) accumulation (-91000 ± 6361 µÎµ and -60093 ± 2414 µÎµ after 2 and 14 days, respectively). Therefore, this innovative Mg scaffold design and composition provide a bone replacement, capable of sustaining mechanical loads in situ during the postoperative phase allowing new bone formation to be initially supported as the scaffold resorbs.

15.
Pharmaceutics ; 14(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35335865

RESUMEN

Dental caries are a worldwide endemic chronic disease affecting people of all ages. Due to the limitations of daily used oral hygiene products, there is an unmet need for new, effective, safe, and economic oral products. We have recently demonstrated that N-(2(2,6-diaminohexanamide)-chitosan (CS3H Lys) has enhanced antibacterial properties against Streptococcus mutans, the main cariogenic bacterium, and here we investigated the effect of fluoridation of this polymer (CS3H Lys F) on its antibacterial properties and the ability to protect teeth from acid demineralization. We further formulated this polymer into mouthwash preparations and studied their cytocompatibility and physicochemical stability over 6 months. CS3H Lys F was 1.6-fold more effective than the highest tested oral NaF dose in preventing acid demineralization. CS3H Lys F has a 3- to 5-fold lower minimum inhibitory concentration value against S. mutants than the values reported for chitosan polymers and showed negligible cell toxicity. The mouthwashes were stable at both 25 and 40 °C. Further work is under way towards other CS3H Lys F oral hygiene products such as a toothpaste.

16.
J Tissue Eng ; 13: 20417314221122121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199979

RESUMEN

Mesenchymal stem cells (MSCs) hold great promise for the treatment of cartilage related injuries. However, selectively promoting stem cell differentiation in vivo is still challenging. Chondrogenic differentiation of MSCs usually requires the use of growth factors that lead to the overexpression of hypertrophic markers. In this study, for the first time the effect of stiffness on MSC differentiation has been tested without the use of growth factors. Three-dimensional collagen and alginate scaffolds were developed and characterised. Stiffness significantly affected gene expression and ECM deposition. While, all hydrogels supported chondrogenic differentiation and allowed deposition of collagen type II and aggrecan, the 5.75 kPa hydrogel showed limited production of collagen type I compared to the other two formulations. These findings demonstrated for the first time that stiffness can guide MSCs differentiation without the use of growth factors within a tissue engineering scaffold suitable for the treatment of cartilage defects.

17.
Carbohydr Polym ; 289: 119385, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483866

RESUMEN

The development of antibacterial resistance imposes the development of novel materials to relieve the burden of infection. Chitosan, a material of natural and sustainable origin, possesses ideal characteristics to translate into a novel biomaterial with antibacterial properties, as it already has these properties and it allows easy and scalable chemical modification to enhance its activity. The aim of the present work was that of producing low molecular weight chitosans that have higher solubility and can remain protonated at physiological pH, thus enhancing the antimicrobial action. This was achieved by reacting acid hydrolysed low molecular weight chitosan with 2-bromoethyleneamine hydrobromide or Fmoc-Lys(Fmoc)-OH to elicit N-(2-ethylamino)-chitosan and N-2(2,6-diaminohexanamide)-chitosan polymers. The latter derivative, CS3H Lys, that was synthesised for the first time, showed superior efficacy against Staphylococcus aureus, supporting further studies for its inclusion in implant coating materials to tackle the burden of orthopaedic implant-associated infections.


Asunto(s)
Quitosano , Ortopedia , Infecciones Estafilocócicas , Antibacterianos/química , Antibacterianos/farmacología , Quitosano/química , Humanos , Complicaciones Posoperatorias , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
18.
Int J Pharm Pract ; 29(4): 356-361, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34050645

RESUMEN

OBJECTIVES: The storage, use and disposal of controlled drugs (CDs) in hospitals and other healthcare centres are governed by a combination of government legislation and local policy. In the UK, a running balance must be kept for Schedule 2 CDs and when discrepancies arise, they must be investigated and reconciled. Policies on acceptable discrepancies are varied and based on anecdotal evidence. This study was designed to simulate dosing and stock check procedures for oxycodone oral solution, as a sample CD solution, and evaluate where the volume losses that cause discrepancies could arise from. METHODS: Hypromellose solutions were formulated to simulate oxycodone commercial solutions. These were used to simulate dosing and stock check practices. Quantification of volume loss during simulated routine dosing and stock check of viscous oral CD formulations were performed in triplicate. KEY FINDINGS: Dosing with enteral syringes via a fitted rubber bung never resulted in volume loss. Volume loss was always observed during stock checks with no statistical difference between methods used. CONCLUSIONS: The findings of this study support the following recommendations. Hospital pharmacy departments should provide oxycodone and other CD liquid formulation bottles pre-fitted with a bung and make sure personnel use enteral syringes that are compatible with the chosen adaptor and of the most appropriate size for the intended dose. Stock checks should be limited to the minimum required by law or local policy.


Asunto(s)
Oxicodona , Preparaciones Farmacéuticas , Administración Oral , Humanos , Jeringas
19.
Front Bioeng Biotechnol ; 9: 603408, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33585430

RESUMEN

Articular cartilage is a highly specialised connective tissue of diarthrodial joints which provides a smooth, lubricated surface for joint articulation and plays a crucial role in the transmission of loads. In vivo cartilage is subjected to mechanical stimuli that are essential for cartilage development and the maintenance of a chondrocytic phenotype. Cartilage damage caused by traumatic injuries, ageing, or degradative diseases leads to impaired loading resistance and progressive degeneration of both the articular cartilage and the underlying subchondral bone. Since the tissue has limited self-repairing capacity due its avascular nature, restoration of its mechanical properties is still a major challenge. Tissue engineering techniques have the potential to heal osteochondral defects using a combination of stem cells, growth factors, and biomaterials that could produce a biomechanically functional tissue, representative of native hyaline cartilage. However, current clinical approaches fail to repair full-thickness defects that include the underlying subchondral bone. Moreover, when tested in vivo, current tissue-engineered grafts show limited capacity to regenerate the damaged tissue due to poor integration with host cartilage and the failure to retain structural integrity after insertion, resulting in reduced mechanical function. The aim of this review is to examine the optimal characteristics of osteochondral scaffolds. Additionally, an overview on the latest biomaterials potentially able to replicate the natural mechanical environment of articular cartilage and their role in maintaining mechanical cues to drive chondrogenesis will be detailed, as well as the overall mechanical performance of grafts engineered using different technologies.

20.
Phys Chem Chem Phys ; 12(48): 15636-43, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-20589282

RESUMEN

Molecular mechanics and molecular dynamics simulations have been employed to characterise the interactions between SWNTs and biocompatible amphililic derivatives of chitosan, namely N-butyl-O-sulfate chitosan (NBSC), N-octyl-O-sulfate chitosan (NOSC) and N-palmitoyl-O-sulfate chitosan (NPSC). The computational simulations have shown that the affinity of the polymer for the hydrophobic surface of the nanotubes depends on the length of the chitosan hydrophobic pendant chain. Longer chains have a higher flexibility and therefore a better ability to wrap around the nanotubes. To underpin the theoretical calculations, experimental studies revealed that NPSC exhibits highest affinity for SWNTs with up to 66.9 ± 19.7% SWNTs stably suspended in an aqueous environment; this affinity was confirmed by the calculated binding energy of five polymer chains with a SWNT that was found to be -300.93 kcal mol(-1), the highest amongst the three polymers studied. Furthermore, the high value of cell viability after incubation with NPSC indicates that this is a good candidate for the preparation of biocompatible SWNTs dipersions that could be used in biomedical and pharmaceutical applications.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/análogos & derivados , Quitosano/química , Nanotubos de Carbono/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/farmacología , Coagulación Sanguínea/efectos de los fármacos , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Quitosano/síntesis química , Quitosano/farmacología , Humanos , Espectroscopía de Resonancia Magnética , Ensayo de Materiales , Micelas , Microscopía de Fuerza Atómica , Conformación Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Termodinámica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA