Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Mol Genet ; 29(2): 320-334, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31915823

RESUMEN

Deficiency of the adaptor protein complex 4 (AP-4) leads to childhood-onset hereditary spastic paraplegia (AP-4-HSP): SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). This study aims to evaluate the impact of loss-of-function variants in AP-4 subunits on intracellular protein trafficking using patient-derived cells. We investigated 15 patient-derived fibroblast lines and generated six lines of induced pluripotent stem cell (iPSC)-derived neurons covering a wide range of AP-4 variants. All patient-derived fibroblasts showed reduced levels of the AP4E1 subunit, a surrogate for levels of the AP-4 complex. The autophagy protein ATG9A accumulated in the trans-Golgi network and was depleted from peripheral compartments. Western blot analysis demonstrated a 3-5-fold increase in ATG9A expression in patient lines. ATG9A was redistributed upon re-expression of AP4B1 arguing that mistrafficking of ATG9A is AP-4-dependent. Examining the downstream effects of ATG9A mislocalization, we found that autophagic flux was intact in patient-derived fibroblasts both under nutrient-rich conditions and when autophagy is stimulated. Mitochondrial metabolism and intracellular iron content remained unchanged. In iPSC-derived cortical neurons from patients with AP4B1-associated SPG47, AP-4 subunit levels were reduced while ATG9A accumulated in the trans-Golgi network. Levels of the autophagy marker LC3-II were reduced, suggesting a neuron-specific alteration in autophagosome turnover. Neurite outgrowth and branching were reduced in AP-4-HSP neurons pointing to a role of AP-4-mediated protein trafficking in neuronal development. Collectively, our results establish ATG9A mislocalization as a key marker of AP-4 deficiency in patient-derived cells, including the first human neuron model of AP-4-HSP, which will aid diagnostic and therapeutic studies.


Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Complejo 4 de Proteína Adaptadora/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/genética , Paraplejía Espástica Hereditaria/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismo , Complejo 4 de Proteína Adaptadora/deficiencia , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Adolescente , Autofagosomas/metabolismo , Autofagia/genética , Línea Celular , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hierro/metabolismo , Mutación con Pérdida de Función , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Paraplejía Espástica Hereditaria/genética , Red trans-Golgi/genética
2.
Brain ; 143(10): 2929-2944, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979048

RESUMEN

Bi-allelic loss-of-function variants in genes that encode subunits of the adaptor protein complex 4 (AP-4) lead to prototypical yet poorly understood forms of childhood-onset and complex hereditary spastic paraplegia: SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). Here, we report a detailed cross-sectional analysis of clinical, imaging and molecular data of 156 patients from 101 families. Enrolled patients were of diverse ethnic backgrounds and covered a wide age range (1.0-49.3 years). While the mean age at symptom onset was 0.8 ± 0.6 years [standard deviation (SD), range 0.2-5.0], the mean age at diagnosis was 10.2 ± 8.5 years (SD, range 0.1-46.3). We define a set of core features: early-onset developmental delay with delayed motor milestones and significant speech delay (50% non-verbal); intellectual disability in the moderate to severe range; mild hypotonia in infancy followed by spastic diplegia (mean age: 8.4 ± 5.1 years, SD) and later tetraplegia (mean age: 16.1 ± 9.8 years, SD); postnatal microcephaly (83%); foot deformities (69%); and epilepsy (66%) that is intractable in a subset. At last follow-up, 36% ambulated with assistance (mean age: 8.9 ± 6.4 years, SD) and 54% were wheelchair-dependent (mean age: 13.4 ± 9.8 years, SD). Episodes of stereotypic laughing, possibly consistent with a pseudobulbar affect, were found in 56% of patients. Key features on neuroimaging include a thin corpus callosum (90%), ventriculomegaly (65%) often with colpocephaly, and periventricular white-matter signal abnormalities (68%). Iron deposition and polymicrogyria were found in a subset of patients. AP4B1-associated SPG47 and AP4M1-associated SPG50 accounted for the majority of cases. About two-thirds of patients were born to consanguineous parents, and 82% carried homozygous variants. Over 70 unique variants were present, the majority of which are frameshift or nonsense mutations. To track disease progression across the age spectrum, we defined the relationship between disease severity as measured by several rating scales and disease duration. We found that the presence of epilepsy, which manifested before the age of 3 years in the majority of patients, was associated with worse motor outcomes. Exploring genotype-phenotype correlations, we found that disease severity and major phenotypes were equally distributed among the four subtypes, establishing that SPG47, SPG50, SPG51 and SPG52 share a common phenotype, an 'AP-4 deficiency syndrome'. By delineating the core clinical, imaging, and molecular features of AP-4-associated hereditary spastic paraplegia across the age spectrum our results will facilitate early diagnosis, enable counselling and anticipatory guidance of affected families and help define endpoints for future interventional trials.


Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Cuerpo Calloso/diagnóstico por imagen , Imagen por Resonancia Magnética/tendencias , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Sistema de Registros , Adulto Joven
3.
J Inherit Metab Dis ; 43(1): 51-62, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30854657

RESUMEN

Autophagy is a fundamental and conserved catabolic pathway that mediates the degradation of macromolecules and organelles in lysosomes. Autophagy is particularly important to postmitotic and metabolically active cells such as neurons. The complex architecture of neurons and their long axons pose additional challenges for efficient recycling of cargo. Not surprisingly autophagy is required for normal central nervous system development and function. Several single-gene disorders of the autophagy pathway have been discovered in recent years giving rise to a novel group of inborn errors of metabolism referred to as congenital disorders of autophagy. While these disorders are heterogeneous, they share several clinical and molecular characteristics including a prominent and progressive involvement of the central nervous system leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and cognitive decline. On brain magnetic resonance imaging a predominant involvement of the corpus callosum, the corticospinal tracts and the cerebellum are noted. A storage disease phenotype is present in some diseases, underscoring both clinical and molecular overlaps to lysosomal storage diseases. This review provides an update on the clinical, imaging, and genetic spectrum of congenital disorders of autophagy and highlights the importance of this pathway for neurometabolism and childhood-onset neurological diseases.


Asunto(s)
Autofagia/fisiología , Discapacidades del Desarrollo/etiología , Enfermedades Neurodegenerativas/etiología , Agenesia del Cuerpo Calloso/etiología , Agenesia del Cuerpo Calloso/genética , Encéfalo/patología , Catarata/etiología , Catarata/genética , Niño , Discapacidades del Desarrollo/genética , Humanos , Imagen por Resonancia Magnética , Enfermedades Neurodegenerativas/genética , Proteínas/genética , Paraplejía Espástica Hereditaria/etiología , Paraplejía Espástica Hereditaria/genética
4.
Stem Cell Res ; 40: 101575, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31525725

RESUMEN

Bi-allelic variants in the subunits of the adaptor protein complex 4 lead to childhood-onset, complex hereditary spastic paraplegia (AP-4-HSP): SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1), and SPG52 (AP4S1). Here, we describe the generation of induced pluripotent stem cells (iPSCs) from three AP-4-HSP patients with compound-heterozygous, loss-of-function variants in AP4B1 and sex-matched parents. Fibroblasts were reprogrammed using non-integrating Sendai virus. iPSCs were characterized according to standard protocols including karyotyping, embryoid body formation, pluripotency marker expression and STR profiling. These first iPSC lines for SPG47 provide a valuable resource for studying this rare disease and related forms of hereditary spastic paraplegia.


Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Línea Celular/citología , Células Madre Pluripotentes Inducidas/metabolismo , Paraplejía Espástica Hereditaria/genética , Complejo 4 de Proteína Adaptadora/metabolismo , Adulto , Alelos , Diferenciación Celular , Línea Celular/metabolismo , Células Cultivadas , Preescolar , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Paraplejía Espástica Hereditaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA