RESUMEN
Herein, we present a novel ruthenium(II)-perylene dyad (RuPDI-Py) that combines the photophysical properties of pyrrolidine-substituted perylene diimide (PDI-Py) and the ruthenium(II) polypyridine complex [Ru(phen)3]2+. A comprehensive study of excited-state dynamics was carried out using time-resolved and steady-state methods in a dimethyl sulfoxide solution. The RuPDI-Py dyad demonstrated excitation wavelength-dependent photophysical behavior. Upon photoexcitation above 600 nm, the dyad exclusively exhibits the near-infrared (NIR) fluorescence of the 1PDI-Py state at 785 nm (τfl = 1.50 ns). In contrast, upon photoexcitation between 350 and 450 nm, the dyad also exhibits a photoinduced electron transfer from the {[Ru(phen)3]2+} moiety to PDI-Py, generating the charge-separated intermediate state {Ru(III)-(PDI-Py)â¢-} (4 µs). This state subsequently decays to the long-lived triplet excited state 3PDI-Py (36 µs), which is able to sensitize singlet oxygen (1O2). Overall, tuning 1O2 photoactivation or NIR fluorescence makes RuPDI-Py a promising candidate for using absorbed light energy to perform the desired functions in theranostic applications.
RESUMEN
Novel open-chain merocytochalasans, perochalasins A-C (1-3), containing an unusual N-O six-membered heterocyclic moiety, were isolated from cultures of the marine-derived Peroneutypa sp. M16 fungus, along with cytochalasin Z27 (4), cytochalasin Z28 (5), [12]-cytochalasin (6), and phenochalasin B (7). The structures of compounds 1-3 were established by analysis of the spectroscopic data. Full genome sequencing of Peroneutypa sp. M16 enabled the identification of a cytochalasan biosynthetic gene cluster and a proposal for the biosynthetic assembly of perochalasins. The proposal is supported by the nonenzymatic conversion of phenochalasin B (7) into 1-3, based on isotope-labeled hydroxylamine (15NH2OH and ND2OD) feeding studies in vivo and in vitro. In contrast to other merocytochalasans, these are the first cytochalasans confirmed to arise via nucleophilic addition and at a distinct location from the reactive macrocycle olefin, potentially expanding further the range of merocytochalasans to be discovered or engineered. Cytochalasin Z27 (4) exhibited antiplasmodial activities in the low micromolar range against the chloroquine-sensitive Plasmodium falciparum 3D7 strain as well as against resistant strains of the parasite (Dd2, TM90C6B, and 3D7r_MMV848).
Asunto(s)
Citocalasinas , Citocalasinas/farmacología , Citocalasinas/química , Citocalasinas/biosíntesis , Citocalasinas/aislamiento & purificación , Estructura Molecular , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/química , Familia de MultigenesRESUMEN
Three new polyprenylated benzophenone derivatives named burlemarxiones G-I (1-3) were isolated from C. burle-marxii trunks (compound 1) and leaves (compounds 2 and 3), along with the known compound burlemarxione F. Burlemarxione G (1) was isolated after methylation with diazomethane and it is the keto-enol tautomeric pair of burlemarxione F. Burlemarxione H (2) derives from burlemarxiones F and G, but it has additional rings due to cyclization of the prenyl group attached to C-5 that establishes new single bonds between C-1 and C-23, as well as, between C-24 and C-29. Burlemarxione I (3) has two additional cyclizations: the first encompasses the cyclization of the former isopentenyl group into an 11,11-dimethyl-six-membered ring, whereas the second produces additional rings due to the cyclization of the prenyl group attached to C-5 that establishes new single bonds between C-1 and C-23, as well as, between C-24 and C-29. All three compounds showed moderate anti-glioma activity. These results show that C. burle-marxii is an important source of sophisticated polyprenylated benzophenone derivatives.
RESUMEN
Cysteine peptidases are involved in physiological processes of insect development and have been considered as potential targets for the development of insect control strategies. In this study, we obtained a recombinant cysteine cathepsin L (AsCathL) from leaf-cutting ant (Atta sexdens), a species from the order Hymenoptera who causes enormous damage to crops, natural forests and reforested areas. RT-qPCR showed AsCathL expression throughout insect development and in all body parts of the adult insect analysed, suggesting its role as a lysosomal cathepsin. AsCathL encodes a protein of 320 amino acid residues consisting of a pro-peptide and the mature with amino acids sequence over 67% similarity with lysosomal cathepsin L of species from Lepidoptera and Diptera. Phylogenetic tree revealed that AsCathL is very similar to predicted cathepsins found in other ants. Recombinant AsCathL was expressed in insoluble form by Escherichia coli Arctic Express (DE3) RIL, purified under denaturing conditions and refolded. The enzyme showed hydrolytic activity in vitro towards synthetic substrate Z-Phe-Arg-AMC at acidic pH. Synthetic inhibitor E-64 acted against peptidase activity and a study regarding the interaction between E-64 and AsCathL using nuclear magnetic resonance (NMR) revealed that 83.18% from all E-64 molecules are irreversibly bound to AsCathL. In addition, the proteolytic activity of AsCathL was strongly inhibited by recombinant sugarcane cystatins with Ki ranging from 0.6 nM to 2.95 nM. To the best of our knowledge this is the first report characterizing a cysteine peptidase from leaf-cutting ants, which may contribute to future studies of ants' cathepsins.
Asunto(s)
Hormigas , Cistatinas , Proteasas de Cisteína , Animales , Hormigas/genética , Catepsina L , Cisteína , Proteasas de Cisteína/genética , Péptidos , FilogeniaRESUMEN
Metabolomics analyses and improvement of growth conditions were applied toward diversification of phomactin terpenoids by the fungus Biatriospora sp. CBMAI 1333. Visualization of molecular networking results on Gephi assisted the observation of phomactin diversification and guided the isolation of new phomactin variants by applying a modified version of chemometrics based on a fractional factorial design. Consequentially, the first nitrogen-bearing phomactin, phomactinine (1), with a new rearranged carbon skeleton, was isolated and identified. The strategy combining metabolomics and chemometrics can be extended to include bioassay potency, structure novelty, and metabolic diversification connected or not to genomic analyses.
Asunto(s)
Ascomicetos , Ascomicetos/química , Estructura MolecularRESUMEN
Salts of naproxen (NAP) with chitosan (CTS) and reticulated chitosan (CEP) were prepared under optimized conditions to maximize the yield of reaction. The objective was to evaluate the dissociation in water, which can guide studies of release of the drug from biopolymeric salts in pharmaceutical applications. Higher salification was found after 24 h of reaction at 60 °C in a molar ratio 1:1.05 (CTS:NAP, mol/mol), resulting in a degree of substitution (DS) of 17% according to 13C NMR, after neutralization of the -NH2 group of the biopolymer by the carboxylic group of the drug. The presence of NAP salt is evidenced by FTIR bands related to the -NH3+ group at 856 cm-1, a decrease in crystallinity index in XRD diffractograms as well as changes in mass loss ratios (TG/DTG/DTA) and increased thermal stability of the salt regarding CTS itself. The CEPN crosslinked salt presented a DS = 3.6%, probably due to the shielding of the -NH2 groups. Dissociation studies revealed that at pH 2.00, dissociation occurred faster when compared to at pH 7.00 in the non-reticulated salt, while the opposite was observed for the reticulated one.
Asunto(s)
Quitosano , Biopolímeros , Quitosano/química , Naproxeno/química , Preparaciones Farmacéuticas , Sales (Química) , AguaRESUMEN
Nanocomposite hydrogels have emerged to exhibit multipurpose properties, boosting especially the biomaterial field. However, the development and characterization of these materials can be a challenge, especially stimuli-sensitive materials with dynamic properties in response to external stimuli. By employing UV-vis spectroscopy and NMR relaxation techniques, we could outline the formation and behavior of thermosensitive nanocomposites obtained by in situ polymerization of poly(N-vinylcaprolactam) (PNVCL) and mesoporous silica nanofibers under temperature stimuli. For instance, inorganic nanoparticles covalently linked to PNVCL changed the pattern of temperature-induced phase transition despite showing similar critical temperatures to neat PNVCL. Thermodynamic parameters indicated the formation of an interconnected system of silica and polymer chains with reduced enthalpic contribution and mobility. The investigation of water molecule and polymer segment motions also revealed that the absorption and release of water happened in a wider temperature range for the nanocomposites, and the polymer segments respond in different ways during the phase transition in the presence of silica. This set of techniques was essential to reveal the polymer motions and structural features in nanocomposite hydrogels under temperature stimuli, demonstrating its potential use as experimental guideline to study multicomponent nanocomposites with diverse functionalities and dynamic properties.
RESUMEN
Three antifungal macrolides cyphomycin (1), caniferolide C (2) and GT-35 (3) were isolated from Streptomyces sp. ISID311, a bacterial symbiont associated with Cyphomyrmex fungus-growing ants. The planar structures of these compounds were established by 1 and 2D NMR data and MS analysis. The relative configurations of 1-3 were established using Kishi's universal NMR database method, NOE/ROE analysis and coupling constants analysis assisted by comparisons with NMR data of related compounds. Detailed bioinformatic analysis of cyphomycin biosynthetic gene cluster confirmed the stereochemical assignments. Compounds 1-3 displayed high antagonism against different strains of Escovopsis sp., pathogen fungi specialized to the fungus-growing ant system. Compounds 1-3 also exhibited potent antiprotozoal activity against intracellular amastigotes of the human parasite Leishmania donovani with IC50 values of 2.32, 0.091 and 0.073 µM, respectively, with high selectivity indexes.
Asunto(s)
Antiprotozoarios/farmacología , Leishmania donovani/efectos de los fármacos , Macrólidos/farmacología , Streptomyces/química , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Macrólidos/química , Macrólidos/aislamiento & purificación , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-ActividadRESUMEN
Prolonged skin exposure to ultraviolet radiation (UVR) induces premature aging in both the epidermis and the dermis. Chronic exposure to UVR induces the activation of mitogen-activated protein kinase (MAPK) signaling pathway, activating c-Jun, c-Fos expression, and transcription factor of AP-1 activating protein. AP-1 activation results in the positive induction of matrix metalloproteinase (MMP) synthesis, which degrade skin collagen fibers. Polysaccharides from the fruit of Lycium barbarum (LBP fraction) have a range of activities and have been demonstrate to repair the photodamage. In different approaches, laser application aims to recover the aged skin without destroying the epidermis, promoting a modulation, called photobiomodulation (PBM), which leads to protein synthesis and cell proliferation, favoring tissue repair. Here we developed a topical hydrogel formulation from a polysaccharide-rich fraction of Lycium barbarum fruits (LBP). This formulation was associated with PBM (red laser) to evaluate whether the isolated and combined treatments would reduce the UVR-mediated photodamage in mice skin. Hairless mice were photoaged for 6 weeks and then treated singly or in combination with LBP and PBM. Histological, immunohistochemistry, and immunofluorescence analyses were used to investigate the levels of c-Fos, c-Jun, MMP-1, -2, and -9, collagen I, III, and FGF2. The combined regimen inhibited UVR-induced skin thickening, decreased the expression of c-Fos and c-Jun, as well as MMP-1, -2, and -9 and concomitantly increased the levels of collagen I, III, and FGF2. The PBM in combination with LBP treatment is a promising strategy for the repair of photodamaged skin, presenting potential clinical application in skin rejuvenation.
Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Hidrogeles/farmacología , Terapia por Luz de Baja Intensidad , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/efectos de la radiación , Animales , Modelos Animales de Enfermedad , Femenino , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Ratones , Ratones Pelados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/metabolismoRESUMEN
Experimental 13 C solid-state magic-angle spinning (MAS) Nuclear Magnetic Resonance (NMR) as well as Density-Functional Theory (DFT) gauge-including projector augmented wave (GIPAW) calculations were used to probe disorder and local mobility in diethylcarbamazine citrate, (DEC)+ (citrate)- . This compound has been used as the first option drug for the treatment of filariasis, a disease endemic in tropical countries and caused by adult worms of Wuchereria bancrofti, which is transmitted by mosquitoes. We firstly present 2D 13 Câ1 H dipolar-coupling-mediated heteronuclear correlation spectra recorded at moderate spinning frequency, to explore the intermolecular interaction between DEC and citrate molecules. Secondly, we investigate the dynamic behavior of (DEC)+ (citrate)- by varying the temperature and correlating the experimental MAS NMR results with DFT GIPAW calculations that consider two (DEC)+ conformers (in a 70:30 ratio) for crystal structures determined at 293 and 235 K. Solid-state NMR provides insights on slow exchange dynamics revealing conformational changes involving particularly the DEC ethyl groups.
RESUMEN
Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional 1H, 13C and 15N and two-dimensional 1H-13C and 14N-1H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the 1H, 13C and 14N/15N resonances. A two-dimensional 1H-1H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions.
RESUMEN
This work aimed to develop a calcium alginate hydrogel as a pH responsive delivery system for polymyxin B (PMX) sustained-release through the vaginal route. Two samples of sodium alginate from different suppliers were characterized. The molecular weight and M/G ratio determined were, approximately, 107 KDa and 1.93 for alginate_S and 32 KDa and 1.36 for alginate_V. Polymer rheological investigations were further performed through the preparation of hydrogels. Alginate_V was selected for subsequent incorporation of PMX due to the acquisition of pseudoplastic viscous system able to acquiring a differential structure in simulated vaginal microenvironment (pH 4.5). The PMX-loaded hydrogel (hydrogel_PMX) was engineered based on polyelectrolyte complexes (PECs) formation between alginate and PMX followed by crosslinking with calcium chloride. This system exhibited a morphology with variable pore sizes, ranging from 100 to 200 µm and adequate syringeability. The hydrogel liquid uptake ability in an acid environment was minimized by the previous PECs formation. In vitro tests evidenced the hydrogels mucoadhesiveness. PMX release was pH-dependent and the system was able to sustain the release up to 6 days. A burst release was observed at pH 7.4 and drug release was driven by an anomalous transport, as determined by the Korsmeyer-Peppas model. At pH 4.5, drug release correlated with Weibull model and drug transport was driven by Fickian diffusion. The calcium alginate hydrogels engineered by the previous formation of PECs showed to be a promising platform for sustained release of cationic drugs through vaginal administration.
Asunto(s)
Alginatos/química , Cloruro de Calcio/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polielectrolitos/química , Polímeros/química , Administración Intravaginal , Alginatos/administración & dosificación , Química Farmacéutica , Difusión , Liberación de Fármacos , Ácido Glucurónico/administración & dosificación , Ácido Glucurónico/química , Ácidos Hexurónicos/administración & dosificación , Ácidos Hexurónicos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/administración & dosificación , Concentración de Iones de HidrógenoRESUMEN
(1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells.
Asunto(s)
Neoplasias de la Mama/metabolismo , Mama/metabolismo , Metaboloma , Acetona/metabolismo , Biomarcadores/metabolismo , Brasil , Línea Celular , Línea Celular Tumoral , Etanol/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Metabolómica/métodos , Resonancia Magnética Nuclear Biomolecular , Fosforilcolina/metabolismoRESUMEN
UHPLC-DAD-HRMS based dereplication guided the detection of new halogenated alkaloids co-produced by Talaromyces wortmannii. From the fungal growth in large scale, the epimers 2,8-dichlororugulovasines A and B were purified and further identified by means of a HPLC-SPE/NMR hyphenated system. Brominated rugulovasines were also detected when the microbial incubation medium was supplemented with bromine sources. Studies from 1D/2D NMR and HRMS spectroscopy data allowed the structural elucidation of the dichlorinated compounds, while tandem MS/HRMS data analysis supported the rationalization of brominated congeners. Preliminary genetic studies revealed evidence that FADH2 dependent halogenase can be involved in the biosynthesis of the produced halocompounds.
Asunto(s)
Indoles/aislamiento & purificación , Talaromyces/química , Talaromyces/crecimiento & desarrollo , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Alcaloides de Claviceps/biosíntesis , Flavina-Adenina Dinucleótido/análogos & derivados , Flavina-Adenina Dinucleótido/metabolismo , Proteínas Fúngicas/metabolismo , Halogenación , Indoles/química , Estructura Molecular , Talaromyces/enzimologíaRESUMEN
Polysaccharide-based chiral stationary phases (CSP) demonstrate great versatility and higher chiral selectivity for a variety of chiral compounds in multimodal elution modes (normal, reverse and polar organic). The main role of CSP phenyl carbamate based derivatives as chiral selectors is the formation of diastereoisomeric complexes by means of π-π interaction, dipole-dipole, hydrogen bonding and/or inclusion complex mechanisms. Nevertheless, the mechanism behind their enantioselectivity requires clarification. High resolution magic angle spinning nuclear magnetic resonance spectroscopy ((1)H HR/MAS NMR) has provided key information on the recognition process at the binding sites of the CSP surface. Herein we report the results obtained using omeprazole as a probe for these investigations.
Asunto(s)
Amilosa/química , Antiulcerosos/química , Espectroscopía de Resonancia Magnética/métodos , Omeprazol/química , EstereoisomerismoRESUMEN
Previous investigations of H. oreadica reported the presence of a wide spectrum of complex limonoids and dihydrocinnamic acids. Our interest in the Rutaceae motivated a reinvestigation of H. oreadica, H. brasiliana and H. superba searching for other secondary metabolites present in substantial amounts for taxonomic analysis. In a continuation of the investigation of the H. oreadica, three new limonoids have now been isolated 9α-hydroxyhortiolide A, 11ß-hydroxyhortiolide C and 1(S*)-acetoxy-7(R*)-hydroxy-7-deoxoinchangin. All the isolated compounds from the Hortia species reinforce its position in the Rutaceae. With regard to limonoids the genus produces highly specialized compounds, whose structural variations do not occur in any other member of the Rutaceae, thus, it is evident from limonoid data that Hortia takes an isolated position within the family. In addition, H. superba afforded the unexpected coumarin 5-chloro-8-methoxy-psoralen, which may not be a genuine natural product. Solid-state cross-polarisation/magic-angle-spinning 13C nuclear magnetic resonance, X-Ray fluorescence and Field-emission gun scanning electron microscopy experiments show that the Sephadex LH-20 was modified after treatment with NaOCl, suggesting that when xanthotoxin (8-methoxy-psoralen) was extracted from cleaning of the gel column, chlorination of the aromatic system occurred.
Asunto(s)
Cumarinas/aislamiento & purificación , Limoninas/aislamiento & purificación , Extractos Vegetales/química , Rutaceae/química , Cromatografía , Cumarinas/química , Limoninas/química , Hipoclorito de Sodio/químicaRESUMEN
This work proposes an evaluation of the Crystalline Index (CrI) in function of the bleaching process employed during cellulose extraction from corn husk, for further characterization using CP/MAS 13C NMR, XRD, and FT-IR. In that sense, CrI values were calculated by FT-IR and the bands associated with the crystalline and amorphous regions were observed at 1424 cm-1 and 896 cm-1, respectively. Similarly, the signals due to ordered (89.1 ppm) and disordered (84.2 ppm) cellulose chains were detected by solid-state 13C NMR, while the Segal equation was only used for comparison purposes. Additionally, PCA studies showed consistent results attributed to the crystalline region in cellulose domains analyzed by both, FT-IR and solid-state 13C NMR. The results revealed the coexistence of cellulose I/cellulose II and its effect on CrI, as well as the incomplete mercerization process, in some cases non-cellulosic residues can cause an overestimation of CrI. Additionally, the thermal stability and the glass transition temperature were determined by TGA/DTA and DSC analyses. Finally, a partially fibrillated-network morphology with a diameter of 20.47 ± 2.77 µm was observed in cellulose bleached with peracetic acid, whereas organosolv method provides flexible and clean microfibrils with diameter sizes between 10 and 9 µm.
RESUMEN
The techniques LC-UV-BPSU and LC-UV-SPE/NMR were applied for the first time in the analysis of açai berry (Euterpe oleracea Mart.) pulp extracts. Those techniques allowed the identification of twenty-three metabolites: Valine (1), citric acid (2), tachioside (3), isotachioside (4), α-guaiacylglycerol (5), syringylglycerol (6), uridine (7), adenosine (8), dimethoxy-1,4-benzoquinone (9), koaburaside (10), protocatechuic acid (11), eurycorymboside B (12), 7',8'-dihydroxy-dihydrodehydroconiferyl alcohol-9-O-ß-D-glucopyranoside (13), orientin (14), homoorientin (15), dihydrokaempferol-3-glucoside (16), isolariciresinol-9'-O-ß-D-glucopyranoside (17), 5'-methoxyisolariciresinol-9'-O-ß-D-glucopyranoside (18), cyanidin-3-O-glucoside (19), cyandin-3-O-rutenoside (20), 9,12-octadecadienoic acid (Z,Z)-2-hydroxy-1-(hydroxymethyl) ethyl ester (21), linolenic acid (22), and 1,2-di-O-α-linolenoyl-3-O-ß-D-galactopyranosyl-sn-glycerol (23). In this plant, compounds 3, 4, 5, 6, 8, 10, 12, 17, 18, 21, and 23 are reported for the first time. All the structures were determined through extensive analyses of 1D and 2D NMR data, mass spectrometry, and comparison with published data. This methodology has proven to be an efficient alternative to the analysis of complex extracts containing a large variety of compounds.
RESUMEN
Foods rich in riboflavin (Rf) are susceptible to degradation due to oxidative processes with the formation of radicals. Herein, we describe the features and stability of an Mg(II) complex containing ferulic acid (fer) and 1,10-phenanthroline (phen) as chelators: henceforth called Mg(phen)(fer). The electrochemical behavior of Mg(phen)(fer) is pH dependent and results from the stabilisation of the corresponding phenoxyl radical via complexation with Mg(II). This stabilisation enhances the antioxidant activity of Mg(phen)(fer) with respect to free fer and commercial antioxidants. Mg(phen)(fer) scavenges and neutralizes DPPHË (IC50 = 15.6 µmol L-1), ABTSË+ (IC50 = 5.65 µmol L-1), peroxyl radical (IC50 = 5.64 µg L-1) and 1O2 (IC50 = 0.7 µg m-1). Mg(phen)(fer) effectively protects riboflavin (Rf) against photodegradation by quenching the singlet excited states of Rf regardless of the conditions. Also, the complex Mg(phen)(fer) was effectively incorporated into starch films, broadening its applications, as shown by microbiological studies. Thus, Mg(phen)(fer) has high potential for use in Rf-rich foods and to become a new alternative to the synthetic antioxidants currently used.
Asunto(s)
Antioxidantes , Quelantes , Antioxidantes/farmacología , Antioxidantes/química , Riboflavina/química , Ácidos CumáricosRESUMEN
The informal (and/or illegal) e-commerce of pharmaceutical formulations causes problems that governmental health agencies find hard to control, one of which concerns formulas sold as natural products. The purpose of this work was to explore the advantages and limitations of DOSY and HPLC-UV-SPE-NMR. These techniques were used to identify the components of a formula illegally marketed in Brazil as an herbal medicine possessing anti-inflammatory and analgesic properties. DOSY was able to detect the major components present at higher concentrations. Complete characterization was achieved using HPLC-UV-SPE-NMR, and 1D and 2D NMR analyses enabled the identification of known synthetic drugs. These were ranitidine and a mixture of orphenadrine citrate, piroxicam, and dexamethasone, which are co-formulated in a remedy called Rheumazim that is used to relieve severe pain, but it is prohibited in Brazil because of a lack of sufficient pharmacokinetic and pharmacodynamic information.