Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Nature ; 613(7942): 71-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36600065

RESUMEN

The two natural allotropes of carbon, diamond and graphite, are extended networks of sp3-hybridized and sp2-hybridized atoms, respectively1. By mixing different hybridizations and geometries of carbon, one could conceptually construct countless synthetic allotropes. Here we introduce graphullerene, a two-dimensional crystalline polymer of C60 that bridges the gulf between molecular and extended carbon materials. Its constituent fullerene subunits arrange hexagonally in a covalently interconnected molecular sheet. We report charge-neutral, purely carbon-based macroscopic crystals that are large enough to be mechanically exfoliated to produce molecularly thin flakes with clean interfaces-a critical requirement for the creation of heterostructures and optoelectronic devices2. The synthesis entails growing single crystals of layered polymeric (Mg4C60)∞ by chemical vapour transport and subsequently removing the magnesium with dilute acid. We explore the thermal conductivity of this material and find it to be much higher than that of molecular C60, which is a consequence of the in-plane covalent bonding. Furthermore, imaging few-layer graphullerene flakes using transmission electron microscopy and near-field nano-photoluminescence spectroscopy reveals the existence of moiré-like superlattices3. More broadly, the synthesis of extended carbon structures by polymerization of molecular precursors charts a clear path to the systematic design of materials for the construction of two-dimensional heterostructures with tunable optoelectronic properties.

2.
Nature ; 618(7967): 951-958, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258675

RESUMEN

Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging1-4, nanophotonics5, and optical data storage6,7, to targeted pharmacology, optogenetics, and chemical reactivity8. These photoswitchable probes, including organic fluorophores and proteins, can be prone to photodegradation and often operate in the ultraviolet or visible spectral regions. Colloidal inorganic nanoparticles6,9 can offer improved stability, but the ability to switch emission bidirectionally, particularly with near-infrared (NIR) light, has not, to our knowledge, been reported in such systems. Here, we present two-way, NIR photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening10-13 and photobrightening12,14-16, we demonstrate indefinite photoswitching of individual nanoparticles (more than 1,000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modelling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable two-dimensional and three-dimensional multilevel optical patterning of ANPs, as well as optical nanoscopy with sub-Å localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.

3.
Nature ; 601(7893): 360-365, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35046599

RESUMEN

Inorganic-organic hybrid materials represent a large share of newly reported structures, owing to their simple synthetic routes and customizable properties1. This proliferation has led to a characterization bottleneck: many hybrid materials are obligate microcrystals with low symmetry and severe radiation sensitivity, interfering with the standard techniques of single-crystal X-ray diffraction2,3 and electron microdiffraction4-11. Here we demonstrate small-molecule serial femtosecond X-ray crystallography (smSFX) for the determination of material crystal structures from microcrystals. We subjected microcrystalline suspensions to X-ray free-electron laser radiation12,13 and obtained thousands of randomly oriented diffraction patterns. We determined unit cells by aggregating spot-finding results into high-resolution powder diffractograms. After indexing the sparse serial patterns by a graph theory approach14, the resulting datasets can be solved and refined using standard tools for single-crystal diffraction data15-17. We describe the ab initio structure solutions of mithrene (AgSePh)18-20, thiorene (AgSPh) and tethrene (AgTePh), of which the latter two were previously unknown structures. In thiorene, we identify a geometric change in the silver-silver bonding network that is linked to its divergent optoelectronic properties20. We demonstrate that smSFX can be applied as a general technique for structure determination of beam-sensitive microcrystalline materials at near-ambient temperature and pressure.


Asunto(s)
Electrones , Plata , Cristalografía por Rayos X , Rayos Láser , Difracción de Rayos X
4.
Nature ; 589(7841): 230-235, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33442042

RESUMEN

Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials1. Photon avalanching enables technologies such as optical phase-conjugate imaging2, infrared quantum counting3 and efficient upconverted lasing4-6. However, the photon-avalanching mechanism underlying these optical applications has been observed only in bulk materials and aggregates6,7, limiting its utility and impact. Here we report the realization of photon avalanching at room temperature in single nanostructures-small, Tm3+-doped upconverting nanocrystals-and demonstrate their use in super-resolution imaging in near-infrared spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining features of photon avalanching, including clear excitation-power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is more than 10,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of the pump intensity, owing to induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam super-resolution imaging7 with sub-70-nanometre spatial resolution, achieved by using only simple scanning confocal microscopy and without any computational analysis. Pairing their steep nonlinearity with existing super-resolution techniques and computational methods8-10, ANPs enable imaging with higher resolution and at excitation intensities about 100 times lower than other probes. The low photon-avalanching threshold and excellent photostability of ANPs also suggest their utility in a diverse array of applications, including sub-wavelength imaging7,11,12 and optical and environmental sensing13-15.

5.
Nano Lett ; 24(7): 2149-2156, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329715

RESUMEN

The integration time and signal-to-noise ratio are inextricably linked when performing scanning probe microscopy based on raster scanning. This often yields a large lower bound on the measurement time, for example, in nano-optical imaging experiments performed using a scanning near-field optical microscope (SNOM). Here, we utilize sparse scanning augmented with Gaussian process regression to bypass the time constraint. We apply this approach to image charge-transfer polaritons in graphene residing on ruthenium trichloride (α-RuCl3) and obtain key features such as polariton damping and dispersion. Critically, nano-optical SNOM imaging data obtained via sparse sampling are in good agreement with those extracted from traditional raster scans but require 11 times fewer sampled points. As a result, Gaussian process-aided sparse spiral scans offer a major decrease in scanning time.

6.
J Am Chem Soc ; 146(11): 7487-7497, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38466925

RESUMEN

Upconverting nanoparticles (UCNPs) exhibit unique nonlinear optical properties that can be harnessed in microscopy, sensing, and photonics. However, forming high-resolution nano- and micropatterns of UCNPs with large packing fractions is still challenging. Additionally, there is limited understanding of how nanoparticle patterning chemistries are affected by the particle size. Here, we explore direct patterning chemistries for 6-18 nm Tm3+-, Yb3+/Tm3+-, and Yb3+/Er3+-based UCNPs using ligands that form either new ionic linkages or covalent bonds between UCNPs under ultraviolet (UV), electron-beam (e-beam), and near-infrared (NIR) exposure. We study the effect of UCNP size on these patterning approaches and find that 6 nm UCNPs can be patterned with compact ionic-based ligands. In contrast, patterning larger UCNPs requires long-chain, cross-linkable ligands that provide sufficient interparticle spacing to prevent irreversible aggregation upon film casting. Compared to approaches that use a cross-linkable liquid monomer, our patterning method limits the cross-linking reaction to the ligands bound on UCNPs deposited as a thin film. This highly localized photo-/electron-initiated chemistry enables the fabrication of densely packed UCNP patterns with high resolutions (∼1 µm with UV and NIR exposure; <100 nm with e-beam). Our upconversion NIR lithography approach demonstrates the potential to use inexpensive continuous-wave lasers for high-resolution 2D and 3D lithography of colloidal materials. The deposited UCNP patterns retain their upconverting, avalanching, and photoswitching behaviors, which can be exploited in patterned optical devices for next-generation UCNP applications.

7.
Nat Mater ; 22(7): 838-843, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36997689

RESUMEN

Plasmon polaritons in van der Waals materials hold promise for various photonics applications1-4. The deterministic imprinting of spatial patterns of high carrier density in plasmonic cavities and nanoscale circuitry can enable the realization of advanced nonlinear nanophotonic5 and strong light-matter interaction platforms6. Here we demonstrate an oxidation-activated charge transfer strategy to program ambipolar low-loss graphene plasmonic structures. By covering graphene with transition-metal dichalcogenides and subsequently oxidizing the transition-metal dichalcogenides into transition-metal oxides, we activate charge transfer rooted in the dissimilar work functions between transition-metal oxides and graphene. Nano-infrared imaging reveals ambipolar low-loss plasmon polaritons at the transition-metal-oxide/graphene interfaces. Further, by inserting dielectric van der Waals spacers, we can precisely control the electron and hole densities induced by oxidation-activated charge transfer and achieve plasmons with a near-intrinsic quality factor. Using this strategy, we imprint plasmonic cavities with laterally abrupt doping profiles with nanoscale precision and demonstrate plasmonic whispering-gallery resonators based on suspended graphene encapsulated in transition-metal oxides.


Asunto(s)
Grafito , Electrones , Óxidos
8.
Annu Rev Phys Chem ; 74: 415-438, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37093661

RESUMEN

Upconverting nanoparticles (UCNPs) compose a class of luminescent materials that utilize the unique wavelength-converting properties of lanthanide (Ln) ions for light-harvesting applications, photonics technologies, and biological imaging and sensing experiments. Recent advances in UCNP design have shed light on the properties of local color centers, both intrinsic and controllably induced, within these materials and their potential influence on UCNP photophysics. In this review, we describe fundamental studies of color centers in Ln-based materials, including research into their origins and their roles in observed photodarkening and photobrightening mechanisms. We place particular focus on the new functionalities that are enabled by harnessing the properties of color centers within Ln-doped nanocrystals, illustrated through applications in afterglow-based bioimaging, X-ray detection, all-inorganic nanocrystal photoswitching, and fully rewritable optical patterning and memory.

9.
Nano Lett ; 23(15): 7100-7106, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37471584

RESUMEN

Photon avalanching nanoparticles (ANPs) exhibit extremely nonlinear upconverted emission valuable for subdiffraction imaging, nanoscale sensing, and optical computing. Avalanching has been demonstrated with Tm3+-, Pr3+-, or Nd3+-doped nanocrystals, but their emission is limited to a few wavelengths and materials. Here, we utilize Gd3+-assisted energy migration to tune the emission wavelengths of Tm3+-sensitized ANPs and generate highly nonlinear emission from Eu3+, Tb3+, Ho3+, and Er3+ ions. The upconversion intensities of these spectrally discrete ANPs scale with nonlinearity factor s = 10-17 under 1064 nm excitation at power densities as low as 7 kW cm-2. This strategy for imprinting avalanche behavior on remote emitters can be extended to fluorophores adjacent to ANPs, as we demonstrate with CdS/CdSe/CdS core/shell/shell quantum dots. ANPs with rationally designed energy transfer networks provide the means to transform conventional linear emitters into a highly nonlinear ones, expanding the use of photon avalanching in biological, chemical, and photonic applications.

10.
Nano Lett ; 23(11): 5070-5075, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37195262

RESUMEN

We investigate heterostructures composed of monolayer WSe2 stacked on α-RuCl3 using a combination of Terahertz (THz) and infrared (IR) nanospectroscopy and imaging, scanning tunneling spectroscopy (STS), and photoluminescence (PL). Our observations reveal itinerant carriers in the heterostructure prompted by charge transfer across the WSe2/α-RuCl3 interface. Local STS measurements show the Fermi level is shifted to the valence band edge of WSe2 which is consistent with p-type doping and verified by density functional theory (DFT) calculations. We observe prominent resonances in near-IR nano-optical and PL spectra, which are associated with the A-exciton of WSe2. We identify a concomitant, near total, quenching of the A-exciton resonance in the WSe2/α-RuCl3 heterostructure. Our nano-optical measurements show that the charge-transfer doping vanishes while excitonic resonances exhibit near-total recovery in "nanobubbles", where WSe2 and α-RuCl3 are separated by nanometer distances. Our broadband nanoinfrared inquiry elucidates local electrodynamics of excitons and an electron-hole plasma in the WSe2/α-RuCl3 system.

11.
Nano Lett ; 22(18): 7401-7407, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36122409

RESUMEN

The optical properties of transition-metal dichalcogenides have previously been modified at the nanoscale by using mechanical and electrical nanostructuring. However, a clear experimental picture relating the local electronic structure with emission properties in such structures has so far been lacking. Here, we use a combination of scanning tunneling microscopy (STM) and near-field photoluminescence (nano-PL) to probe the electronic and optical properties of single nanobubbles in bilayer heterostructures of WSe2 on MoSe2. We show from tunneling spectroscopy that there are electronic states deeply localized in the gap at the edge of such bubbles, which are independent of the presence of chemical defects in the layers. We also show a significant change in the local band gap on the bubble, with a continuous evolution to the edge of the bubble over a length scale of ∼20 nm. Nano-PL measurements observe a continuous redshift of the interlayer exciton on entering the bubble, in agreement with the band-to-band transitions measured by STM. We use self-consistent Schrödinger-Poisson simulations to capture the essence of the experimental results and find that strong doping in the bubble region is a key ingredient to achieving the observed localized states, together with mechanical strain.

12.
Angew Chem Int Ed Engl ; 62(1): e202212549, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377596

RESUMEN

Optical applications of lanthanide-doped nanoparticles require materials with low phonon energies to minimize nonradiative relaxation and promote nonlinear processes like upconversion. Heavy halide hosts offer low phonon energies but are challenging to synthesize as nanocrystals. Here, we demonstrate the size-controlled synthesis of low-phonon-energy KPb2 X5 (X=Cl, Br) nanoparticles and the ability to tune nanocrystal phonon energies as low as 128 cm-1 . KPb2 Cl5 nanoparticles are moisture resistant and can be efficiently doped with lighter lanthanides. The low phonon energies of KPb2 X5 nanoparticles promote upconversion luminescence from higher lanthanide excited states and enable highly nonlinear, avalanche-like emission from KPb2 Cl5 : Nd3+ nanoparticles. The realization of nanoparticles with tunable, ultra-low phonon energies facilitates the discovery of nanomaterials with phonon-dependent properties, precisely engineered for applications in nanoscale imaging, sensing, luminescence thermometry and energy conversion.

13.
Nano Lett ; 21(23): 9930-9938, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34797671

RESUMEN

Recent advances in emerging atomically thin transition metal dichalcogenide semiconductors with strong light-matter interactions and tunable optical properties provide novel approaches for realizing new material functionalities. Coupling two-dimensional semiconductors with all-dielectric resonant nanostructures represents an especially attractive opportunity for manipulating optical properties in both the near-field and far-field regimes. Here, by integrating single-layer WSe2 and titanium oxide (TiO2) dielectric metasurfaces with toroidal resonances, we realized robust exciton emission enhancement over 1 order of magnitude at both room and low temperatures. Furthermore, we could control exciton dynamics and annihilation by using temperature to tailor the spectral overlap of excitonic and toroidal resonances, allowing us to selectively enhance the Purcell effect. Our results provide rich physical insight into the strong light-matter interactions in single-layer TMDs coupled with toroidal dielectric metasurfaces, with important implications for optoelectronics and photonics applications.

14.
Nat Mater ; 18(11): 1172-1176, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31548631

RESUMEN

Miniaturized lasers are an emerging platform for generating coherent light for quantum photonics, in vivo cellular imaging, solid-state lighting and fast three-dimensional sensing in smartphones1-3. Continuous-wave lasing at room temperature is critical for integration with opto-electronic devices and optimal modulation of optical interactions4,5. Plasmonic nanocavities integrated with gain can generate coherent light at subwavelength scales6-9, beyond the diffraction limit that constrains mode volumes in dielectric cavities such as semiconducting nanowires10,11. However, insufficient gain with respect to losses and thermal instabilities in nanocavities has limited all nanoscale lasers to pulsed pump sources and/or low-temperature operation6-9,12-15. Here, we show continuous-wave upconverting lasing at room temperature with record-low thresholds and high photostability from subwavelength plasmons. We achieve selective, single-mode lasing from Yb3+/Er3+-co-doped upconverting nanoparticles conformally coated on Ag nanopillar arrays that support a single, sharp lattice plasmon cavity mode and greater than wavelength λ/20 field confinement in the vertical dimension. The intense electromagnetic near-fields localized in the vicinity of the nanopillars result in a threshold of 70 W cm-2, orders of magnitude lower than other small lasers. Our plasmon-nanoarray upconverting lasers provide directional, ultra-stable output at visible frequencies under near-infrared pumping, even after six hours of constant operation, which offers prospects in previously unrealizable applications of coherent nanoscale light.


Asunto(s)
Rayos Láser , Nanotecnología , Fenómenos Ópticos , Fotones , Temperatura
15.
J Chem Phys ; 153(2): 024702, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668931

RESUMEN

When layers of van der Waals materials are deposited via exfoliation or viscoelastic stamping, nanobubbles are sometimes created from aggregated trapped fluids. Though they can be considered a nuisance, nanobubbles have attracted scientific interest in their own right owing to their ability to generate large in-plane strain gradients that lead to rich optoelectronic phenomena, especially in the semiconducting transition metal dichalcogenides. Determination of the strain within the nanobubbles, which is crucial to understanding these effects, can be approximated using elasticity theory. However, the Föppl-von Kármán equations that describe strain in a distorted thin plate are highly nonlinear and often necessitate assuming circular symmetry to achieve an analytical solution. Here, we present an easily implemented numerical method to solve for strain tensors of nanobubbles with arbitrary symmetry in 2D crystals. The method only requires topographic information from atomic force microscopy and the Poisson ratio of the 2D material. We verify that this method reproduces the strain for circularly symmetric nanobubbles that have known analytical solutions. Finally, we use the method to reproduce the Grüneisen parameter of the E' mode for 1L-WS2 nanobubbles on template-stripped Au by comparing the derived strain with measured Raman shifts from tip-enhanced Raman spectroscopy, demonstrating the utility of our method for estimating localized strain in 2D crystals.

16.
Opt Mater (Amst) ; 84: 345-353, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31871387

RESUMEN

Chemical sensing in living systems demands optical sensors that are bright, stable, and sensitive to the rapid dynamics of chemical signaling. Lanthanide-doped upconverting nanoparticles (UCNPs) efficiently convert near infrared (NIR) light to higher energy emission and allow biological systems to be imaged with no measurable background or photobleaching, and with reduced scatter for subsurface experiments. Despite their advantages as imaging probes, UCNPs have little innate chemical sensing ability and require pairing with organic fluorophores to act as biosensors, although the design of stable UCNP-fluorophore hybrids with efficient upconverted energy transfer (UET) has remained a challenge. Here, we report Yb3+- and Er3+-doped UCNP-fluorophore conjugates with UET efficiencies up to 88%, and photostabilities 100-fold greater by UET excitation than those of the free fluorophores under direct excitation. Despite adding distance between Er3+ donors and organic acceptors, thin inert shells significantly enhance overall emission without compromising UET efficiency. This can be explained by the large increase in quantum yield of Er3+ donors at the core/shell interface and the large number of fluorophore acceptors at the surface. Sensors excited by UET show increases in photostability well beyond those reported for other methods for increasing the longevity of organic fluorophores, and those covalently attached to UCNP surface polymers show greater chemical stability than those directly coordinated to the nanocrystal surface. By conjugating other fluorescent chemosensors to UCNPs, these hybrids may be extended to a series of NIR-responsive biosensors for quantifying the dynamic chemical populations critical for cell signaling.

17.
Phys Rev Lett ; 119(8): 087401, 2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28952768

RESUMEN

Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

18.
J Am Chem Soc ; 138(41): 13551-13560, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27700081

RESUMEN

Recently developed all-organic emitters used in display applications achieve high brightness by harvesting triplet populations via thermally activated delayed fluorescence. The photophysical properties of these emitters therefore involve new inherent complexities and are strongly affected by interactions with their host material in the solid state. Ensemble measurements occlude the molecular details of how host-guest interactions determine fundamental properties such as the essential balance of singlet oscillator strength and triplet harvesting. Therefore, using time-resolved fluorescence spectroscopy, we interrogate these emitters at the single-molecule level and compare their properties in two distinct glassy polymer hosts. We find that nonbonding interactions with aromatic moieties in the host appear to mediate the molecular configurations of the emitters, but also promote nonradiative quenching pathways. We also find substantial heterogeneity in the time-resolved photoluminescence of these emitters, which is dominated by static disorder in the polymer. Finally, since singlet-triplet cycling underpins the mechanism for increased brightness, we present the first room-temperature measurement of singlet-triplet equilibration dynamics in this family of emitters. Our observations present a molecular-scale interrogation of host-guest interactions in a disordered film, with implications for highly efficient organic light-emitting devices. Combining a single-molecule experimental technique with an emitter that is sensitive to triplet dynamics, yet read out via fluorescence, should also provide a complementary approach to performing fundamental studies of glassy materials over a large dynamic range of time scales.

19.
Nano Lett ; 14(12): 7115-9, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25383700

RESUMEN

Electrically controlling resonant energy transfer of optical emitters provides a novel mechanism to switch nanoscale light sources on and off individually for optoelectronic applications. Graphene's optical transitions are tunable through electrostatic gating over a broad wavelength spectrum, making it possible to modulate energy transfer from a variety of nanoemitters to graphene at room temperature. We demonstrate photoluminescence switching of individual colloidal quantum dots by electrically tuning their energy transfer to graphene. The gate dependence of energy transfer modulation confirms that the transition occurs when the Fermi level is shifted over half the emitter's excitation energy. The modulation magnitude decreases rapidly with increasing emitter-graphene distance (d), following the 1/d(4) rate trend unique to the energy transfer process to two-dimensional materials.

20.
ACS Nano ; 18(5): 4118-4130, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38261768

RESUMEN

Waveguides play a key role in the implementation of on-chip optical elements and, therefore, lie at the heart of integrated photonics. To add the functionalities of layered materials to existing technologies, dedicated fabrication protocols are required. Here, we build on laser writing to pattern grating structures into bulk noncentrosymmetric transition metal dichalcogenides with grooves as sharp as 250 nm. Using thin flakes of 3R-MoS2 that act as waveguides for near-infrared light, we demonstrate the functionality of the grating couplers with two complementary experiments: first, nano-optical imaging is used to visualize transverse electric and magnetic modes, whose directional outcoupling is captured by finite element simulations. Second, waveguide second-harmonic generation is demonstrated by grating-coupling femtosecond pulses into the slabs in which the radiation partially undergoes frequency doubling throughout the propagation. Our work provides a straightforward strategy for laser patterning of van der Waals crystals, demonstrates the feasibility of compact frequency converters, and examines the tuning knobs that enable optimized coupling into layered waveguides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA