Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34261790

RESUMEN

Mitochondria form tubular networks that undergo coordinated cycles of fission and fusion. Emerging evidence suggests that a direct yet unresolved interaction of the mechanoenzymatic GTPase dynamin-related protein 1 (Drp1) with mitochondrial outer membrane-localized cardiolipin (CL), externalized under stress conditions including mitophagy, catalyzes essential mitochondrial hyperfragmentation. Here, using a comprehensive set of structural, biophysical, and cell biological tools, we have uncovered a CL-binding motif (CBM) conserved between the Drp1 variable domain (VD) and the unrelated ADP/ATP carrier (AAC/ANT) that intercalates into the membrane core to effect specific CL interactions. CBM mutations that weaken VD-CL interactions manifestly impair Drp1-dependent fission under stress conditions and induce "donut" mitochondria formation. Importantly, VD membrane insertion and GTP-dependent conformational rearrangements mediate only transient CL nonbilayer topological forays and high local membrane constriction, indicating that Drp1-CL interactions alone are insufficient for fission. Our studies establish the structural and mechanistic bases of Drp1-CL interactions in stress-induced mitochondrial fission.


Asunto(s)
Cardiolipinas/metabolismo , Dinaminas/química , Dinaminas/metabolismo , Dinámicas Mitocondriales/fisiología , Secuencias de Aminoácidos , Sitios de Unión , Dinaminas/genética , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Espectroscopía de Resonancia Magnética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Mitofagia , Mutación , Unión Proteica , Conformación Proteica
2.
Nature ; 524(7563): 109-113, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26123023

RESUMEN

Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate, characterized by a 'stalk' in which only the outer membrane monolayers of the two compartments have merged to form a localized non-bilayer connection. Formation of the hemi-fission intermediate requires energy input from proteins catalysing membrane remodelling; however, the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analysed how the GTPase cycle of human dynamin 1, the prototypical membrane fission catalyst, is directly coupled to membrane remodelling. We used intramolecular chemical crosslinking to stabilize dynamin in its GDP·AlF4(-)-bound transition state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fuelled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent, drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction, the force bimodality might constitute a general paradigm for leakage-free membrane remodelling.


Asunto(s)
Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Dinamina I/metabolismo , Biocatálisis , Proteínas Sanguíneas/química , Dinamina I/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Fusión de Membrana , Modelos Moleculares , Fosfoproteínas/química , Conformación Proteica
3.
Nature ; 514(7524): 612-5, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25355362

RESUMEN

There is much interest in developing synthetic analogues of biological membrane channels with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up and top-down methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels. Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane. Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls, and short tubes have been forced into membranes to create sensors, yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70-100 picosiemens under physiological conditions. Despite their structural simplicity, these 'CNT porins' transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Nanotubos de Carbono , Porinas/metabolismo , Procesos Estocásticos , Animales , Transporte Biológico , Células CHO , Supervivencia Celular , Cricetulus , ADN/metabolismo , Células HEK293 , Humanos , Canales Iónicos/metabolismo , Liposomas , Nanotubos de Carbono/ultraestructura , Porinas/química
5.
Nat Commun ; 15(1): 2793, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555357

RESUMEN

Division of intracellular organelles often correlates with additional membrane wrapping, e.g., by the endoplasmic reticulum or the outer mitochondrial membrane. Such wrapping plays a vital role in proteome and lipidome organization. However, how an extra membrane impacts the mechanics of the division has not been investigated. Here we combine fluorescence and cryo-electron microscopy experiments with self-consistent field theory to explore the stress-induced instabilities imposed by membrane wrapping in a simple double-membrane tubular system. We find that, at physiologically relevant conditions, the outer membrane facilitates an alternative pathway for the inner-tube fission through the formation of a transient contact (hemi-fusion) between both membranes. A detailed molecular theory of the fission pathways in the double membrane system reveals the topological complexity of the process, resulting both in leaky and leakless intermediates, with energies and topologies predicting physiological events.


Asunto(s)
Retículo Endoplásmico , Membranas Mitocondriales , Microscopía por Crioelectrón , Membranas Mitocondriales/metabolismo , Retículo Endoplásmico/metabolismo , Proteoma/metabolismo
6.
Nat Commun ; 15(1): 52, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168038

RESUMEN

The mechanochemical GTPase dynamin-related protein 1 (Drp1) catalyzes mitochondrial and peroxisomal fission, but the regulatory mechanisms remain ambiguous. Here we find that a conserved, intrinsically disordered, six-residue Short Linear Motif at the extreme Drp1 C-terminus, named CT-SLiM, constitutes a critical allosteric site that controls Drp1 structure and function in vitro and in vivo. Extension of the CT-SLiM by non-native residues, or its interaction with the protein partner GIPC-1, constrains Drp1 subunit conformational dynamics, alters self-assembly properties, and limits cooperative GTP hydrolysis, surprisingly leading to the fission of model membranes in vitro. In vivo, the involvement of the native CT-SLiM is critical for productive mitochondrial and peroxisomal fission, as both deletion and non-native extension of the CT-SLiM severely impair their progression. Thus, contrary to prevailing models, Drp1-catalyzed membrane fission relies on allosteric communication mediated by the CT-SLiM, deceleration of GTPase activity, and coupled changes in subunit architecture and assembly-disassembly dynamics.


Asunto(s)
Dinaminas , GTP Fosfohidrolasas , Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Hidrólisis , Fusión de Membrana , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo
7.
Res Sq ; 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37503116

RESUMEN

The mechanochemical GTPase dynamin-related protein 1 (Drp1) catalyzes mitochondrial fission, but the regulatory mechanisms remain ambiguous. Here we found that a conserved, intrinsically disordered, six-residue Short Linear Motif at the extreme Drp1 C-terminus, named CT-SLiM, constitutes a critical allosteric site that controls Drp1 structure and function in vitro and in vivo. Extension of the CT-SLiM by non-native residues, or its interaction with the protein partner GIPC-1, constrains Drp1 subunit conformational dynamics, alters self-assembly properties, and limits cooperative GTP hydrolysis, leading to the fission of model membranes in vitro. In vivo, the availability of the native CT-SLiM is a requirement for productive mitochondrial fission, as both non-native extension and deletion of the CT-SLiM severely impair its progression. Thus, contrary to prevailing models, Drp1-catalyzed mitochondrial fission relies on allosteric communication mediated by the CT-SLiM, deceleration of GTPase activity, and coupled changes in subunit architecture and assembly-disassembly dynamics.

8.
Methods Mol Biol ; 2159: 141-162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529369

RESUMEN

Membrane fusion and fission are indispensable parts of intracellular membrane recycling and transport. Electrophysiological techniques have been instrumental in discovering and studying fusion and fission pores, the key intermediates shared by both processes. In cells, electrical admittance measurements are used to assess in real time the dynamics of the pore conductance, reflecting the nanoscale transformations of the pore, simultaneously with membrane leakage. Here, we described how this technique is adapted to in vitro mechanistic analyses of membrane fission by dynamin 1 (Dyn1), the protein orchestrating membrane fission in endocytosis. We reconstitute the fission reaction using purified Dyn1 and biomimetic lipid membrane nanotubes of defined geometry. We provide a comprehensive protocol describing simultaneous measurements of the ionic conductance through the nanotube lumen and across the nanotube wall, enabling spatiotemporal correlation between the nanotube constriction by Dyn1, leading to fission and membrane leakage. We present examples of "leaky" and "tight" fission reactions, specify the resolution limits of our method, and discuss how our results support the hemi-fission conjecture.


Asunto(s)
Membrana Celular/metabolismo , Dinamina I/metabolismo , Fenómenos Electrofisiológicos , Algoritmos , Membrana Celular/química , Electrodos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Biológicos , Nanotubos/química , Técnicas de Placa-Clamp , Permeabilidad
9.
Nat Protoc ; 15(8): 2443-2469, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32591769

RESUMEN

Cellular membrane processes, from signal transduction to membrane fusion and fission, depend on acute membrane deformations produced by small and short-lived protein complexes working in conditions far from equilibrium. Real-time monitoring and quantitative assessment of such deformations are challenging; hence, mechanistic analyses of the protein action are commonly based on ensemble averaging, which masks important mechanistic details of the action. In this protocol, we describe how to reconstruct and quantify membrane remodeling by individual proteins and small protein complexes in vitro, using an ultra-short (80- to 400-nm) lipid nanotube (usNT) template. We use the luminal conductance of the usNT as the real-time reporter of the protein interaction(s) with the usNT. We explain how to make and calibrate the usNT template to achieve subnanometer precision in the geometrical assessment of the molecular footprints on the nanotube membrane. We next demonstrate how membrane deformations driven by purified proteins implicated in cellular membrane remodeling can be analyzed at a single-molecule level. The preparation of one usNT takes ~1 h, and the shortest procedure yielding the basic geometrical parameters of a small protein complex takes 10 h.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Nanotecnología/métodos , Membrana Celular/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Nanotubos/química
10.
Lab Chip ; 20(15): 2748-2755, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32602490

RESUMEN

Lipid membrane nanotubes (NTs) are a widespread template for in vitro studies of cellular processes happening at high membrane curvature. Traditionally NTs are manufactured one by one, using sophisticated membrane micromanipulations, while simplified methods for controlled batch production of NTs are in growing demand. Here we propose a lab-on-a-chip (LOC) approach to the simultaneous formation of multiple NTs with length and radius controlled by the chip design. The NTs form upon rolling silica microbeads covered by lipid lamellas over the pillars of a polymer micropillar array. The array's design and surface chemistry set the geometry of the resulting free-standing NTs. The integration of the array inside a microfluidic chamber further enables fast and turbulence-free addition of components, such as proteins, to multiple preformed NTs. This LOC approach to NT production is compatible with the use of high power objectives of a fluorescence microscope, making real-time quantification of the different modes of the protein activity in a single experiment possible.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Nanotubos , Lípidos , Análisis de Secuencia por Matrices de Oligonucleótidos
11.
Sci Rep ; 9(1): 7255, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31076583

RESUMEN

In vitro reconstitution and microscopic visualization of membrane processes is an indispensable source of information about a cellular function. Here we describe a conceptionally novel free-standing membrane template that facilitates such quantitative reconstitution of membrane remodelling at different scales. The Giant Suspended Bilayers (GSBs) spontaneously swell from lipid lamella reservoir deposited on microspheres. GSBs attached to the reservoir can be prepared from virtually any lipid composition following a fast procedure. Giant unilamellar vesicles can be further obtained by GSB detachment from the microspheres. The reservoir stabilizes GSB during deformations, mechanical micromanipulations, and fluorescence microscopy observations, while GSB-reservoir boundary enables the exchange of small solutes with GSB interior. These unique properties allow studying macro- and nano-scale membrane deformations, adding membrane-active compounds to both sides of GSB membrane and applying patch-clamp based approaches, thus making GSB a versatile tool for reconstitution and quantification of cellular membrane trafficking events.


Asunto(s)
Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Transporte Biológico/fisiología , Constricción , Microscopía Fluorescente/métodos , Liposomas Unilamelares/metabolismo
12.
Nat Commun ; 10(1): 5327, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757972

RESUMEN

The endoplasmic reticulum (ER) is a continuous cell-wide membrane network. Network formation has been associated with proteins producing membrane curvature and fusion, such as reticulons and atlastin. Regulated network fragmentation, occurring in different physiological contexts, is less understood. Here we find that the ER has an embedded fragmentation mechanism based upon the ability of reticulon to produce fission of elongating network branches. In Drosophila, Rtnl1-facilitated fission is counterbalanced by atlastin-driven fusion, with the prevalence of Rtnl1 leading to ER fragmentation. Ectopic expression of Drosophila reticulon in COS-7 cells reveals individual fission events in dynamic ER tubules. Consistently, in vitro analyses show that reticulon produces velocity-dependent constriction of lipid nanotubes leading to stochastic fission via a hemifission mechanism. Fission occurs at elongation rates and pulling force ranges intrinsic to the ER, thus suggesting a principle whereby the dynamic balance between fusion and fission controlling organelle morphology depends on membrane motility.


Asunto(s)
Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Animales , Células COS , Membrana Celular , Chlorocebus aethiops , Drosophila , Proteínas de Drosophila/genética , GTP Fosfohidrolasas/genética , Fusión de Membrana , Nanotubos , Membrana Nuclear
13.
Sci Rep ; 7(1): 15614, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142222

RESUMEN

Specific protein-lipid interactions lead to a gradual recruitment of AuTophaGy-related (ATG) proteins to the nascent membrane during autophagosome (AP) formation. ATG3, a key protein in the movement of LC3 towards the isolation membrane, has been proposed to facilitate LC3/GABARAP lipidation in highly curved membranes. In this work we have performed a biophysical study of human ATG3 interaction with membranes containing phosphatidylethanolamine, phosphatidylcholine and anionic phospholipids. We have found that ATG3 interacts more strongly with negatively-charged phospholipid vesicles or nanotubes than with electrically neutral model membranes, cone-shaped anionic phospholipids (cardiolipin and phosphatidic acid) being particularly active in promoting binding. Moreover, an increase in membrane curvature facilitates ATG3 recruitment to membranes although addition of anionic lipid molecules makes the curvature factor relatively less important. The predicted N-terminus amphipathic α-helix of ATG3 would be responsible for membrane curvature detection, the positive residues Lys 9 and 11 being essential in the recognition of phospholipid negative moieties. We have also observed membrane aggregation induced by ATG3 in vitro, which could point to a more complex function of this protein in AP biogenesis. Moreover, in vitro GABARAP lipidation assays suggest that ATG3-membrane interaction could facilitate the lipidation of ATG8 homologues.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Relacionadas con la Autofagia/genética , Membrana Dobles de Lípidos/química , Lípidos/química , Proteínas Asociadas a Microtúbulos/genética , Enzimas Ubiquitina-Conjugadoras/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Reguladoras de la Apoptosis , Autofagosomas/química , Autofagia/genética , Proteínas Relacionadas con la Autofagia/química , Fenómenos Biofísicos/genética , Cardiolipinas/química , Cardiolipinas/genética , Membrana Celular/química , Membrana Celular/genética , Humanos , Lípidos/genética , Proteínas Asociadas a Microtúbulos/química , Unión Proteica , Enzimas Ubiquitina-Conjugadoras/química
14.
Int J Biol Macromol ; 39(4-5): 273-9, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16712922

RESUMEN

The kinetics of the structural changes affecting cardosin A, a plant aspartic proteinase (AP) from Cynara cardunculus L., in the presence of a mixture of acetonitrile (AN) in water (W) was studied. Incubation of cardosin A with 10% (v/v) AN resulted in a gradual increase in protein helicity, accompanied by changes in the tertiary structure, seen by changes in the intrinsic fluorescence of tryptophan. Differential scanning calorimetry (DSC) revealed that the temperature of denaturation of cardosin A decreased upon the addition of AN. With longer incubation times, the small chain of cardosin A denatured completely, consequent exposure of the single tryptophan residue accounting well for the observed spectral shift intrinsic fluorescence of the protein. Enzymatic activity assays demonstrated that the kinetically determined unfolding of the small chain of cardosin A does not result in loss of the activity of this enzyme.


Asunto(s)
Acetonitrilos/farmacología , Ácido Aspártico Endopeptidasas/química , Cynara/enzimología , Proteínas de Plantas/química , Ácido Aspártico Endopeptidasas/metabolismo , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Estabilidad de Enzimas/efectos de los fármacos , Cinética , Proteínas de Plantas/metabolismo , Conformación Proteica/efectos de los fármacos , Desnaturalización Proteica/efectos de los fármacos , Espectrometría de Fluorescencia , Termodinámica , Triptófano/química
15.
Chem Phys Lipids ; 185: 129-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25062896

RESUMEN

Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/química , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Termodinámica
16.
Science ; 339(6126): 1433-6, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23520112

RESUMEN

Biological membrane fission requires protein-driven stress. The guanosine triphosphatase (GTPase) dynamin builds up membrane stress by polymerizing into a helical collar that constricts the neck of budding vesicles. How this curvature stress mediates nonleaky membrane remodeling is actively debated. Using lipid nanotubes as substrates to directly measure geometric intermediates of the fission pathway, we found that GTP hydrolysis limits dynamin polymerization into short, metastable collars that are optimal for fission. Collars as short as two rungs translated radial constriction to reversible hemifission via membrane wedging of the pleckstrin homology domains (PHDs) of dynamin. Modeling revealed that tilting of the PHDs to conform with membrane deformations creates the low-energy pathway for hemifission. This local coordination of dynamin and lipids suggests how membranes can be remodeled in cells.


Asunto(s)
Dinamina I/química , Dinamina I/metabolismo , Membrana Dobles de Lípidos/metabolismo , Biocatálisis , Guanosina Trifosfato/metabolismo , Hidrólisis , Membrana Dobles de Lípidos/química , Modelos Biológicos , Nanotubos , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Termodinámica
17.
Cold Spring Harb Perspect Biol ; 3(11): a004747, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21646378

RESUMEN

Morphological plasticity of biological membrane is critical for cellular life, as cells need to quickly rearrange their membranes. Yet, these rearrangements are constrained in two ways. First, membrane transformations may not lead to undesirable mixing of, or leakage from, the participating cellular compartments. Second, membrane systems should be metastable at large length scales, ensuring the correct function of the particular organelle and its turnover during cellular division. Lipids, through their ability to exist with many shapes (polymorphism), provide an adequate construction material for cellular membranes. They can self-assemble into shells that are very flexible, albeit hardly stretchable, which allows for their far-reaching morphological and topological behaviors. In this article, we will discuss the importance of lipid polymorphisms in the shaping of membranes and its role in controlling cellular membrane morphology.


Asunto(s)
Membrana Celular/ultraestructura , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/fisiología , Forma de la Célula , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo
18.
Methods Enzymol ; 464: 55-75, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19903550

RESUMEN

Enveloped virus particles select their lipid-protein components and egress by budding from the host cell membranes. The matrix protein of many enveloped viruses has been proposed as a crucial element for viral budding; however, molecular mechanisms behind membrane remodeling by the matrix protein are yet to be unraveled. Here, we describe a set of in vitro functional reconstitution assays that allow quantitative evaluation of both, membrane binding and creation of membrane curvature by the matrix protein isolated from Newcastle Disease Virus. Individual budding events orchestrated by the matrix protein can be resolved in real time. The assays may be applied for direct reconstitution of the on-membrane action of cellular proteins involved in membrane curvature induction upon binding in vivo.


Asunto(s)
Bioensayo/métodos , Liposomas Unilamelares/metabolismo , Proteínas de la Matriz Viral/metabolismo , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Virus de la Enfermedad de Newcastle/química , Virus de la Enfermedad de Newcastle/metabolismo , Virus de la Enfermedad de Newcastle/fisiología , Unión Proteica , Liposomas Unilamelares/química , Proteínas de la Matriz Viral/análisis , Proteínas de la Matriz Viral/química , Replicación Viral
19.
Curr Biol ; 19(17): R772-80, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19906579

RESUMEN

Cellular membrane systems delimit and organize the intracellular space. Most of the morphological rearrangements in cells involve the coordinated remodeling of the lipid bilayer, the core of the membranes. This process is generally thought to be initiated and coordinated by specialized protein machineries. Nevertheless, it has become increasingly evident that the most essential part of the geometric information and energy required for membrane remodeling is supplied via the cooperative and synergistic action of proteins and lipids, as cellular shapes are constructed using the intrinsic dynamics, plasticity and self-organizing capabilities provided by the lipid bilayer. Here, we analyze the essential role of proteo-lipid membrane domains in conducting and coordinating morphological remodeling in cells.


Asunto(s)
Membrana Celular/fisiología , Membrana Celular/ultraestructura , Membrana Celular/metabolismo , Estructuras de la Membrana Celular/fisiología , Estructuras de la Membrana Celular/ultraestructura , Forma de la Célula , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología
20.
J Cell Biol ; 179(4): 627-33, 2007 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-18025300

RESUMEN

The shape of enveloped viruses depends critically on an internal protein matrix, yet it remains unclear how the matrix proteins control the geometry of the envelope membrane. We found that matrix proteins purified from Newcastle disease virus adsorb on a phospholipid bilayer and condense into fluidlike domains that cause membrane deformation and budding of spherical vesicles, as seen by fluorescent and electron microscopy. Measurements of the electrical admittance of the membrane resolved the gradual growth and rapid closure of a bud followed by its separation to form a free vesicle. The vesicle size distribution, confined by intrinsic curvature of budding domains, but broadened by their merger, matched the virus size distribution. Thus, matrix proteins implement domain-driven mechanism of budding, which suffices to control the shape of these proteolipid vesicles.


Asunto(s)
Glicoproteínas/metabolismo , Liposomas Unilamelares/metabolismo , Proteínas de la Matriz Viral/biosíntesis , Colesterol/química , Etanolaminas/química , Colorantes Fluorescentes , Glicoproteínas/química , Glicoproteínas/ultraestructura , Membrana Dobles de Lípidos/química , Microscopía Electrónica , Virus de la Enfermedad de Newcastle/química , Virus de la Enfermedad de Newcastle/fisiología , Técnicas de Placa-Clamp , Fosfolípidos/química , Fosfolípidos/metabolismo , Fosforilcolina/química , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia , Temperatura , Termodinámica , Proteínas del Envoltorio Viral/metabolismo , Proteínas de la Matriz Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA