Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(6): 1891-1900, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38150559

RESUMEN

Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are highly promising as field-effect transistor (FET) channels in the atomic-scale limit. However, accomplishing this superiority in scaled-up FETs remains challenging due to their van der Waals (vdW) bonding nature with respect to conventional metal electrodes. Herein, we report a scalable approach to fabricate centimeter-scale all-2D FET arrays of platinum diselenide (PtSe2) with in-plane platinum ditelluride (PtTe2) edge contacts, mitigating the aforementioned challenges. We realized a reversible transition between semiconducting PtSe2 and metallic PtTe2 via a low-temperature anion exchange reaction compatible with the back-end-of-line (BEOL) processes. All-2D PtSe2 FETs seamlessly edge-contacted with transited metallic PtTe2 exhibited significant performance improvements compared to those with surface-contacted gold electrodes, e.g., an increase of carrier mobility and on/off ratio by over an order of magnitude, achieving a maximum hole mobility of ∼50.30 cm2 V-1 s-1 at room temperature. This study opens up new opportunities toward atomically thin 2D-TMD-based circuitries with extraordinary functionalities.

2.
ACS Appl Mater Interfaces ; 14(17): 20268-20279, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35442029

RESUMEN

Various near-atom-thickness two-dimensional (2D) van der Waals (vdW) crystals with unparalleled electromechanical properties have been explored for transformative devices. Currently, the availability of 2D vdW crystals is rather limited in nature as they are only obtained from certain mother crystals with intrinsically possessed layered crystallinity and anisotropic molecular bonding. Recent efforts to transform conventionally non-vdW three-dimensional (3D) crystals into ultrathin 2D-like structures have seen rapid developments to explore device building blocks of unique form factors. Herein, we explore a "peel-and-stick" approach, where a nonlayered 3D platinum sulfide (PtS) crystal, traditionally known as a cooperate mineral material, is transformed into a freestanding 2D-like membrane for electromechanical applications. The ultrathin (∼10 nm) 3D PtS films grown on large-area (>cm2) silicon dioxide/silicon (SiO2/Si) wafers are precisely "peeled" inside water retaining desired geometries via a capillary-force-driven surface wettability control. Subsequently, they are "sticked" on strain-engineered patterned substrates presenting prominent semiconducting properties, i.e., p-type transport with an optical band gap of ∼1.24 eV. A variety of mechanically deformable strain-invariant electronic devices have been demonstrated by this peel-and-stick method, including biaxially stretchable photodetectors and respiratory sensing face masks. This study offers new opportunities of 2D-like nonlayered semiconducting crystals for emerging mechanically reconfigurable and stretchable device technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA