Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Genet ; 27(2): 181-6, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11175786

RESUMEN

Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy and increased incidence in diabetes. FRDA is caused by severely reduced levels of frataxin, a mitochondrial protein of unknown function. Yeast knockout models as well as histological and biochemical data from heart biopsies or autopsies of FRDA patients have shown that frataxin defects cause a specific iron-sulfur protein deficiency and intramitochondrial iron accumulation. We have recently shown that complete absence of frataxin in the mouse leads to early embryonic lethality, demonstrating an important role for frataxin during mouse development. Through a conditional gene-targeting approach, we have generated in parallel a striated muscle frataxin-deficient line and a neuron/cardiac muscle frataxin-deficient line, which together reproduce important progressive pathophysiological and biochemical features of the human disease: cardiac hypertrophy without skeletal muscle involvement, large sensory neuron dysfunction without alteration of the small sensory and motor neurons, and deficient activities of complexes I-III of the respiratory chain and of the aconitases. Our models demonstrate time-dependent intramitochondrial iron accumulation in a frataxin-deficient mammal, which occurs after onset of the pathology and after inactivation of the Fe-S-dependent enzymes. These mutant mice represent the first mammalian models to evaluate treatment strategies for the human disease.


Asunto(s)
Cardiomiopatías/genética , Ataxia de Friedreich/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Proteínas de Unión a Hierro , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Cardiomiopatías/patología , Ataxia de Friedreich/patología , Marcación de Gen , Neuropatías Hereditarias Sensoriales y Autónomas/patología , Ratones , Ratones Mutantes , Mutagénesis , Frataxina
2.
Nat Genet ; 11(2): 144-9, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7550341

RESUMEN

We now report a mutation in the nuclear-encoded flavoprotein (Fp) subunit gene of the succinate dehydrogenase (SDH) in two siblings with complex II deficiency presenting as Leigh syndrome. Both patients were homozygous for an Arg554Trp substitution in the Fp subunit. Their parents (first cousins) were heterozygous for the mutation that occurred in a conserved domain of the protein and was absent from 120 controls. The deleterious effect of the Arg to Trp substitution on the catalytic activity of SDH was observed in a SDH- yeast strain transformed with mutant Fp cDNA. The Fp subunit gene is duplicated in the human genome (3q29; 5p15), with only the gene on chromosome 5 expressed in human-hamster somatic cell hybrids. This is the first report of a nuclear gene mutation causing a mitochondrial respiratory chain deficiency in humans.


Asunto(s)
Cromosomas Humanos Par 3 , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Complejos Multienzimáticos/deficiencia , Oxidorreductasas/deficiencia , Mutación Puntual , Succinato Deshidrogenasa/deficiencia , Succinato Deshidrogenasa/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Núcleo Celular/enzimología , Mapeo Cromosómico , Clonación Molecular , Consanguinidad , Cartilla de ADN , Complejo II de Transporte de Electrones , Femenino , Fibroblastos/enzimología , Homocigoto , Humanos , Linfocitos/enzimología , Masculino , Mitocondrias Musculares/enzimología , Datos de Secuencia Molecular , Músculo Esquelético/enzimología , Mutagénesis Sitio-Dirigida , Núcleo Familiar , Linaje , Mapeo Restrictivo , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Aminoácido , Succinato Deshidrogenasa/biosíntesis
3.
Nat Genet ; 17(2): 215-7, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9326946

RESUMEN

Friedreich ataxia (FRDA) is a common autosomal recessive degenerative disease (1/50,000 live births) characterized by a progressive-gait and limb ataxia with lack of tendon reflexes in the legs, dysarthria and pyramidal weakness of the inferior limbs. Hypertrophic cardiomyopathy is observed in most FRDA patients. The gene associated with the disease has been mapped to chromosome 9q13 (ref. 3) and encodes a 210-amino-acid protein, frataxin. FRDA is caused primarily by a GAA repeat expansion within the first intron of the frataxin gene, which accounts for 98% of mutant alleles. The function of the protein is unknown, but an increased iron content has been reported in hearts of FRDA patients and in mitochondria of yeast strains carrying a deleted frataxin gene counterpart (YFH1), suggesting that frataxin plays a major role in regulating mitochondrial iron transport. Here, we report a deficient activity of the iron-sulphur (Fe-S) cluster-containing subunits of mitochondrial respiratory complexes I, II and III in the endomyocardial biopsy of two unrelated FRDA patients. Aconitase, an iron-sulphur protein involved in iron homeostasis, was found to be deficient as well. Moreover, disruption of the YFH1 gene resulted in multiple Fe-S-dependent enzyme deficiencies in yeast. The deficiency of Fe-S-dependent enzyme activities in both FRDA patients and yeast should be related to mitochondrial iron accumulation, especially as Fe-S proteins are remarkably sensitive to free radicals. Mutated frataxin triggers aconitase and mitochondrial Fe-S respiratory enzyme deficiency in FRDA, which should therefore be regarded as a mitochondrial disorder.


Asunto(s)
Aconitato Hidratasa/deficiencia , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro , Proteínas Hierro-Azufre/deficiencia , Mitocondrias/metabolismo , Ciclo del Ácido Cítrico , Transporte de Electrón , Endocardio/metabolismo , Ataxia de Friedreich/genética , Genes Fúngicos , Humanos , Hierro/metabolismo , Modelos Biológicos , Mutación , Miocardio/metabolismo , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frataxina
4.
Nat Genet ; 18(3): 231-6, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9500544

RESUMEN

The regulation of mitochondrial DNA (mtDNA) expression is crucial for mitochondrial biogenesis during development and differentiation. We have disrupted the mouse gene for mitochondrial transcription factor A (Tfam; formerly known as m-mtTFA) by gene targetting of loxP-sites followed by cre-mediated excision in vivo. Heterozygous knockout mice exhibit reduced mtDNA copy number and respiratory chain deficiency in heart. Homozygous knockout embryos exhibit a severe mtDNA depletion with abolished oxidative phosphorylation. Mutant embryos proceed through implantation and gastrulation, but die prior to embryonic day (E)10.5. Thus, Tfam is the first mammalian protein demonstrated to regulate mtDNA copy number in vivo and is essential for mitochondrial biogenesis and embryonic development.


Asunto(s)
ADN Mitocondrial , Proteínas de Unión al ADN/genética , Muerte Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Mitocondriales , Proteínas Nucleares , Factores de Transcripción/genética , Proteínas Virales , Animales , Proteínas de Unión al ADN/metabolismo , Implantación del Embrión , Femenino , Retardo del Crecimiento Fetal/genética , Dosificación de Gen , Corazón/embriología , Heterocigoto , Proteínas del Grupo de Alta Movilidad , Integrasas/genética , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Mutación , Fosforilación , Factores de Transcripción/metabolismo
5.
Nat Genet ; 21(1): 133-7, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9916807

RESUMEN

Mutations of mitochondrial DNA (mtDNA) cause several well-recognized human genetic syndromes with deficient oxidative phosphorylation and may also have a role in ageing and acquired diseases of old age. We report here that hallmarks of mtDNA mutation disorders can be reproduced in the mouse using a conditional mutation strategy to manipulate the expression of the gene encoding mitochondrial transcription factor A (Tfam, previously named mtTFA), which regulates transcription and replication of mtDNA. Using a loxP-flanked Tfam allele (TfamloxP) in combination with a cre-recombinase transgene under control of the muscle creatinine kinase promoter, we have disrupted Tfam in heart and muscle. Mutant animals develop a mosaic cardiac-specific progressive respiratory chain deficiency, dilated cardiomyopathy, atrioventricular heart conduction blocks and die at 2-4 weeks of age. This animal model reproduces biochemical, morphological and physiological features of the dilated cardiomyopathy of Kearns-Sayre syndrome. Furthermore, our findings provide genetic evidence that the respiratory chain is critical for normal heart function.


Asunto(s)
Cardiomiopatía Dilatada/genética , ADN Mitocondrial , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Bloqueo Cardíaco/genética , Corazón/fisiopatología , Proteínas del Grupo de Alta Movilidad , Proteínas Mitocondriales , Proteínas Nucleares , Transactivadores , Factores de Transcripción/biosíntesis , Proteínas Virales , Proteínas de Xenopus , Animales , Cardiomiopatía Dilatada/fisiopatología , Creatina Quinasa/genética , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Bloqueo Cardíaco/fisiopatología , Humanos , Integrasas/genética , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético , Miocardio , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factores de Transcripción/genética
6.
Nat Genet ; 29(1): 57-60, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11528392

RESUMEN

Complex III (CIII; ubiquinol cytochrome c reductase of the mitochondrial respiratory chain) catalyzes electron transfer from succinate and nicotinamide adenine dinucleotide-linked dehydrogenases to cytochrome c. CIII is made up of 11 subunits, of which all but one (cytochrome b) are encoded by nuclear DNA. CIII deficiencies are rare and manifest heterogeneous clinical presentations. Although pathogenic mutations in the gene encoding mitochondrial cytochrome b have been described, mutations in the nuclear-DNA-encoded subunits have not been reported. Involvement of various genes has been indicated in assembly of yeast CIII (refs. 8-11). So far only one such gene, BCS1L, has been identified in human. BCS1L represents, therefore, an obvious candidate gene in CIII deficiency. Here, we report BCS1L mutations in six patients, from four unrelated families and presenting neonatal proximal tubulopathy, hepatic involvement and encephalopathy. Complementation study in yeast confirmed the deleterious effect of these mutations. Mutation of BCS1L would seem to be a frequent cause of CIII deficiency, as one-third of our patients have BCS1L mutations.


Asunto(s)
Encefalopatías/genética , Complejo III de Transporte de Electrones/genética , Transporte de Electrón , Túbulos Renales Proximales/patología , Fallo Hepático/genética , Mitocondrias/genética , Mutación , Proteínas/genética , ATPasas Asociadas con Actividades Celulares Diversas , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Encefalopatías/patología , Femenino , Humanos , Recién Nacido , Fallo Hepático/patología , Masculino , Datos de Secuencia Molecular , Proteínas/química , Homología de Secuencia de Aminoácido
7.
J Exp Med ; 193(4): 509-19, 2001 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-11181702

RESUMEN

Viral protein R (Vpr), an apoptogenic accessory protein encoded by HIV-1, induces mitochondrial membrane permeabilization (MMP) via a specific interaction with the permeability transition pore complex, which comprises the voltage-dependent anion channel (VDAC) in the outer membrane (OM) and the adenine nucleotide translocator (ANT) in the inner membrane. Here, we demonstrate that a synthetic Vpr-derived peptide (Vpr52-96) specifically binds to the intermembrane face of the ANT with an affinity in the nanomolar range. Taking advantage of this specific interaction, we determined the role of ANT in the control of MMP. In planar lipid bilayers, Vpr52-96 and purified ANT cooperatively form large conductance channels. This cooperative channel formation relies on a direct protein-protein interaction since it is abolished by the addition of a peptide corresponding to the Vpr binding site of ANT. When added to isolated mitochondria, Vpr52-96 uncouples the respiratory chain and induces a rapid inner MMP to protons and NADH. This inner MMP precedes outer MMP to cytochrome c. Vpr52-96-induced matrix swelling and inner MMP both are prevented by preincubation of purified mitochondria with recombinant Bcl-2 protein. In contrast to König's polyanion (PA10), a specific inhibitor of the VDAC, Bcl-2 fails to prevent Vpr52-96 from crossing the mitochondrial OM. Rather, Bcl-2 reduces the ANT-Vpr interaction, as determined by affinity purification and plasmon resonance studies. Concomitantly, Bcl-2 suppresses channel formation by the ANT-Vpr complex in synthetic membranes. In conclusion, both Vpr and Bcl-2 modulate MMP through a direct interaction with ANT.


Asunto(s)
Productos del Gen vpr/farmacología , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Secuencia de Aminoácidos , VIH-1 , Canales Iónicos/metabolismo , Liposomas , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Consumo de Oxígeno , Fragmentos de Péptidos/farmacología , Permeabilidad , Unión Proteica , Resonancia por Plasmón de Superficie , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana
8.
Br J Dermatol ; 163(6): 1337-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20560959

RESUMEN

Multiple cutaneous and uterine leiomyomatosis (MCUL)/hereditary leiomyomatosis and renal cell cancer (HLRCC) (OMIM 150800/OMIM 605839) is a rare hereditary disorder leading to the development of benign cutaneous and uterine smooth muscle tumours in young adults.(1,2) This disease is characterized by an increased risk of developing renal cell carcinomas.(3) It results from dominantly inherited autosomal mutations in the fumarate hydratase (FH) gene.(4) This gene encodes a Krebs cycle enzyme, present in both cytosolic and mitochondrial compartments, and probably acts as a tumour suppressor gene. We report a 22-year-old man affected by cutaneous leiomyomatosis associated with cutis verticis gyrata, disseminated collagenoma and Charcot-Marie-Tooth disease, who was harbouring the novel FH gene mutation c.821C > T, p.Ala274Val.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Fumarato Hidratasa/genética , Leiomiomatosis/genética , Mutación , Enfermedades de la Piel/genética , Neoplasias Cutáneas/genética , Carcinoma de Células Renales/genética , Enfermedades del Colágeno/genética , Predisposición Genética a la Enfermedad , Humanos , Leiomiomatosis/enzimología , Leiomiomatosis/patología , Masculino , Dermatosis del Cuero Cabelludo/genética , Análisis de Secuencia de ADN , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/patología , Adulto Joven
9.
Sci Rep ; 10(1): 9139, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499563

RESUMEN

Duchenne Muscular Dystrophy (DMD) is a lethal muscle disorder, caused by mutations in the DMD gene and affects approximately 1:5000-6000 male births. In this report, we identified dysregulation of members of the Dlk1-Dio3 miRNA cluster in muscle biopsies of the GRMD dog model. Of these, we selected miR-379 for a detailed investigation because its expression is high in the muscle, and is known to be responsive to glucocorticoid, a class of anti-inflammatory drugs commonly used in DMD patients. Bioinformatics analysis predicts that miR-379 targets EIF4G2, a translational factor, which is involved in the control of mitochondrial metabolic maturation. We confirmed in myoblasts that EIF4G2 is a direct target of miR-379, and identified the DAPIT mitochondrial protein as a translational target of EIF4G2. Knocking down DAPIT in skeletal myotubes resulted in reduced ATP synthesis and myogenic differentiation. We also demonstrated that this pathway is GC-responsive since treating mice with dexamethasone resulted in reduced muscle expression of miR-379 and increased expression of EIF4G2 and DAPIT. Furthermore, miR-379 seric level, which is also elevated in the plasma of DMD patients in comparison with age-matched controls, is reduced by GC treatment. Thus, this newly identified pathway may link GC treatment to a mitochondrial response in DMD.


Asunto(s)
Glucocorticoides/uso terapéutico , MicroARNs/metabolismo , Mitocondrias/metabolismo , Distrofia Muscular de Duchenne/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Dexametasona/farmacología , Modelos Animales de Enfermedad , Perros , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , MicroARNs/química , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Mioblastos Esqueléticos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
10.
Cell Death Differ ; 15(6): 1009-18, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18309327

RESUMEN

Apoptosis-inducing factor (AIF) is a phylogenetically conserved redox-active flavoprotein that contributes to cell death and oxidative phosphorylation in Saccharomyces cerevisiae, Caenorhabditis elegans, mouse and humans. AIF has been characterized as a caspase-independent death effector that is activated by its translocation from mitochondria to the cytosol and nucleus. Here, we report the molecular characterization of AIF in Drosophila melanogaster, a species in which most cell deaths occur in a caspase-dependent manner. Interestingly, knockout of zygotic D. melanogaster AIF (DmAIF) expression using gene targeting resulted in decreased embryonic cell death and the persistence of differentiated neuronal cells at late embryonic stages. Although knockout embryos hatch, they undergo growth arrest at early larval stages, accompanied by mitochondrial respiratory dysfunction. Transgenic expression of DmAIF misdirected to the extramitochondrial compartment (DeltaN-DmAIF), but not wild-type DmAIF, triggered ectopic caspase activation and cell death. DeltaN-DmAIF-induced death was not blocked by removal of caspase activator Dark or transgenic expression of baculoviral caspase inhibitor p35, but was partially inhibited by Diap1 overexpression. Knockdown studies revealed that DeltaN-DmAIF interacts genetically with the redox protein thioredoxin-2. In conclusion, we show that Drosophila AIF is a mitochondrial effector of cell death that plays roles in developmentally regulated cell death and normal mitochondrial function.


Asunto(s)
Factor Inductor de la Apoptosis/fisiología , Apoptosis , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Secuencia de Aminoácidos , Animales , Factor Inductor de la Apoptosis/química , Factor Inductor de la Apoptosis/genética , Sistema Nervioso Central/embriología , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/metabolismo , Metabolismo Energético , Ojo/anatomía & histología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Tiorredoxinas/metabolismo
11.
J Inherit Metab Dis ; 32(6): 684-698, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19821144

RESUMEN

Diabetes mellitus is occasionally observed in patients with skeletal muscle respiratory chain deficiency, suggesting that skeletal muscle mitochondrial dysfunction might play a pathogenic role in type 2 diabetes (T2D). In support of this hypothesis, decreased muscle mitochondrial activity has been reported in T2D patients and in mouse models of diabetes. However, recent work by several groups suggests that decreased muscle mitochondrial function may be a consequence rather than a cause of diabetes, since decreased mitochondrial function in mice affords protection from diabetes and obesity. We review the data on this controversial but important issue of potential links between mitochondrial dysfunction and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Mitocondrias Musculares/fisiología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Células Secretoras de Insulina/fisiología , Ratones , Mitocondrias Musculares/metabolismo , Enfermedades Mitocondriales/complicaciones , Modelos Biológicos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Transducción de Señal/fisiología
12.
Cell Death Differ ; 14(3): 422-35, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16888644

RESUMEN

The HIV-1 encoded apoptogenic protein Vpr induces mitochondrial membrane permeabilization (MMP) via interactions with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocator (ANT). We have designed a peptide, TEAM-VP, composed of two functional domains, one a tumor blood vessel RGD-like 'homing' motif and the other an MMP-inducing sequence derived from Vpr. When added to isolated mitochondria, TEAM-VP interacts with ANT and VDAC, reduces oxygen consumption and overcomes Bcl-2 protection to cause inner and outer MMP. TEAM-VP specifically recognizes cell-surface expressed alpha(V)beta(3) integrins, internalizes, temporarily localizes to lysosomes and progressively co-distributes with the mitochondrial compartment with no sign of lysosomal membrane permeabilization. Finally TEAM-VP reaches mitochondria of angiogenic endothelial cells to induce mitochondrial fission, dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)), cytochrome c release and apoptosis hallmarks. Hence, this chimeric peptide constitutes the first example of a virus-derived mitochondriotoxic compound as a candidate to kill selectively tumor neo-endothelia.


Asunto(s)
Células Endoteliales/fisiología , Productos del Gen vpr/farmacocinética , Integrina alfaVbeta3/metabolismo , Mitocondrias/metabolismo , Péptidos/farmacocinética , Secuencia de Aminoácidos , Animales , Apoptosis , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Productos del Gen vpr/farmacología , Humanos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos BALB C , Membranas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Péptidos/farmacología , Permeabilidad
13.
J Clin Invest ; 105(3): 387-94, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10675365

RESUMEN

Retinoid X receptor alpha-null (RXRalpha-null) mutants exhibit hypoplasia of their ventricular myocardium and die at the fetal stage. In the present study, we wished to determine whether transgenic re-expression of RXRalpha in mutant cardiac myocytes could rescue these defects. Two transgenic mouse lines specifically overexpressing an RXRalpha protein in cardiomyocytes were generated, using the cardiac alpha-myosin heavy chain (alpha-MHC) promoter. Breeding the high copy number transgenic line onto an RXRalpha-null genetic background did not prevent the myocardial hypoplasia and fetal lethality associated with the RXRalpha(-/-) genotype, even though the transgene was expressed in the ventricles as early as 10. 5 days post-coitum. These data suggest that the RXRalpha function involved in myocardial growth may correspond to a non-cell-autonomous requirement forsignal orchestrating the growth and differentiation of myocytes. Interestingly, the adult transgenic mice developed a dilated cardiomyopathy, associated with myofibrillar abnormalities and specific deficiencies in respiratory chain complexes I and II, thus providing an additional model for this genetically complex disease.


Asunto(s)
Cardiomiopatías/genética , Cardiopatías Congénitas/genética , Receptores de Ácido Retinoico/genética , Factores de Transcripción/genética , Animales , Cardiomiopatías/fisiopatología , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/fisiopatología , Ratones , Ratones Transgénicos , Receptores de Ácido Retinoico/biosíntesis , Receptores X Retinoide , Factores de Transcripción/biosíntesis
14.
J Clin Invest ; 91(3): 1095-8, 1993 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-8383698

RESUMEN

The Wolfram syndrome (MIM 222300) is a disease of unknown origin consisting of diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Here we report on a generalized deficiency of the mitochondrial respiratory enzyme activities in skeletal muscle and lymphocyte homogenate of a girl suffering from the Wolfram syndrome. In addition, we provide evidence for a 7.6-kilobase pair heteroplasmic deletion (spanning nucleotides 6465-14135) of the mitochondrial DNA in the two tissues and show that directly repeated sequences (11 bp) were present in the wild-type mitochondrial genome at the boundaries of the deletion. Neither of the patient's parents was found to bear rearranged molecules. This study supports the view that a respiratory chain defect can present with insulin-dependent diabetes mellitus as the onset symptom. It also suggests that a defect of oxidative phosphorylation should be considered when investigating other cases of Wolfram syndrome, especially because this syndrome fulfills the criteria for a genetic defect of the mitochondrial energy supply: (a) an unexplained association of symptoms (b) with early onset and rapidly progressive course, (c) involving seemingly unrelated organs and tissues.


Asunto(s)
ADN Mitocondrial/genética , Eliminación de Secuencia , Síndrome de Wolfram/genética , Adolescente , Secuencia de Bases , Southern Blotting , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Linfocitos/enzimología , Datos de Secuencia Molecular , Músculos/enzimología , NADH Deshidrogenasa/metabolismo , Oligodesoxirribonucleótidos , Succinato Citocromo c Oxidorreductasa/metabolismo , Síndrome de Wolfram/enzimología , Síndrome de Wolfram/fisiopatología
15.
J Clin Invest ; 86(5): 1601-8, 1990 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-2243133

RESUMEN

Pearson's marrow-pancreas syndrome (McKusick No. 26056) is a fatal disorder of hitherto unknown etiology involving the hematopoietic system, exocrine pancreas, liver, and kidneys. The observation of high lactate/pyruvate molar ratios in plasma and abnormal oxidative phosphorylation in lymphocytes led us to postulate that Pearson's syndrome belongs to the group of mitochondrial cytopathies. Since rearrangements of the mitochondrial genome between direct DNA repeats were consistently found in all tissues tested, our results show that this disease is in fact a multisystem mitochondrial disorder, as suggested by the clinical course of the patients. Based on these observations, we would suggest giving consideration to the hypothesis of a defect of oxidative phosphorylation in elucidating the origin of other syndromes, especially those associated with an abnormal oxidoreduction status in plasma.


Asunto(s)
Anemia Sideroblástica/metabolismo , ADN Mitocondrial/genética , Insuficiencia Pancreática Exocrina/metabolismo , Mitocondrias/enzimología , Anemia Sideroblástica/genética , Anemia Sideroblástica/patología , Secuencia de Bases , Southern Blotting , Deleción Cromosómica , Insuficiencia Pancreática Exocrina/genética , Insuficiencia Pancreática Exocrina/patología , Femenino , Reordenamiento Génico , Humanos , Recién Nacido , Masculino , Datos de Secuencia Molecular , Oxidación-Reducción , Fosforilación Oxidativa , Secuencias Repetitivas de Ácidos Nucleicos , Síndrome
16.
J Clin Invest ; 93(6): 2514-8, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8200987

RESUMEN

We report an inborn error of the tricarboxylic acid cycle, fumarase deficiency, in two siblings born to first cousin parents. They presented with progressive encephalopathy, dystonia, leucopenia, and neutropenia. Elevation of lactate in the cerebrospinal fluid and high fumarate excretion in the urine led us to investigate the activities of the respiratory chain and of the Krebs cycle, and to finally identify fumarase deficiency in these two children. The deficiency was profound and present in all tissues investigated, affecting the cytosolic and the mitochondrial fumarase isoenzymes to the same degree. Analysis of fumarase cDNA demonstrated that both patients were homozygous for a missense mutation, a G-955-->C transversion, predicting a Glu-319-->Gln substitution. This substitution occurred in a highly conserved region of the fumarase cDNA. Both parents exhibited half the expected fumarase activity in their lymphocytes and were found to be heterozygous for this substitution. The present study is to our knowledge the first molecular characterization of tricarboxylic acid deficiency, a rare inherited inborn error of metabolism in childhood.


Asunto(s)
Encefalopatías/genética , Errores Innatos del Metabolismo de los Carbohidratos/genética , Fumarato Hidratasa/deficiencia , Fumarato Hidratasa/genética , Secuencia de Aminoácidos , Ciclo del Ácido Cítrico , ADN Complementario/química , Femenino , Humanos , Recién Nacido , Masculino , Datos de Secuencia Molecular , Mutación
17.
Mol Biol Cell ; 11(5): 1919-32, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10793161

RESUMEN

Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by a deficiency in branched chain alpha-keto acid dehydrogenase that can result in neurodegenerative sequelae in human infants. In the present study, increased concentrations of MSUD metabolites, in particular alpha-keto isocaproic acid, specifically induced apoptosis in glial and neuronal cells in culture. Apoptosis was associated with a reduction in cell respiration but without impairment of respiratory chain function, without early changes in mitochondrial membrane potential and without cytochrome c release into the cytosol. Significantly, alpha-keto isocaproic acid also triggered neuronal apoptosis in vivo after intracerebral injection into the developing rat brain. These findings suggest that MSUD neurodegeneration may result, at least in part, from an accumulation of branched chain amino acids and their alpha-keto acid derivatives that trigger apoptosis through a cytochrome c-independent pathway.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Grupo Citocromo c/metabolismo , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 3 , Caspasas/metabolismo , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Fragmentación del ADN , Activación Enzimática , Humanos , Membranas Intracelulares/metabolismo , Cetoácidos/metabolismo , Cetoácidos/farmacología , Leucina/metabolismo , Leucina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuronas/patología , Ratas , Ratas Wistar
18.
Ir Med J ; 99(9): 262-4, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17144232

RESUMEN

Mitochondrial respiratory chain disorders account for significant and varied presentations in paediatric practice. The true prevalence of these disorders in the paediatric population is still not well documented with predicted geographic variation. We report a retrospective analysis over a seven year period of cases presenting to a tertiary care centre and associated clinical features. The overall prevalence of mitochondrial disorders in our population is higher than expected (1/9,000 births), explained in part by multiple presentations in a consanguineous subgroup of the population (Irish travellers).


Asunto(s)
Enfermedades Mitocondriales/epidemiología , Humanos , Incidencia , Irlanda/epidemiología , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Fenotipo
19.
J Neurosci ; 21(20): 8082-90, 2001 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-11588181

RESUMEN

We generated mitochondrial late-onset neurodegeneration (MILON) mice with postnatal disruption of oxidative phosphorylation in forebrain neurons. They develop normally and display no overt behavioral disturbances or histological changes during the first 5 months of life. The MILON mice display reduced levels of mitochondrial DNA and mitochondrial RNA from 2 and 4 months of age, respectively, and severely respiratory chain-deficient neurons from 4 months of age. Surprisingly, these respiratory chain-deficient neurons are viable for at least 1 month without showing signs of neurodegeneration or major induction of defenses against oxidative stress. Prolonged neuronal respiratory chain deficiency is thus required for the induction of neurodegeneration. Before developing neurological symptoms, MILON mice show increased vulnerability to excitotoxic stress. We observed a markedly enhanced sensitivity to excitotoxic challenge, manifest as an abundance of terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) reactive cells after kainic acid injection, in 4-month-old MILON mice, showing that respiratory chain-deficient neurons are more vulnerable to stress. At approximately 5-5.5 months of age, MILON mice start to show signs of disease, followed by death shortly thereafter. The debut of overt disease in MILON mice coincides with onset of rapidly progressive neurodegeneration and massive cell death in hippocampus and neocortex. This profound neurodegenerative process is manifested as axonal degeneration, gliosis, and abundant TUNEL-positive nuclei. The MILON mouse model provides a novel and powerful tool for additional studies of the role for respiratory chain deficiency in neurodegeneration and aging.


Asunto(s)
Corteza Cerebral/patología , Proteínas de Unión al ADN , Hipocampo/patología , Miopatías Mitocondriales/patología , Proteínas Mitocondriales , Enfermedades Neurodegenerativas/patología , Fosforilación Oxidativa , Animales , Antioxidantes/metabolismo , Recuento de Células , Muerte Celular , ADN Mitocondrial/metabolismo , Modelos Animales de Enfermedad , Transporte de Electrón , Proteínas del Grupo de Alta Movilidad , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Ácido Kaínico/administración & dosificación , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Miopatías Mitocondriales/complicaciones , Miopatías Mitocondriales/genética , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/genética , Neuronas/efectos de los fármacos , Neuronas/patología , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Especificidad de Órganos , ARN/metabolismo , ARN Mitocondrial , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
20.
Biochim Biophys Acta ; 1361(1): 6-10, 1997 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-9247084

RESUMEN

The genes encoding proteins involved in respiratory chain assembly represent candidate genes for nuclearly-encoded multiple respiratory chain deficiency. Using the long PCR amplification procedure, we have characterized the organization and complete sequence of OXA1L, a gene involved in the assembly of several complexes of the mitochondrial respiratory chain. The OXA1L gene (5 kb) is composed of 10 exons and 9 introns and contains a 24 N-terminal amino-acid stretch is characteristic of a mitochondrial presequence. The screening of OXA1L mutation in patients with multiple respiratory chain deficiency is now feasible.


Asunto(s)
ADN Mitocondrial/genética , Transporte de Electrón/genética , Proteínas Nucleares/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN Mitocondrial/aislamiento & purificación , Complejo IV de Transporte de Electrones , Humanos , Proteínas Mitocondriales , Datos de Secuencia Molecular , Proteínas Nucleares/química , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA