Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Cell ; 35(4): 502-10, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19716793

RESUMEN

Bacterial translation elongation factor G (EF-G) catalyzes translocation during peptide elongation and mediates ribosomal disassembly during ribosome recycling in concert with the ribosomal recycling factor (RRF). Two homologs of EF-G have been identified in mitochondria from yeast to man, EF-G1mt and EF-G2mt. Here, we demonstrate that the dual function of bacterial EF-G is divided between EF-G1mt and EF-G2mt in human mitochondria (RRFmt). EF-G1mt specifically catalyzes translocation, whereas EF-G2mt mediates ribosome recycling with human mitochondrial RRF but lacks translocation activity. Domain swapping experiments suggest that the functional specificity for EF-G2mt resides in domains III and IV. Furthermore, GTP hydrolysis by EF-G2mt is not necessary for ribosomal splitting, in contrast to the bacterial-recycling mode. Because EF-G2mt represents a class of translational GTPase that is involved in ribosome recycling, we propose to rename this factor mitochondrial ribosome recycling factor 2 (RRF2mt).


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Extensión de la Cadena Peptídica de Translación , Factor G de Elongación Peptídica/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factor G de Elongación Peptídica/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Porcinos
2.
PLoS Genet ; 10(9): e1004616, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25233460

RESUMEN

Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subunit. The factor has been suggested to rescue stalled ribosomes in a codon-independent manner. The mechanism of action of this factor was obscure and is addressed here. Using a homologous mitochondria system of purified components, we demonstrate that the integrated ICT1 has no rescue activity. Rather, purified ICT1 binds stoichiometrically to mitochondrial ribosomes in addition to the integrated copy and functions as a general rescue factor, i.e. it releases the polypeptide from the peptidyl tRNA from ribosomes stalled at the end or in the middle of an mRNA or even from non-programmed ribosomes. The data suggest that the unusual termination at a sense codon (AGA/G) of the oxidative-phosphorylation enzymes CO1 and ND6 is also performed by ICT1 challenging a previous model, according to which RF1Lmt/mtRF1a is responsible for the translation termination at non-standard stop codons. We also demonstrate by mutational analyses that the unique insertion sequence present in the N-terminal domain of ICT1 is essential for peptide release rather than for ribosome binding. The function of RF1mt, another member of the class1 RFs in mammalian mitochondria, was also examined and is discussed.


Asunto(s)
Codón de Terminación , Mitocondrias/genética , Mitocondrias/metabolismo , Terminación de la Cadena Péptídica Traduccional , Proteínas/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Codón , Humanos , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos , Unión Proteica , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas , Alineación de Secuencia , Porcinos
3.
Nucleic Acids Res ; 41(6): 3713-22, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23396448

RESUMEN

The bacterial homologues of ObgH1 and Mtg1, ObgE and RbgA, respectively, have been suggested to be involved in the assembly of large ribosomal subunits. We sought to elucidate the functions of ObgH1 and Mtg1 in ribosome biogenesis in human mitochondria. ObgH1 and Mtg1 are localized in mitochondria in association with the inner membrane, and are exposed on the matrix side. Mtg1 and ObgH1 specifically associate with the large subunit of the mitochondrial ribosome in GTP-dependent manner. The large ribosomal subunit stimulated the GTPase activity of Mtg1, whereas only the intrinsic GTPase activity was detectable with ObgH1. The knockdown of Mtg1 decreased the overall mitochondrial translation activity, and caused defects in the formation of respiratory complexes. On the other hand, the depletion of ObgH1 led to the specific activation of the translation of subunits of Complex V, and disrupted its proper formation. Our results suggested that Mtg1 and ObgH1 function with the large subunit of the mitochondrial ribosome, and are also involved in both the translation and assembly of respiratory complexes. The fine coordination of ribosome assembly, translation and respiratory complex formation in mammalian mitochondria is affirmed.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Transporte de Electrón , GTP Fosfohidrolasas/fisiología , Células HeLa , Humanos , Proteínas Mitocondriales/fisiología , Proteínas de Unión al GTP Monoméricas/fisiología
4.
Nucleic Acids Res ; 41(1): 264-76, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23087377

RESUMEN

Ribosomes, after one round of translation, must be recycled so that the next round of translation can occur. Complete disassembly of post-termination ribosomal complex (PoTC) in yeast for the recycling consists of three reactions: release of tRNA, release of mRNA and splitting of ribosomes, catalyzed by eukaryotic elongation factor 3 (eEF3) and ATP. Here, we show that translocation inhibitors cycloheximide and lactimidomycin inhibited all three reactions. Cycloheximide is a non-competitive inhibitor of both eEF3 and ATP. The inhibition was observed regardless of the way PoTC was prepared with either release factors or puromycin. Paromomycin not only inhibited all three reactions but also re-associated yeast ribosomal subunits. On the other hand, sordarin or fusidic acid, when applied together with eEF2/GTP, specifically inhibited ribosome splitting without blocking of tRNA/mRNA release. From these inhibitor studies, we propose that, in accordance with eEF3's known function in elongation, the release of tRNA via exit site occurs first, then mRNA is released, followed by the splitting of ribosomes during the disassembly of post-termination complexes catalyzed by eEF3 and ATP.


Asunto(s)
Proteínas Fúngicas/metabolismo , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos , Factores de Elongación de Péptidos/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Saccharomyces cerevisiae/genética , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Cicloheximida/farmacología , Ácido Fusídico/farmacología , Indenos/farmacología , Macrólidos/farmacología , Paromomicina/farmacología , Factores de Elongación de Péptidos/antagonistas & inhibidores , Factores de Terminación de Péptidos/metabolismo , Piperidonas/farmacología , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos
5.
PLoS Genet ; 8(7): e1002815, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22829778

RESUMEN

The YbeB (DUF143) family of uncharacterized proteins is encoded by almost all bacterial and eukaryotic genomes but not archaea. While they have been shown to be associated with ribosomes, their molecular function remains unclear. Here we show that YbeB is a ribosomal silencing factor (RsfA) in the stationary growth phase and during the transition from rich to poor media. A knock-out of the rsfA gene shows two strong phenotypes: (i) the viability of the mutant cells are sharply impaired during stationary phase (as shown by viability competition assays), and (ii) during transition from rich to poor media the mutant cells adapt slowly and show a growth block of more than 10 hours (as shown by growth competition assays). RsfA silences translation by binding to the L14 protein of the large ribosomal subunit and, as a consequence, impairs subunit joining (as shown by molecular modeling, reporter gene analysis, in vitro translation assays, and sucrose gradient analysis). This particular interaction is conserved in all species tested, including Escherichia coli, Treponema pallidum, Streptococcus pneumoniae, Synechocystis PCC 6803, as well as human mitochondria and maize chloroplasts (as demonstrated by yeast two-hybrid tests, pull-downs, and mutagenesis). RsfA is unrelated to the eukaryotic ribosomal anti-association/60S-assembly factor eIF6, which also binds to L14, and is the first such factor in bacteria and organelles. RsfA helps cells to adapt to slow-growth/stationary phase conditions by down-regulating protein synthesis, one of the most energy-consuming processes in both bacterial and eukaryotic cells.


Asunto(s)
Bacterias , Eucariontes , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes/química , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Secuencia Conservada , Eucariontes/genética , Eucariontes/crecimiento & desarrollo , Eucariontes/metabolismo , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Biosíntesis de Proteínas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Biol Chem ; 286(41): 35494-35498, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21873425

RESUMEN

Variations in the genetic code are found frequently in mitochondrial decoding systems. Four non-universal genetic codes are employed in ascidian mitochondria: AUA for Met, UGA for Trp, and AGA/AGG(AGR) for Gly. To clarify the decoding mechanism for the non-universal genetic codes, we isolated and analyzed mitochondrial tRNAs for Trp, Met, and Gly from an ascidian, Halocynthia roretzi. Mass spectrometric analysis identified 5-taurinomethyluridine (τm(5)U) at the anticodon wobble positions of tRNA(Met)(AUR), tRNA(Trp)(UGR), and tRNA(Gly)(AGR), suggesting that τm(5)U plays a critical role in the accurate deciphering of all four non-universal codes by preventing the misreading of pyrimidine-ending near-cognate codons (NNY) in their respective family boxes. Acquisition of the wobble modification appears to be a prerequisite for the genetic code alteration.


Asunto(s)
Anticodón/metabolismo , Mitocondrias/metabolismo , ARN/metabolismo , Taurina/metabolismo , Uridina/metabolismo , Urocordados/metabolismo , Animales , Anticodón/genética , Mitocondrias/genética , ARN/genética , ARN Mitocondrial , Taurina/genética , Uridina/genética , Urocordados/genética
8.
Biochim Biophys Acta ; 1802(7-8): 692-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20435138

RESUMEN

Mammalian mitochondria synthesize a set of thirteen proteins that are essential for energy generation via oxidative phosphorylation. The genes for all of the factors required for synthesis of the mitochondrially encoded proteins are located in the nuclear genome. A number of disease-causing mutations have been identified in these genes. In this manuscript, we have elucidated the mechanisms of translational failure for two disease states characterized by lethal mutations in mitochondrial elongation factor Ts (EF-Ts(mt)) and elongation factor Tu (EF-Tu(mt)). EF-Tu(mt) delivers the aminoacyl-tRNA (aa-tRNA) to the ribosome during the elongation phase of protein synthesis. EF-Ts(mt) regenerates EF-Tu(mt):GTP from EF-Tu(mt):GDP. A mutation of EF-Ts(mt) (R325W) leads to a two-fold reduction in its ability to stimulate the activity of EF-Tu(mt) in poly(U)-directed polypeptide chain elongation. This loss of activity is caused by a significant reduction in the ability of EF-Ts(mt) R325W to bind EF-Tu(mt), leading to a defect in nucleotide exchange. A mutation of Arg336 to Gln in EF-Tu(mt) causes infantile encephalopathy caused by defects in mitochondrial translation. EF-Tu(mt) R336Q is as active as the wild-type protein in polymerization using Escherichia coli 70S ribosomes and E. coli [(14)C]Phe-tRNA but is inactive in polymerization with mitochondrial [(14)C]Phe-tRNA and mitochondrial 55S ribosomes. The R336Q mutation causes a two-fold decrease in ternary complex formation with E. coli aa-tRNA but completely inactivates EF-Tu(mt) for binding to mitochondrial aa-tRNA. Clearly the R336Q mutation in EF-Tu(mt) has a far more drastic effect on its interaction with mitochondrial aa-tRNAs than bacterial aa-tRNAs.


Asunto(s)
Genes Letales , Mitocondrias/metabolismo , Mutación , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/fisiología , Biosíntesis de Proteínas/genética , Sustitución de Aminoácidos/fisiología , Animales , Bovinos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Genes Letales/fisiología , Mitocondrias/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiología , Mutación/fisiología , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/fisiología , Factores de Elongación de Péptidos/análisis , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , ARN de Transferencia Aminoácido-Específico/metabolismo , Relación Estructura-Actividad
9.
Mol Microbiol ; 75(6): 1445-54, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20132446

RESUMEN

Translation elongation factor G (EF-G) in bacteria plays two distinct roles in different phases of the translation system. EF-G catalyses the translocation of tRNAs on the ribosome in the elongation step, as well as the dissociation of the post-termination state ribosome into two subunits in the recycling step. In contrast to this conventional view, it has very recently been demonstrated that the dual functions of bacterial EF-G are distributed over two different EF-G paralogues in human mitochondria. In the present study, we show that the same division of roles of EF-G is also found in bacteria. Two EF-G paralogues are found in the spirochaete Borrelia burgdorferi, EF-G1 and EF-G2. We demonstrate that EF-G1 is a translocase, while EF-G2 is an exclusive recycling factor. We further demonstrate that B. burgdorferi EF-G2 does not require GTP hydrolysis for ribosome disassembly, provided that translation initiation factor 3 (IF-3) is present in the reaction. These results indicate that two B. burgdorferi EF-G paralogues are close relatives to mitochondrial EF-G paralogues rather than the conventional bacterial EF-G, in both their phylogenetic and biochemical features.


Asunto(s)
Borrelia burgdorferi/enzimología , Borrelia burgdorferi/metabolismo , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Guanosina Trifosfato/metabolismo , Humanos , Datos de Secuencia Molecular , Filogenia , Factor 3 Procariótico de Iniciación/metabolismo , Proteínas Ribosómicas/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
10.
Nature ; 430(7000): 700-4, 2004 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-15295603

RESUMEN

The 3'-terminal CCA nucleotide sequence (positions 74-76) of transfer RNA is essential for amino acid attachment and interaction with the ribosome during protein synthesis. The CCA sequence is synthesized de novo and/or repaired by a template-independent RNA polymerase, 'CCA-adding enzyme', using CTP and ATP as substrates. Despite structural and biochemical studies, the mechanism by which the CCA-adding enzyme synthesizes the defined sequence without a nucleic acid template remains elusive. Here we present the crystal structure of Aquifex aeolicus CCA-adding enzyme, bound to a primer tRNA lacking the terminal adenosine and an incoming ATP analogue, at 2.8 A resolution. The enzyme enfolds the acceptor T helix of the tRNA molecule. In the catalytic pocket, C75 is adjacent to ATP, and their base moieties are stacked. The complementary pocket for recognizing C74-C75 of tRNA forms a 'protein template' for the penultimate two nucleotides, mimicking the nucleotide template used by template-dependent polymerases. These results are supported by systematic analyses of mutants. Our structure represents the 'pre-insertion' stage of selecting the incoming nucleotide and provides the structural basis for the mechanism underlying template-independent RNA polymerization.


Asunto(s)
Bacterias/enzimología , Biopolímeros/biosíntesis , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/metabolismo , ARN/biosíntesis , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Bacterias/genética , Sitios de Unión , Biopolímeros/genética , Biopolímeros/metabolismo , Cristalización , Cristalografía por Rayos X , Citidina Trifosfato/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Geobacillus stearothermophilus/enzimología , Modelos Moleculares , Conformación Proteica , ARN/genética , ARN/metabolismo , Relación Estructura-Actividad , Moldes Genéticos
11.
Nucleic Acids Res ; 36(11): 3707-15, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18480124

RESUMEN

Although the knowledge accumulated on the transcriptional regulations of eukaryotes is significant, the knowledge on their translational regulations remains limited. Thus, we performed a comprehensive detection of terminal oligo-pyrimidine (TOP), which is one of the well-characterized cis-regulatory motifs for translational controls located immediately downstream of the transcriptional start sites of mRNAs. Utilizing our precise 5'-end information of the full-length cDNAs, we could screen 1645 candidate TOP genes by position specific matrix search. Among them, not only 75 out of 78 ribosomal protein genes but also eight previously identified non-ribosomal-protein TOP genes were included. We further experimentally validated the translational activities of 83 TOP candidate genes. Clear translational regulations exerted on the stimulation of 12-O-tetradecanoyl-1-phorbol-13-acetate for at least 41 of them was observed, indicating that there should be a few hundreds of human genes which are subjected to regulation at translation levels via TOPs. Our result suggests that TOP genes code not only formerly characterized ribosomal proteins and translation-related proteins but also a wider variety of proteins, such as lysosome-related proteins and metabolism-related proteins, playing pivotal roles in gene expression controls in the majority of cellular mRNAs.


Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN , Animales , Perfilación de la Expresión Génica , Genoma Humano , Células HL-60 , Humanos , Ratones , ARN Mensajero/química , Proteínas Ribosómicas/genética , Sitio de Iniciación de la Transcripción
12.
Nucleic Acids Res ; 36(20): 6386-95, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18838389

RESUMEN

Using full-length cDNA sequences, we compared alternative splicing (AS) in humans and mice. The alignment of the human and mouse genomes showed that 86% of 199 426 total exons in human AS variants were conserved in the mouse genome. Of the 20 392 total human AS variants, however, 59% consisted of all conserved exons. Comparing AS patterns between human and mouse transcripts revealed that only 431 transcripts from 189 loci were perfectly conserved AS variants. To exclude the possibility that the full-length human cDNAs used in the present study, especially those with retained introns, were cloning artefacts or prematurely spliced transcripts, we experimentally validated 34 such cases. Our results indicate that even retained-intron type transcripts are typically expressed in a highly controlled manner and interact with translating ribosomes. We found non-conserved AS exons to be predominantly outside the coding sequences (CDSs). This suggests that non-conserved exons in the CDSs of transcripts cause functional constraint. These findings should enhance our understanding of the relationship between AS and species specificity of human genes.


Asunto(s)
Empalme Alternativo , ADN Complementario/química , Evolución Molecular , Aminoacil-ARNt Sintetasas/genética , Animales , Secuencia de Bases , Secuencia Conservada , Interpretación Estadística de Datos , Exones , Genómica , Humanos , Intrones , Ratones , Fosfatidilinositol 3-Quinasas/genética , ARN Mensajero/química , Especificidad de la Especie
13.
Genes Cells ; 13(5): 429-38, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18429816

RESUMEN

While all essential mammalian mitochondrial factors involved in the initiation and elongation phases of translation have been cloned and well characterized, little is known about the factors involved in the termination process. In the present work, we report the functional analysis of human mitochondrial translation release factors (RF). Here, we show that HMRF1, which had been previously denoted as a human mitochondrial RF, was inactive in in vitro translation system, although it is a mitochondrial protein. Instead, we identified another human mitochondrial RF candidate, HMRF1L, and demonstrated that HMRF1L is indeed a mitochondrial protein that functions specifically as an RF for the decoding of mitochondrial UAA and UAG termination codons in vitro. The identification of the functional mitochondrial RF brings us much closer to a detailed understanding of the translational termination process in mammalian mitochondria as well as to the unraveling of the molecular mechanism of diseases caused by the dys-regulation of translational termination in human mitochondria.


Asunto(s)
Codón de Terminación , Mitocondrias/química , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , Sistema Libre de Células , Células HeLa , Humanos , Mitocondrias/metabolismo , Factores de Terminación de Péptidos , Biosíntesis de Proteínas
14.
Biochem Biophys Res Commun ; 373(1): 99-103, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18541145

RESUMEN

We have recently identified the human mitochondrial release factor, HMRF1L, which is responsible for decoding of UAA/UAG termination codons. Here, we identified human mitochondrial methyltransferase, HMPrmC, which methylates the glutamine residue in the GGQ tripeptide motif of HMRF1L. We demonstrate that HMPrmC is targeted to mitochondria and the glutamine residue in the GGQ motif of HMRF1L is methylated in vivo. HMPrmC depletion in HeLa cells leads to decreased mitochondrial translation activity in the presence of the translation fidelity antibiotic streptomycin in galactose containing medium. These results suggest that the methylation of HMRF1L by HMPrmC in human mitochondria is involved in the control of the translation termination process, probably by preventing the undesired suppression of termination codons and/or abortive termination events at sense codons under such conditions, as observed in prokaryotes and eukaryotes systems.


Asunto(s)
Glutamina/metabolismo , Metiltransferasas/metabolismo , Proteínas Mitocondriales/metabolismo , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Codón de Terminación/metabolismo , Células HeLa , Humanos , Metilación , Metiltransferasas/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Interferencia de ARN
15.
Mitochondrion ; 7(3): 195-203, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17161026

RESUMEN

We studied the transcriptional regulation of the human mitochondrial translation initiation factor 2 (IF2mt) gene. The minimal promoter region for the human IF2mt gene contains binding sites for Nuclear Respiratory Factor 2 (NRF-2), which is often involved in the transcription of mitochondrial-related genes. Electrophoresis mobility shift assay (EMSA) analyses indicated that NRF-2alpha/beta binds to the IF2mt promoter. Reporter assays, where HEK293T cells were co-transfected with an NRF-2alpha/beta-expressing vector and/or an IF2mt promoter reporter vector, revealed that NRF-2 trans-activates the IF2mt promoter. NRF-2 sites were also found in the promoters of several other mitochondrial translation factors, which suggests NRF-2 may play a key role in the regulation of mitochondrial protein synthesis.


Asunto(s)
Factor de Transcripción de la Proteína de Unión a GA/fisiología , Regulación de la Expresión Génica , Factor 2 Procariótico de Iniciación/metabolismo , Transcripción Genética , Línea Celular , Cartilla de ADN , Humanos , Riñón , Datos de Secuencia Molecular , Plásmidos , Factor 2 Procariótico de Iniciación/genética , Transfección
17.
J Biochem ; 158(2): 165-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25742739

RESUMEN

In Escherichia coli, elongation factor G (EF-G), a key protein in translational elongation, is particularly susceptible to oxidation. We demonstrated previously that EF-G is inactivated upon formation of an intramolecular disulphide bond. However, the details of the mechanism by which the oxidation of EF-G inhibits the function of EF-G on the ribosome remain to be elucidated. When we oxidized EF-G with hydrogen peroxide, neither the insertion of EF-G into the ribosome nor single-cycle translocation activity in vitro was affected. However, the GTPase activity and the dissociation of EF-G from the ribosome were suppressed when EF-G was oxidized. The synthesis of longer peptides was suppressed to a greater extent than that of a shorter peptide when EF-G was oxidized. Thus, the formation of the disulphide bond in EF-G might interfere with the hydrolysis of GTP that is coupled with dissociation of EF-G from the ribosome and might thereby retard the turnover of EF-G within the translational machinery. When we added thioredoxin to the suppressed translation system that included oxidized EF-G, translational activity was almost immediately restored. We propose that oxidation of EF-G might provide a regulatory mechanism for transient and reversible suppression of translation in E. coli under oxidative stress.


Asunto(s)
Escherichia coli/metabolismo , Extensión de la Cadena Peptídica de Translación , Factor G de Elongación Peptídica/metabolismo , Guanosina Trifosfato/metabolismo , Peróxido de Hidrógeno/farmacología , Hidrólisis/efectos de los fármacos , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Péptidos/metabolismo , Unión Proteica/efectos de los fármacos , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Tiorredoxinas/metabolismo
18.
J Mol Biol ; 425(18): 3536-48, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23856623

RESUMEN

Nuclear respiratory factor 2 (NRF-2) is a mammalian transcription factor composed of two distinct and unrelated proteins: NRF-2α, which binds to DNA through its Ets domain, and NRF-2ß, which contains the transcription activation domain. The activity of NRF-2 in neurons is regulated by nuclear localization; however, the mechanism by which NRF-2 is imported into the nucleus remains unknown. By using in vitro nuclear import assays and immuno-cytofluorescence, we dissect the nuclear import pathways of NRF-2. We show that both NRF-2α and NRF-2ß contain intrinsic nuclear localization signals (NLSs): the Ets domain within NRF-2α and the NLS within NRF-2ß (amino acids 311/321: EEPPAKRQCIE) that is recognized by importin-α:ß. When NRF-2α and NRF-2ß form a complex, the nuclear import of NRF-2αß becomes strictly dependent on the NLS within NRF-2ß. Therefore, the nuclear import mechanism of NRF-2 is unique among Ets factors. The NRF-2ß NLS contains only two lysine/arginine residues, unlike other known importin-α:ß-dependent NLSs. Using ELISA-based binding assays, we show that it is bound by importin-α in almost the same manner and with similar affinity to that of the classical monopartite NLSs, such as c-myc and SV40 T-antigen NLSs. However, the part of the tryptophan array of importin-α that is essential for the recognition of classical monopartite NLSs by generating apolar pockets for the P3 and the P5 lysine/arginine side chains is not required for the recognition of the NRF-2ß NLS. We conclude that the NRF-2ß NLS is an unusual but is, nevertheless, a bona fide monopartite-type NLS.


Asunto(s)
Núcleo Celular/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Señales de Localización Nuclear/fisiología , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos , Factor de Transcripción de la Proteína de Unión a GA/química , Factor de Transcripción de la Proteína de Unión a GA/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/genética , alfa Carioferinas/química , beta Carioferinas/química
19.
J Biol Chem ; 282(6): 4076-84, 2007 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-17130126

RESUMEN

The main function of the prokaryotic translation elongation factor Tu (EF-Tu) and its eukaryotic counterpart eEF1A is to deliver aminoacyl-tRNA to the A-site on the ribosome. In addition to this primary function, it has been reported that EF-Tu from various sources has chaperone activity. At present, little information is available about the chaperone activity of mitochondrial EF-Tu. In the present study, we have examined the chaperone function of mammalian mitochondrial EF-Tu (EF-Tumt). We demonstrate that recombinant EF-Tumt prevents thermal aggregation of proteins and enhances protein refolding in vitro and that this EF-Tumt chaperone activity proceeds in a GTP-independent manner. We also demonstrate that, under heat stress, the newly synthesized peptides from the mitochondrial ribosome specifically co-immunoprecipitate with EF-Tumt and are destabilized in EF-Tumt-overexpressing cells. We show that most of the EF-Tumt localizes on the mitochondrial inner membrane where most mitochondrial ribosomes are found. We discuss the possible role of EF-Tumt chaperone activity in protein quality control in mitochondria, with regard to the recently reported in vivo chaperone function of eEF1A.


Asunto(s)
Proteínas Mitocondriales/fisiología , Chaperonas Moleculares/fisiología , Factor Tu de Elongación Peptídica/fisiología , Biosíntesis de Proteínas , Animales , Bovinos , Línea Celular , Guanosina Trifosfato/fisiología , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Factor Tu de Elongación Peptídica/genética , Péptidos/genética , Péptidos/fisiología , Pliegue de Proteína , Proteínas Recombinantes/genética
20.
J Biol Chem ; 278(46): 45318-24, 2003 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-12952954

RESUMEN

Mitochondrial (mt) biogenesis depends on both the nuclear and mt genomes, and a coordination of these two genetic systems is necessary for proper cell functioning. Little is known about the regulatory mechanisms of mt translation or about the expression of mt translation factors. Here, we studied the expression of mt translation factors during 12-O-tetradecanoyl-1-phorbol-13-acetate (TPA)-induced terminal differentiation of HL-60 cells. For all mt translation factors investigated, mRNA expression was markedly down-regulated in a coordinate and specific manner, whereas mRNA levels for the cytoplasmic translation factors showed only a slight reduction. An actinomycin D chase study and nuclear run-on assay revealed that the TPA-induced decrease in mt elongation factor Tu (EF-Tumt) mRNA mainly results from decreased mRNA stability. Polysome analysis showed that there was no significant translational control of mt translation factor (EF-Tumt, ribosomal proteins L7/L12mt and S12mt) mRNA expression during differentiation. Thus, the decreased protein level of one of these mt translation factors (EF-Tumt) simply reflects its decreased mRNA level. It was also demonstrated by pulse labeling of mt translation products that the down-regulation of mt translational activity is actually associated with down-regulated mt translation factor expression during cellular differentiation. Our results illustrate that the regulatory mechanisms of mt translational activity upon terminal differentiation (in response to the growth arrest) is different to that of the cytoplasmic system, where the control of mRNA translational efficiency of major translation factors is the central mechanism for their down-regulation.


Asunto(s)
Citoplasma/metabolismo , Regulación hacia Abajo , Mitocondrias/efectos de los fármacos , Acetato de Tetradecanoilforbol , Northern Blotting , Carcinógenos , Diferenciación Celular , Núcleo Celular/metabolismo , Dactinomicina/farmacología , Células HL-60 , Humanos , Immunoblotting , Mitocondrias/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , ARN/metabolismo , ARN Mensajero/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA