Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(5): 7919-7930, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439461

RESUMEN

Digital holographic microscopy (DHM) is a powerful quantitative phase imaging (QPI) technique that is capable of recording sample's phase information to enhance image contrast. In off-axis DHM, high-quality QPI images can be generated within a single recorded hologram, and the system stability can be enhanced by common-path configuration. Diffraction gratings are widely used components in common-path DHM systems; however, the presence of multiple diffraction beams leads to system power loss. Here, we propose and demonstrate implementation of a volume holographic grating (VHG) in common-path DHM, which provides single diffraction order. VHG in common-path DHM (i.e., VHG-DHM) helps in improving signal-to-noise ratio as compared to the conventional DHM. In addition, VHG, with inherently high angular selectivity, reduces image noise caused by stray light. With a simple fabrication process, it is convenient to utilize VHG to control the beam separation angle of DHM. Further, by using Bragg-matched wavelength degeneracy to avoid potential cell damaging effect in blue light, the VHG is designed for recording at a maximum sensitive wavelength of ∼488 nm, while our VHG-DHM is operated at the longer wavelength of red 632.8 nm for cell observation. Experimental results, measured by the VHG-DHM, show the measurement of target thickness ranging from 100 nm to 350 nm. In addition, stability of the system is quantitatively measured. High-contrast QPI images of human lung cancer cells are demonstrated.

2.
Opt Express ; 32(1): 167-178, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175046

RESUMEN

Airy light sheets combined with the deconvolution approach can provide multiple benefits, including large field of view (FOV), thin optical sectioning, and high axial resolution. The efficient design of an Airy light-sheet fluorescence microscope requires a compact illumination system. Here, we show that an Airy light sheet can be conveniently implemented in microscopy using a volume holographic grating (VHG). To verify the FOV and the axial resolution of the proposed VHG-based Airy light-sheet fluorescence microscope, ex-vivo fluorescently labeled Caenorhabditis elegans (C. elegans) embryos were imaged, and the Richardson-Lucy deconvolution method was used to improve the image contrast. Optimized parameters for deconvolution were compared with different methods. The experimental results show that the FOV and the axial resolution were 196 µm and 3 µm, respectively. The proposed method of using a compact VHG to replace the common spatial light modulator provides a direct solution to construct a compact light-sheet fluorescence microscope.

3.
J Opt Soc Am A Opt Image Sci Vis ; 41(3): A40-A46, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437424

RESUMEN

Airy beams have become an important beam shape for structured light beams because of their interesting self-accelerating and parabolic propagation properties. Many variants of Airy beams have been proposed, among which the Airy beam with cylindrical symmetry [also known as the circular Airy beam or abrupt autofocusing (AAF) beam] is particularly peculiar and has attracted special attention due to its shape transformation during propagation. Much effort has been devoted to understanding the properties of the AAF beam. In this work, we present simulation results for generating the AAF beam using a phase-only mask. A cubic chirp-modulated axicon phase is used to create the mask. We found an optimal value for the axiconic phase, and the cubic phase is essential for controlling the AAF beam's shape. We demonstrate that a phase-only mask is an effective and simple method for generating high contrast between the initial and AAF plane. We present the results for beam formation and propagation dynamics of the AAF beam using the control parameters of the phase mask. We also discuss the design parameters and their influence on the AAF beam shapes. Our results pave the way for a deeper understanding of the beam formation and propagation dynamics of the AAF beam.

4.
Biomed Opt Express ; 15(2): 953-964, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38404334

RESUMEN

Saturated excitation microscopy, which collects nonlinear fluorescence signals generated by saturation, has been proposed to improve three-dimensional spatial resolution. Differential saturated excitation (dSAX) microscopy can further improve the detection efficiency of a nonlinear fluorescence signal. By comparing signals obtained at different saturation levels, high spatial resolution can be achieved in a simple and efficient manner. High-resolution multiplane microscopy is perquisite for volumetric imaging of thick samples. To the best of our knowledge, no reports of multiplane dSAX have been made. Our aim is to obtain multiplane high-resolution optically sectioned images by adapting differential saturated excitation in confocal laser scanning fluorescence microscopy. To perform multiplane dSAX microscopy, a variable focus lens is employed in a telecentric design to achieve focus tunability with constant magnification and contrast throughout the axial scanning range. Multiplane fluorescence imaging of two different types of pollen grains shows improved resolution and contrast. Our system's imaging performance is evaluated using standard targets, and the results are compared with standard confocal microscopy. Using a simple and efficient method, we demonstrate multiplane high-resolution fluorescence imaging. We anticipate that high-spatial resolution combined with high-speed focus tunability with invariant contrast and magnification will be useful in performing 3D imaging of thick biological samples.

5.
Adv Sci (Weinh) ; 11(20): e2307837, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38488694

RESUMEN

Endo-microscopy is crucial for real-time 3D visualization of internal tissues and subcellular structures. Conventional methods rely on axial movement of optical components for precise focus adjustment, limiting miniaturization and complicating procedures. Meta-device, composed of artificial nanostructures, is an emerging optical flat device that can freely manipulate the phase and amplitude of light. Here, an intelligent fluorescence endo-microscope is developed based on varifocal meta-lens and deep learning (DL). The breakthrough enables in vivo 3D imaging of mouse brains, where varifocal meta-lens focal length adjusts through relative rotation angle. The system offers key advantages such as invariant magnification, a large field-of-view, and optical sectioning at a maximum focal length tuning range of ≈2 mm with 3 µm lateral resolution. Using a DL network, image acquisition time and system complexity are significantly reduced, and in vivo high-resolution brain images of detailed vessels and surrounding perivascular space are clearly observed within 0.1 s (≈50 times faster). The approach will benefit various surgical procedures, such as gastrointestinal biopsies, neural imaging, brain surgery, etc.


Asunto(s)
Encéfalo , Aprendizaje Profundo , Imagenología Tridimensional , Microscopía Fluorescente , Animales , Ratones , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Microscopía Fluorescente/instrumentación , Diseño de Equipo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA