Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proteomics ; 24(11): e2300058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470197

RESUMEN

Previously, we reported that human primary (SW480) and metastatic (SW620) colorectal (CRC) cells release three classes of membrane-encapsulated extracellular vesicles (EVs); midbody remnants (MBRs), exosomes (Exos), and microparticles (MPs). We reported that MBRs were molecularly distinct at the protein level. To gain further biochemical insights into MBRs, Exos, and MPs and their emerging role in CRC, we performed, and report here, for the first time, a comprehensive transcriptome and long noncoding RNA sequencing analysis and fusion gene identification of these three EV classes using the next-generation RNA sequencing technique. Differential transcript expression analysis revealed that MBRs have a distinct transcriptomic profile compared to Exos and MPs with a high enrichment of mitochondrial transcripts lncRNA/pseudogene transcripts that are predicted to bind to ribonucleoprotein complexes, spliceosome, and RNA/stress granule proteins. A salient finding from this study is a high enrichment of several fusion genes in MBRs compared to Exos, MPs, and cell lysates from their parental cells such as MSH2 (gene encoded DNA mismatch repair protein MSH2). This suggests potential EV-liquid biopsy targets for cancer detection. Importantly, the expression of cancer progression-related transcripts found in EV classes derived from SW480 (EGFR) and SW620 (MET and MACCA1) cell lines reflects their parental cell types. Our study is the report of RNA and fusion gene compositions within MBRs (including Exos and MPs) that could have an impact on EV functionality in cancer progression and detection using EV-based RNA/ fusion gene candidates for cancer biomarkers.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Perfilación de la Expresión Génica , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Exosomas/genética , Exosomas/metabolismo , Perfilación de la Expresión Génica/métodos , Línea Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Transcriptoma/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
PLoS One ; 19(3): e0297387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38470874

RESUMEN

Head and neck cancer treatment often consists of surgical resection of the tumor followed by ionizing radiation (IR), which can damage surrounding tissues and cause adverse side effects. The underlying mechanisms of radiation-induced salivary gland dysfunction are not fully understood, and treatment options are scarce and ineffective. The wound healing process is a necessary response to tissue injury, and broadly consists of inflammatory, proliferative, and redifferentiation phases with immune cells playing key roles in all three phases. In this study, select immune cells were phenotyped and quantified, and certain cytokine and chemokine concentrations were measured in mouse parotid glands after IR. Further, we used a model where glandular function is restored to assess the immune phenotype in a regenerative response. These data suggest that irradiated parotid tissue does not progress through a typical inflammatory response observed in wounds that heal. Specifically, total immune cells (CD45+) decrease at days 2 and 5 following IR, macrophages (F4/80+CD11b+) decrease at day 2 and 5 and increase at day 30, while neutrophils (Ly6G+CD11b+) significantly increase at day 30 following IR. Additionally, radiation treatment reduces CD3- cells at all time points, significantly increases CD3+/CD4+CD8+ double positive cells, and significantly reduces CD3+/CD4-CD8- double negative cells at day 30 after IR. Previous data indicate that post-IR treatment with IGF-1 restores salivary gland function at day 30, and IGF-1 injections attenuate the increase in macrophages, neutrophils, and CD4+CD8+ T cells observed at day 30 following IR. Taken together, these data indicate that parotid salivary tissue exhibits a dysregulated immune response following radiation treatment which may contribute to chronic loss of function phenotype in head and neck cancer survivors.


Asunto(s)
Neoplasias de Cabeza y Cuello , Glándula Parótida , Ratones , Animales , Glándula Parótida/efectos de la radiación , Factor I del Crecimiento Similar a la Insulina , Glándulas Salivales , Inmunidad
4.
Res Sq ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38313301

RESUMEN

Purpose: The purpose of this study was to analyze potential differences in antitumor efficacy and pharmacokinetics between intravenous (IV) bendamustine (BEN) and a novel orally administered bendamustine agent (PO) that is utilizing the beneficial properties of superstaturated solid dispersions formulated in nanoparticles. Methods: Pharmacokinetics of IV versus PO BEN were determined by analysis of plasma samples collected from NSG mice treated with either IV or PO BEN. Plasma samples were analyzed using liquid chromatography-mass spectrometry (LC/MS/MS) following a liquid-liquid extraction to determine peak BEN concentration (Cmax), area under the concentration-time curve (AUC) and the half-life (t1/2) in-vivo. in-vitro cytotoxicity of BEN against human non-Hodgkin's Burkitt's Lymphoma (Raji), multiple myeloma (MM.1s), and B-cell acute lymphoblastic leukemia (RS4;11) cell lines was determined over time using MTS assays. Luciferase-tagged versions of the aforementioned cell lines were used to determine in-vivo BEN cytotoxicity of IV versus PO BEN at two different doses. Results: Bendamustine at a high dose in-vitro causes cell death. There was no significant difference in antitumor efficacy between IV and novel PO BEN at a physiologically relevant concentration in all three xenograft models. In-vivo pharmacokinetics showed the oral bioavailability of BEN in mice to be 51.4%. Conclusions: The novel oral BEN agent tested exhibits good oral bioavailability and systemic exposure for in-vivo antitumor efficacy comparable to IV BEN. An oral BEN formulation offers exciting clinical potential as an additional method of administration for bendamustine and warrants further evaluation in clinical studies.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38878208

RESUMEN

PURPOSE: The purpose of this study was to analyze potential differences in antitumor efficacy and pharmacokinetics between intravenous (IV) bendamustine and a novel orally administered (PO) bendamustine agent that is utilizing the beneficial properties of superstaturated solid dispersions formulated in nanoparticles. METHODS: Pharmacokinetics of IV versus PO bendamustine were determined by analysis of plasma samples collected from NSG mice treated with either IV or PO bendamustine. Plasma samples were analyzed using liquid chromatography-mass spectrometry following a liquid-liquid extraction to determine peak bendamustine concentration, area under the concentration-time curve, and the half-life in-vivo. In-vitro cytotoxicity of bendamustine against human non-Hodgkin Burkitt's Lymphoma (Raji), multiple myeloma (MM.1s), and B-cell acute lymphoblastic leukemia (RS4;11) cell lines was determined over time using MTS assays. Luciferase-tagged versions of the aforementioned cell lines were used to determine in-vivo bendamustine cytotoxicity of IV versus PO bendamustine at two different doses. RESULTS: Bendamustine at a high dose in-vitro causes cell death. There was no significant difference in antitumor activity between IV and novel PO bendamustine at a physiologically relevant concentration in all three xenograft models. In-vivo pharmacokinetics showed the oral bioavailability of bendamustine in mice to be 51.4%. CONCLUSIONS: The novel oral bendamustine agent tested exhibits good oral bioavailability and systemic exposure for in-vivo antitumor efficacy comparable to IV bendamustine. An oral bendamustine formulation offers exciting clinical potential as an additional method of administration for bendamustine and warrants further evaluation in clinical studies.

6.
Cancer Res Commun ; 4(5): 1253-1267, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38592213

RESUMEN

Exercise mobilizes cytotoxic lymphocytes to blood which may allow superior cell products to be harvested and manufactured for cancer therapy. Gamma-Delta (γδ) T-cells have shown promise for treating solid tumors, but there is a need to increase their potency against hematologic malignancies. Here, we show that human γδ T-cells mobilized to blood in response to just 20 minutes of graded exercise have surface phenotypes and transcriptomic profiles associated with cytotoxicity, adhesion, migration, and cytokine signaling. Following 14 days ex vivo expansion with zoledronic acid and IL2, exercise mobilized γδ T-cells had surface phenotypes and transcriptomic profiles associated with enhanced effector functions and demonstrated superior cytotoxic activity against multiple hematologic tumors in vitro and in vivo in leukemia-bearing xenogeneic mice. Infusing humans with the ß1+ß2-agonist isoproterenol and administering ß1 or ß1+ß2 antagonists prior to exercise revealed these effects to be ß2-adrenergic receptor (AR) dependent. Antibody blocking of DNAM-1 on expanded γδ T-cells, as well as the DNAM-1 ligands PVR and Nectin-2 on leukemic targets, abolished the enhanced antileukemic effects of exercise. These findings provide a mechanistic link between exercise, ß2-AR activation, and the manufacture of superior γδ T-cell products for adoptive cell therapy against hematologic malignancies. SIGNIFICANCE: Exercise mobilizes effector γδ T-cells to blood via ß2-adrenergic signaling which allows for generation of a potent expanded γδ T-cell product that is highly cytotoxic against hematologic malignancies.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T , Ejercicio Físico , Receptores Adrenérgicos beta 2 , Regulación hacia Arriba , Animales , Humanos , Masculino , Ratones , Antígenos de Diferenciación de Linfocitos T/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Ejercicio Físico/fisiología , Leucemia/inmunología , Leucemia/terapia , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA