RESUMEN
PURPOSE: Unenhanced abdominal CT constitutes the diagnostic standard of care in suspected urolithiasis. Aiming to identify potential for radiation dose reduction in this frequent imaging task, this experimental study compares the effect of spectral shaping and tube voltage modulation on image quality. METHODS: Using a third-generation dual-source CT, eight cadaveric specimens were scanned with varying tube voltage settings with and without tin filter application (Sn 150, Sn 100, 120, 100, and 80 kVp) at three dose levels (3 mGy: standard; 1 mGy: low; 0.5 mGy: ultralow). Image quality was assessed quantitatively by calculation of signal-to-noise ratios (SNR) for various tissues (spleen, kidney, trabecular bone, fat) and subjectively by three independent radiologists based on a seven-point rating scale (7 = excellent; 1 = very poor). RESULTS: Irrespective of dose level, Sn 100 kVp resulted in the highest SNR of all tube voltage settings. In direct comparison to Sn 150 kVp, superior SNR was ascertained for spleen (p ≤ 0.004) and kidney tissue (p ≤ 0.009). In ultralow-dose scans, subjective image quality of Sn 100 kVp (median score 3; interquartile range 3-3) was higher compared with conventional imaging at 120 kVp (2; 2-2), 100 kVp (1; 1-2), and 80 kVp (1; 1-1) (all p < 0.001). Indicated by an intraclass correlation coefficient of 0.945 (95% confidence interval: 0.927-0.960), interrater reliability was excellent. CONCLUSIONS: In abdominal CT with maximised dose reduction, tin prefiltration at 100 kVp allows for superior image quality over Sn 150 kVp and conventional imaging without spectral shaping.
Asunto(s)
Estaño , Tomografía Computarizada por Rayos X , Humanos , Reproducibilidad de los Resultados , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Abdomen/diagnóstico por imagenRESUMEN
BACKGROUND: For time-consuming diffusion-weighted imaging (DWI) of the breast, deep learning-based imaging acceleration appears particularly promising. PURPOSE: To investigate a combined k-space-to-image reconstruction approach for scan time reduction and improved spatial resolution in breast DWI. STUDY TYPE: Retrospective. POPULATION: 133 women (age 49.7 ± 12.1 years) underwent multiparametric breast MRI. FIELD STRENGTH/SEQUENCE: 3.0T/T2 turbo spin echo, T1 3D gradient echo, DWI (800 and 1600 sec/mm2 ). ASSESSMENT: DWI data were retrospectively processed using deep learning-based k-space-to-image reconstruction (DL-DWI) and an additional super-resolution algorithm (SRDL-DWI). In addition to signal-to-noise ratio and apparent diffusion coefficient (ADC) comparisons among standard, DL- and SRDL-DWI, a range of quantitative similarity (e.g., structural similarity index [SSIM]) and error metrics (e.g., normalized root mean square error [NRMSE], symmetric mean absolute percent error [SMAPE], log accuracy error [LOGAC]) was calculated to analyze structural variations. Subjective image evaluation was performed independently by three radiologists on a seven-point rating scale. STATISTICAL TESTS: Friedman's rank-based analysis of variance with Bonferroni-corrected pairwise post-hoc tests. P < 0.05 was considered significant. RESULTS: Both DL- and SRDL-DWI allowed for a 39% reduction in simulated scan time over standard DWI (5 vs. 3 minutes). The highest image quality ratings were assigned to SRDL-DWI with good interreader agreement (ICC 0.834; 95% confidence interval 0.818-0.848). Irrespective of b-value, both standard and DL-DWI produced superior SNR compared to SRDL-DWI. ADC values were slightly higher in SRDL-DWI (+0.5%) and DL-DWI (+3.4%) than in standard DWI. Structural similarity was excellent between DL-/SRDL-DWI and standard DWI for either b value (SSIM ≥ 0.86). Calculation of error metrics (NRMSE ≤ 0.05, SMAPE ≤ 0.02, and LOGAC ≤ 0.04) supported the assumption of low voxel-wise error. DATA CONCLUSION: Deep learning-based k-space-to-image reconstruction reduces simulated scan time of breast DWI by 39% without influencing structural similarity. Additionally, super-resolution interpolation allows for substantial improvement of subjective image quality. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 1.
RESUMEN
Axillary lymphadenopathy (LA) after COVID-19 vaccination is now known to be a common side effect. In these cases, malignancy cannot always be excluded on the basis of morphological imaging criteria.Narrative review for decision-making regarding control and follow-up intervals for axillary LA according to currently published research. This article provides a practical overview of the management of vaccine-associated LA using image examples and a flowchart and provides recommendations for follow-up intervals. A particular focus is on patients presenting for diagnostic breast imaging. The diagnostic criteria for pathological lymph nodes (LN) are explained.Axillary LA is a common adverse effect after COVID-19 vaccination (0.3-53%). The average duration of LA is more than 100 days. LA is also known to occur after other vaccinations, such as the seasonal influenza vaccine. Systematic studies on this topic are missing. Other causes of LA after vaccination (infections, autoimmune diseases, malignancies) should be considered for the differential diagnosis. If the LA persists for more than 3 months after COVID-19 vaccination, a primarily sonographic follow-up examination is recommended after another 3 months. A minimally invasive biopsy of the LA is recommended if a clinically suspicious LN persists or progresses. In the case of histologically confirmed breast cancer, a core biopsy without a follow-up interval is recommended regardless of the vaccination, as treatment appropriate to the stage should not be influenced by follow-up intervals. For follow-up after breast cancer, the procedure depends on the duration of the LA and the woman's individual risk of recurrence.Vaccination history should be well documented and taken into account when evaluating suspicious LN. Biopsy of abnormal, persistent, or progressive LNs is recommended. Preoperative staging of breast cancer should not be delayed by follow-up. The risk of false-positive findings is accepted, and the suspicious LNs are histologically examined in a minimally invasive procedure. · The vaccination history must be documented (vaccine, date, place of application).. · If axillary LA persists for more than 3 months after vaccination, a sonographic follow-up examination is recommended after 3 months.. · Enlarged LNs that are persistent, progressive in size, or are suspicious on control sonography should be biopsied.. · Suspicious LNs should be clarified before starting oncological therapy, irrespective of the vaccination status, according to the guidelines and without delaying therapy.. · Wilpert C, Wenkel E, Baltzer PA et al. Vaccine-associated axillary lymphadenopathy with a focus on COVID-19 vaccines. Fortschr Röntgenstr 2024; DOI 10.1055/a-2328-7536.
RESUMEN
BACKGROUND: 3D printing holds great potential of improving examination, diagnosis and treatment planning as well as interprofessional communication in the field of gynecological oncology. In the current manuscript we evaluated five individualized, patient-specific models of cervical cancer FIGO Stage I-III, created with 3D printing, concerning their value for translational oncology. METHODS: Magnetic resonance imaging (MRI) of the pelvis was performed on a 3.0 Tesla MRI, including a T2-weighted isotropic 3D sequence. The MRI images were segmented and transferred to virtual 3D models via a custom-built 3D-model generation pipeline and printed by material extrusion. The 3D models were evaluated by all medical specialties involved in patient care of cervical cancer, namely surgeons, radiologists, pathologists and radiation oncologists. Information was obtained from evaluated profession-specific questionnaires which were filled out after inspecting all five models. The questionnaires included multiple-select questions, questions based on Likert scales (1 = "strongly disagree " or "not at all useful " up to 5 = "strongly agree " or "extremely useful ") and dichotomous questions ("Yes" or "No"). RESULTS: Surgeons rated the models as useful during surgery (4.0 out of 5) and for patient communication (4.7 out of 5). Furthermore, they believed that the models had the potential to revise the patients' treatment plan (3.7 out of 5). Pathologists evaluated with mean ratings of 3.0 out of 5 for the usefulness of the models in diagnostic reporting and macroscopic evaluation. Radiologist acknowledged the possibility of providing additional information compared to imaging alone (3.7 out of 5). Radiation oncologists strongly supported the concept by rating the models highly for understanding patient-specific pathological characteristics (4.3 out of 5), assisting interprofessional communication (mean 4.3 out of 5) and communication with patients (4.7 out of 5). They also found the models useful for improving radiotherapy treatment planning (4.3 out of 5). CONCLUSION: The study revealed that the 3D printed models were generally well-received by all medical disciplines, with radiation oncologists showing particularly strong support. Addressing the concerns and tailoring the use of 3D models to the specific needs of each medical speciality will be essential for realizing their full potential in clinical practice.
RESUMEN
INTRODUCTION: With increasing spatial resolution, diffusion-weighted imaging (DWI) may be suitable for morphologic lesion characterization in breast MRI - an area that has traditionally been occupied by dynamic contrast-enhanced imaging (DCE). This investigation compared DWI with b values of 800 and 1600 s/mm2 to DCE for lesion morphology assessment in high-resolution breast MRI at 3 Tesla. MATERIAL AND METHODS: Multiparametric breast MRI was performed in 91 patients with 93 histopathologically proven lesions (31 benign, 62 malignant). Two radiologists independently evaluated three datasets per patient (DWIb800; DWIb1600; DCE) and assessed lesion visibility and BIRADS morphology criteria. Diagnostic accuracy was compared among readers and datasets using Cochran's Q test and pairwise post-hoc McNemar tests. Bland-Altman analyses were conducted for lesion size comparisons. RESULTS: Discrimination of carcinomas was superior compared to benign findings in both DWIb800 and DWIb1600 (p < 0.001) with no b value-dependent difference. Similarly, assessability of mass lesions was better than of non-mass lesions, irrespective of b value (p < 0.001). Intra-reader reliability for the analysis of morphologic BIRADS criteria among DCE and DWI datasets was at least moderate (Fleiss κ≥0.557), while at least substantial inter-reader agreement was ascertained over all assessed categories (κ≥0.776). In pairwise Bland-Altman analyses, the measurement bias between DCE and DWIb800 was 0.7 mm, whereas the difference between DCE and DWIb1600 was 2.8 mm. DWIb1600 allowed for higher specificity than DCE (p = 0.007/0.062). CONCLUSIONS: DWI can be employed for reliable morphologic lesion characterization in high-resolution breast MRI. High b values increase diagnostic specificity, while lesion size assessment is more precise with standard 800 s/mm2 images.
Asunto(s)
Neoplasias de la Mama , Medios de Contraste , Humanos , Femenino , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Mama/diagnóstico por imagen , Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Sensibilidad y Especificidad , Estudios RetrospectivosRESUMEN
This study investigated whether virtual monoenergetic images (VMIs) and iodine mapping based on dual-energy CT (DECT) provide advantages in the assessment of endometrial cancer. A dual-source DECT was performed for primary staging of histologically proven endometrioid adenocarcinoma in 21 women (66.8 ± 12.0 years). In addition to iodine maps, VMIs at 40, 50, 60, 70, and 80 keV were reconstructed from polyenergetic images (PEIs). Objective analysis comprised the measurement of tumor contrast, contrast-to-noise ratio, and normalized iodine concentration (NIC). In addition, three radiologists independently rated tumor conspicuity. The highest tumor contrast (106.6 ± 45.0 HU) and contrast-to-noise ratio (4.4 ± 2.0) was established for VMIs at 40 keV. Tumor contrast in all VMIs ≤ 60 keV was higher than in PEIs (p < 0.001). The NIC of malignant tissue measured in iodine maps was substantially lower compared with a healthy myometrium (0.3 ± 0.1 versus 0.6 ± 0.1 mg/mL; p < 0.001). Tumor conspicuity was highest in 40 keV datasets, whereas no difference was found among PEIs and VMIs at 60 and 70 keV (p ≥ 0.334). Interobserver agreement was good, indicated by an intraclass correlation coefficient of 0.824 (0.772-0.876; p < 0.001). In conclusion, computation of VMIs at 40 keV and color-coded iodine maps aids the assessment of endometroid adenocarcinoma in primary staging.
RESUMEN
PURPOSE: Breast imaging represents an integral part of radiology and is subject to strict quality controls. Regarding this, precise diagnostics including multimodal assessment by mammography, sonography, and MRI, including image-guided biopsy and localization procedures, is often decisive and must be performed by experts with profound knowledge and skills in all of these procedures.However, due to numerous restructurings, breast imaging has been shifted more and more towards large, specialized centers, resulting in less patient exposition and training opportunities for radiologists in smaller sites. The following whitepaper summarizes the current circumstances and discusses opinions of the participating societies. MATERIALS: Under the leadership of the German Roentgen Society (DRG) and with the participation of the DRG's AG Mammadiagnostik, the CAFRADâ(Chefarztforum Radiologie), the KLR (Konferenz der Lehrstuhlinhaber für Radiologie e.âV.), the DRG's Forum Junge Radiologie (FJR) and the Berufsverband der Deutschen Radiologen e.âV. (BDR), possible solutions were discussed and consented for a structured training in breast radiology in the future. RESULTS: In addition to the teaching provided at the primary workplace, qualified training should be ensured through flexible, multi-institutional, interdisciplinary, and cross-sectoral collaboration. Furthermore, the integration of online case collections and close cooperation with certified breast cancer centers and mammography screening units is recommended. It is indispensible that online courses and case collections adhere to the standards of the national societies and include a maximum of one third of the required cases. CONCLUSION: In order to provide training in breast radiology at a high professional level, a paradigm shift with closer cooperation of all participants is necessary. This includes close collaboration of the breast imaging societies with the federal medical associations to establish new teaching concepts like e-learning in the training schedule of radiologists. KEY POINTS: · Breast diagnostics is an integral part of radiology training.. · Due to recent restructurings, smaller training centers have difficulties in meeting the case numbers demanded by the Specialist Training Regulations (WBO). Improved integration of the new structures and their adaptation to the needs of education are necessary to guarantee standardized high-quality training of young radiologists.. · The integration of certified case collections enables quality-assured training, even across regions in online-based formats. In accordance with the "blended learning principle", up to one-third of the required number of patient studies can be substituted with cases from a certified case collection.. · Legally secured short- and medium-term internships may complement training in radiology.. CITATION FORMAT: · Sauer ST, Bley TA, Wenkel E etâal. Whitepaper: Training in Diagnostic and Interventional Breast Radiology. Fortschr Röntgenstr 2023; 195: 699â-â706.
Asunto(s)
Curriculum , Radiología Intervencionista , Humanos , Aprendizaje , Mamografía , UltrasonografíaRESUMEN
OBJECTIVES: Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. MATERIALS AND METHODS: A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m2) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m2 (n = 110), pre-obese: 25-29.9 kg/m2 (n = 73), and obese: >30 kg/m2 (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. RESULTS: While arterial contrast phases in DECT were associated with a higher CTDIvol than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R2 = 0.738) and SECT (R2 = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1%) compared with non-obese (0%) and pre-obese patients (4.1%). CONCLUSION: DECT facilitates a 30.8% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients.
RESUMEN
OBJECTIVES: For detection of urinary calculi, unenhanced low-dose computed tomography is the method of choice, outperforming radiography and ultrasound. This retrospective monocentric study aims to compare a clinically established, dedicated low-dose imaging protocol for detection of urinary calculi with an ultra-low-dose protocol employing tin prefiltration at a standardized tube voltage of 100 kVp. METHODS: Two study arms included a total of 510 cases. The "low-dose group" was comprised of 290 individuals (96 women; age 49 ± 16 years; BMI 27.23 ± 5.60 kg/m2). The "ultra-low-dose group" with Sn100 kVp consisted of 220 patients (84 women; age 47 ± 17 years; BMI 26.82 ± 5.62 kg/m2). No significant difference was ascertained for comparison of age (p = 0.132) and BMI (p = 0.207) between cohorts. For quantitative assessment of image quality, image noise was assessed. RESULTS: No significant difference regarding frequency of calculi detection was found between groups (p = 0.596). Compared to the low-dose protocol (3.08 mSv; IQR 2.22-4.02 mSv), effective dose was reduced by 62.35% with the ultra-low-dose protocol employing spectral shaping (1.16 mSv; IQR 0.89-1.54 mSv). Image noise was calculated at 18.90 (IQR 17.39-21.20) for the low-dose protocol and at 18.69 (IQR 17.30-21.62) for the ultra-low-dose spectral shaping protocol. No significant difference was ascertained for comparison between groups (p = 0.793). CONCLUSION: For urinary calculi detection, ultra-low-dose scans utilizing spectral shaping by means of tin prefiltration at 100 kVp allow for considerable dose reduction of up to 62% over conventional low-dose CT without compromising image quality.
Asunto(s)
Cálculos Urinarios , Sistema Urinario , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Estaño , Estudios Retrospectivos , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Cálculos Urinarios/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodosRESUMEN
OBJECTIVES: Digital breast tomosynthesis (DBT) can provide additional information over mammography, albeit at the cost of prolonged reading time. This study retrospectively investigated the impact of reading enhanced synthetic 6 mm slabs instead of standard 1 mm slices on interpretation time and readers performance in a diagnostic assessment centre. METHODS: Three radiologists (R1-3; 6/4/2 years of breast imaging experience) reviewed 111 diagnostic DBT examinations. Two datasets were interpreted independently for each patient, with one set containing artificial-intelligence-enhanced synthetic 6 mm slabs with 3 mm overlap, while the other set comprised standard 1 mm slices. Blinded to histology and follow-up, readers noted individual BIRADS categories and diagnostic confidence while reading time was recorded. Among the 111 examinations, 70 findings were histopathologically correlated including 56 malignancies. RESULTS: No significant difference was found between BIRADS categories assigned based on 6 mm vs 1 mm datasets (p ≥ 0.317). Diagnostic accuracy was comparable for 6 mm and 1 mm readings (R1: 87.0% vs 87.0%; R2: 86.1% vs 87.0%; R3: 80.0% vs 84.4%; p ≥ 0.125) with high interrater agreement (intraclass correlation coefficient 0.848 vs 0.865). One reader reported higher confidence with 1 mm slices (R1: p = 0.033). Reading time was substantially shorter when interpreting 6 mm slabs compared to 1 mm slices (R1: 33.5 vs 46.2; R2: 49.1 vs 64.8; R3: 39.5 vs 67.2 sec; all p < 0.001). CONCLUSIONS: Artificial-intelligence-enhanced synthetic 6 mm slabs allow for substantial interpretation time reduction in diagnostic DBT without a decrease in reader accuracy. ADVANCES IN KNOWLEDGE: A simplified slab-only protocol instead of 1 mm slices may offset the higher reading time without a loss of diagnosis-relevant image information in first and second readings. Further evaluations are required regarding workflow implications, particularly in screening settings.
Asunto(s)
Neoplasias de la Mama , Mamografía , Humanos , Femenino , Estudios Retrospectivos , Mamografía/métodos , Examen Físico , Radiólogos , Inteligencia , Neoplasias de la Mama/diagnóstico por imagenRESUMEN
OBJECTIVES: This study investigated the feasibility and image quality of ultra-low-dose unenhanced abdominal CT using photon-counting detector technology and tin prefiltration. MATERIALS AND METHODS: Employing a first-generation photon-counting CT scanner, eight cadaveric specimens were examined both with tin prefiltration (Sn 100 kVp) and polychromatic (120 kVp) scan protocols matched for radiation dose at three different levels: standard-dose (3 mGy), low-dose (1 mGy) and ultra-low-dose (0.5 mGy). Image quality was evaluated quantitatively by means of contrast-to-noise-ratios (CNR) with regions of interest placed in the renal cortex and subcutaneous fat. Additionally, three independent radiologists performed subjective evaluation of image quality. The intraclass correlation coefficient was calculated as a measure of interrater reliability. RESULTS: Irrespective of scan mode, CNR in the renal cortex decreased with lower radiation dose. Despite similar mean energy of the applied x-ray spectrum, CNR was superior for Sn 100 kVp over 120 kVp at standard-dose (17.75 ± 3.51 vs. 14.13 ± 4.02), low-dose (13.99 ± 2.6 vs. 10.68 ± 2.17) and ultra-low-dose levels (8.88 ± 2.01 vs. 11.06 ± 1.74) (all p ≤ 0.05). Subjective image quality was highest for both standard-dose protocols (score 5; interquartile range 5-5). While no difference was ascertained between Sn 100 kVp and 120 kVp examinations at standard and low-dose levels, the subjective image quality of tin-filtered scans was superior to 120 kVp with ultra-low radiation dose (p < 0.05). An intraclass correlation coefficient of 0.844 (95% confidence interval 0.763-0.906; p < 0.001) indicated good interrater reliability. CONCLUSIONS: Photon-counting detector CT permits excellent image quality in unenhanced abdominal CT with very low radiation dose. Employment of tin prefiltration at 100 kVp instead of polychromatic imaging at 120 kVp increases the image quality even further in the ultra-low-dose range of 0.5 mGy.
RESUMEN
RATIONALE AND OBJECTIVES: In breast MRI with diffusion-weighted imaging (DWI), fat suppression is essential for eliminating the dominant lipid signal. This investigation evaluates a combined water-excitation-spectral-fatsat method (WEXfs) versus standard spectral attenuated inversion recovery (SPAIR) in high-resolution 3-Tesla breast MRI. MATERIALS AND METHODS: Multiparametric breast MRI with 2 echo-planar DWI sequences was performed in 83 patients (50.1 ± 12.6 years) employing either WEXfs or SPAIR for fat signal suppression. Three radiologists assessed overall DWI quality and delineability of 88 focal lesions (28 malignant, 60 benign) on images with b values of 800 and 1600 s/mm2, as well as apparent diffusion coefficient (ADC) maps. For each fat suppression method and b value, the longest lesion diameter was determined in addition to measuring the signal intensity in DWI and ADC value in standardized regions of interest. RESULTS: Regardless of b values, image quality (all p < 0.001) and lesion delineability (all p ≤ 0.003) with WEXfs-DWI were deemed superior compared to SPAIR-DWI in benign and malignant lesions. Irrespective of lesion characterization, WEXfs-DWI provided superior signal-to-noise, contrast-to-noise and signal-intensity ratios with 1600 s/mm2 (all p ≤ 0.05). The lesion size difference between contrast-enhanced T1 subtraction images and DWI was smaller for WEXfs compared to SPAIR fat suppression (all p ≤ 0.007). The mean ADC value in malignant lesions was lower for WEXfs-DWI (p < 0.001), while no significant ADC difference was ascertained between both techniques in benign lesions (p = 0.947). CONCLUSION: WEXfs-DWI provides better subjective and objective image quality than standard SPAIR-DWI, resulting in a more accurate estimation of benign and malignant lesion size.