Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(22): 8956-8964, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38776126

RESUMEN

Glycoproteins play important roles in numerous physiological processes and are often implicated in disease. Analysis of site-specific protein glycobiology through glycoproteomics has evolved rapidly in recent years thanks to hardware and software innovations. Particularly, the introduction of parallel accumulation serial fragmentation (PASEF) on hybrid trapped ion mobility time-of-flight mass spectrometry instruments combined deep proteome sequencing with separation of (near-)isobaric precursor ions or converging isotope envelopes through ion mobility separation. However, the reported use of PASEF in integrated glycoproteomics workflows to comprehensively capture the glycoproteome is still limited. To this end, we developed an integrated methodology using timsTOF Pro 2 to enhance N-glycopeptide identifications in complex mixtures. We systematically optimized the ion optics tuning, collision energies, mobility isolation width, and the use of dopant-enriched nitrogen gas (DEN). Thus, we obtained a marked increase in unique glycopeptide identification rates compared to standard proteomics settings, showcasing our results on a large set of glycopeptides. With short liquid chromatography gradients of 30 min, we increased the number of unique N-glycopeptide identifications in human plasma samples from around 100 identifications under standard proteomics conditions to up to 1500 with our optimized glycoproteomics approach, highlighting the need for tailored optimizations to obtain comprehensive data.


Asunto(s)
Glicopéptidos , Proteómica , Proteómica/métodos , Humanos , Glicopéptidos/análisis , Glicopéptidos/química , Glicopéptidos/sangre , Flujo de Trabajo , Glicoproteínas/análisis , Glicoproteínas/química , Glicoproteínas/sangre , Cromatografía Liquida , Espectrometría de Masas en Tándem
2.
Clin Chem Lab Med ; 62(3): 540-550, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-37823394

RESUMEN

OBJECTIVES: Minimal residual disease status in multiple myeloma is an important prognostic biomarker. Recently, personalized blood-based targeted mass spectrometry (MS-MRD) was shown to provide a sensitive and minimally invasive alternative to measure minimal residual disease. However, quantification of MS-MRD requires a unique calibrator for each patient. The use of patient-specific stable isotope labelled (SIL) peptides is relatively costly and time-consuming, thus hindering clinical implementation. Here, we introduce a simplification of MS-MRD by using an off-the-shelf calibrator. METHODS: SILuMAB-based MS-MRD was performed by spiking a monoclonal stable isotope labeled IgG, SILuMAB-K1, in the patient serum. The abundance of both M-protein-specific peptides and SILuMAB-specific peptides were monitored by mass spectrometry. The relative ratio between M-protein peptides and SILuMAB peptides allowed for M-protein quantification. We assessed linearity, sensitivity and reproducibility of SILuMAB-based MS-MRD in longitudinally collected sera from the IFM-2009 clinical trial. RESULTS: A linear dynamic range was achieved of over 5 log scales, allowing for M-protein quantification down to 0.001 g/L. The inter-assay CV of SILuMAB-based MS-MRD was on average 11 %. Excellent concordance between SIL- and SILuMAB-based MS-MRD was shown (R2>0.985). Additionally, signal intensity of spiked SILuMAB can be used for quality control purpose to assess system performance and incomplete SILuMAB digestion can be used as quality control for sample preparation. CONCLUSIONS: Compared to SIL peptides, SILuMAB-based MS-MRD improves the reproducibility, turn-around-times and cost-efficacy of MS-MRD without diminishing its sensitivity and specificity. Furthermore, SILuMAB can be used as a MS-MRD quality control tool to monitor sample preparation efficacy and assay performance.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/diagnóstico , Neoplasia Residual , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos , Péptidos , Isótopos
3.
Clin Chem Lab Med ; 62(8): 1626-1635, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38332688

RESUMEN

OBJECTIVES: Multiple myeloma (MM) is a plasma cell malignancy characterized by a monoclonal expansion of plasma cells that secrete a characteristic M-protein. This M-protein is crucial for diagnosis and monitoring of MM in the blood of patients. Recent evidence has emerged suggesting that N-glycosylation of the M-protein variable (Fab) region contributes to M-protein pathogenicity, and that it is a risk factor for disease progression of plasma cell disorders. Current methodologies lack the specificity to provide a site-specific glycoprofile of the Fab regions of M-proteins. Here, we introduce a novel glycoproteogenomics method that allows detailed M-protein glycoprofiling by integrating patient specific Fab region sequences (genomics) with glycoprofiling by glycoproteomics. METHODS: Glycoproteogenomics was used for the detailed analysis of de novo N-glycosylation sites of M-proteins. First, Genomic analysis of the M-protein variable region was used to identify de novo N-glycosylation sites. Subsequently glycopeptide analysis with LC-MS/MS was used for detailed analysis of the M-protein glycan sites. RESULTS: Genomic analysis uncovered a more than two-fold increase in the Fab Light Chain N-glycosylation of M-proteins of patients with Multiple Myeloma compared to Fab Light Chain N-glycosylation of polyclonal antibodies from healthy individuals. Subsequent glycoproteogenomics analysis of 41 patients enrolled in the IFM 2009 clinical trial revealed that the majority of the Fab N-glycosylation sites were fully occupied with complex type glycans, distinguishable from Fc region glycans due to high levels of sialylation, fucosylation and bisecting structures. CONCLUSIONS: Together, glycoproteogenomics is a powerful tool to study de novo Fab N-glycosylation in plasma cell dyscrasias.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/genética , Mieloma Múltiple/diagnóstico , Glicosilación , Proteómica/métodos , Espectrometría de Masas en Tándem , Glicoproteínas/metabolismo , Cromatografía Liquida , Proteínas de Mieloma/metabolismo , Proteínas de Mieloma/análisis
4.
Clin Chem Lab Med ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38872409

RESUMEN

OBJECTIVES: Minimal residual disease (MRD) status in multiple myeloma (MM) is an important prognostic biomarker. Personalized blood-based targeted mass spectrometry detecting M-proteins (MS-MRD) was shown to provide a sensitive and minimally invasive alternative to MRD-assessment in bone marrow. However, MS-MRD still comprises of manual steps that hamper upscaling of MS-MRD testing. Here, we introduce a proof-of-concept for a novel workflow using data independent acquisition-parallel accumulation and serial fragmentation (dia-PASEF) and automated data processing. METHODS: Using automated data processing of dia-PASEF measurements, we developed a workflow that identified unique targets from MM patient sera and personalized protein sequence databases. We generated patient-specific libraries linked to dia-PASEF methods and subsequently quantitated and reported M-protein concentrations in MM patient follow-up samples. Assay performance of parallel reaction monitoring (prm)-PASEF and dia-PASEF workflows were compared and we tested mixing patient intake sera for multiplexed target selection. RESULTS: No significant differences were observed in lowest detectable concentration, linearity, and slope coefficient when comparing prm-PASEF and dia-PASEF measurements of serial dilutions of patient sera. To improve assay development times, we tested multiplexing patient intake sera for target selection which resulted in the selection of identical clonotypic peptides for both simplex and multiplex dia-PASEF. Furthermore, assay development times improved up to 25× when measuring multiplexed samples for peptide selection compared to simplex. CONCLUSIONS: Dia-PASEF technology combined with automated data processing and multiplexed target selection facilitated the development of a faster MS-MRD workflow which benefits upscaling and is an important step towards the clinical implementation of MS-MRD.

5.
Anal Bioanal Chem ; 416(15): 3595-3604, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676823

RESUMEN

Nucleotide sugars (NS) fulfil important roles in all living organisms and in humans, related defects result in severe clinical syndromes. NS can be seen as the "activated" sugars used for biosynthesis of a wide range of glycoconjugates and serve as substrates themselves for the synthesis of other nucleotide sugars. NS analysis is complicated by the presence of multiple stereoisomers without diagnostic transition ions, therefore requiring separation by liquid chromatography. In this paper, we explored weak anion-exchange/reversed-phase chromatography on a hybrid column for the separation of 17 nucleotide sugars that can occur in humans. A robust and reproducible method was established with intra- and inter-day coefficients of variation below 10% and a linear range spanning three orders of magnitude. Application to patient fibroblasts with genetic defects in mannose-1-phosphate guanylyltransferase beta, CDP-L-ribitol pyrophosphorylase A, and UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase showed abnormal levels of guanosine-5'-diphosphate-α-D-mannose (GDP-Man), cytidine-5'-diphosphate-L-ribitol (CDP-ribitol), and cytidine-5'-monophosphate-N-acetyl-ß-D-neuraminic acid (CMP-Neu5Ac), respectively, in consonance with expectations based on the diagnosis. In conclusion, a novel, semi-quantitative method was established for the analysis of nucleotide sugars that can be applied to diagnose several genetic glycosylation disorders in fibroblasts and beyond.


Asunto(s)
Cromatografía de Fase Inversa , Fibroblastos , Espectrometría de Masas en Tándem , Humanos , Fibroblastos/metabolismo , Espectrometría de Masas en Tándem/métodos , Cromatografía por Intercambio Iónico/métodos , Cromatografía de Fase Inversa/métodos , Nucleótidos/análisis , Nucleótidos/metabolismo , Aniones/análisis , Cromatografía Líquida con Espectrometría de Masas
6.
J Inherit Metab Dis ; 46(2): 313-325, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651519

RESUMEN

Congenital disorders of glycosylation (CDG) are a clinically and biochemically heterogeneous subgroup of inherited metabolic disorders. Most CDG with abnormal N-glycosylation can be detected by transferrin screening, however, MOGS-CDG escapes this routine screening. Combined with the clinical heterogeneity of reported cases, diagnosing MOGS-CDG can be challenging. Here, we clinically characterize ten MOGS-CDG cases including six previously unreported individuals, showing a phenotype characterized by dysmorphic features, global developmental delay, muscular hypotonia, and seizures in all patients and in a minority vision problems and hypogammaglobulinemia. Glycomics confirmed accumulation of a Glc3 Man7 GlcNAc2 glycan in plasma. For quantification of the diagnostic Glcα1-3Glcα1-3Glcα1-2Man tetrasaccharide in urine, we developed and validated a liquid chromatography-mass spectrometry method of 2-aminobenzoic acid (2AA) labeled urinary glycans. As an internal standard, isotopically labeled 13 C6 -2AA Glc3 Man was used, while labeling efficiency was controlled by use of 12 C6 -2AA and 13 C6 -2AA labeled laminaritetraose. Recovery, linearity, intra- and interassay coefficients of variability of these labeled compounds were determined. Furthermore, Glc3 Man was specifically identified by retention time matching against authentic MOGS-CDG urine and compared with Pompe urine. Glc3 Man was increased in all six analyzed cases, ranging from 34.1 to 618.0 µmol/mmol creatinine (reference <5 µmol). In short, MOGS-CDG has a broad manifestation of symptoms but can be diagnosed with the use of a quantitative method for analysis of urinary Glc3 Man excretion.


Asunto(s)
Trastornos Congénitos de Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Espectrometría de Masas/métodos , Oligosacáridos/metabolismo , Polisacáridos , Convulsiones
7.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768261

RESUMEN

The glycosylation of proteins plays an important role in neurological development and disease. Glycoproteomic studies on cerebrospinal fluid (CSF) are a valuable tool to gain insight into brain glycosylation and its changes in disease. However, it is important to consider that most proteins in CSFs originate from the blood and enter the CSF across the blood-CSF barrier, thus not reflecting the glycosylation status of the brain. Here, we apply a glycoproteomics method to human CSF, focusing on differences between brain- and blood-derived proteins. To facilitate the analysis of the glycan site occupancy, we refrain from glycopeptide enrichment. In healthy individuals, we describe the presence of heterogeneous brain-type N-glycans on prostaglandin H2-D isomerase alongside the dominant plasma-type N-glycans for proteins such as transferrin or haptoglobin, showing the tissue specificity of protein glycosylation. We apply our methodology to patients diagnosed with various genetic glycosylation disorders who have neurological impairments. In patients with severe glycosylation alterations, we observe that heavily truncated glycans and a complete loss of glycans are more pronounced in brain-derived proteins. We speculate that a similar effect can be observed in other neurological diseases where a focus on brain-derived proteins in the CSF could be similarly beneficial to gain insight into disease-related changes.


Asunto(s)
Encéfalo , Transferrina , Humanos , Glicosilación , Transferrina/metabolismo , Encéfalo/metabolismo , Polisacáridos/metabolismo
8.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175577

RESUMEN

Real-time database searching allows for simpler and automated proteomics workflows as it eliminates technical bottlenecks in high-throughput experiments. Most importantly, it enables results-dependent acquisition (RDA), where search results can be used to guide data acquisition during acquisition. This is especially beneficial for glycoproteomics since the wide range of physicochemical properties of glycopeptides lead to a wide range of optimal acquisition parameters. We established here the GlycoPaSER prototype by extending the Parallel Search Engine in Real-time (PaSER) functionality for real-time glycopeptide identification from fragmentation spectra. Glycopeptide fragmentation spectra were decomposed into peptide and glycan moiety spectra using common N-glycan fragments. Each moiety was subsequently identified by a specialized algorithm running in real-time. GlycoPaSER can keep up with the rate of data acquisition for real-time analysis with similar performance to other glycoproteomics software and produces results that are in line with the literature reference data. The GlycoPaSER prototype presented here provides the first proof-of-concept for real-time glycopeptide identification that unlocks the future development of RDA technology to transcend data acquisition.


Asunto(s)
Glicopéptidos , Motor de Búsqueda , Secuencia de Aminoácidos , Glicopéptidos/química , Glicosilación , Programas Informáticos , Polisacáridos/química
9.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175952

RESUMEN

Phosphoglucomutase 1 (PGM1) is a key enzyme for the regulation of energy metabolism from glycogen and glycolysis, as it catalyzes the interconversion of glucose 1-phosphate and glucose 6-phosphate. PGM1 deficiency is an autosomal recessive disorder characterized by a highly heterogenous clinical spectrum, including hypoglycemia, cleft palate, liver dysfunction, growth delay, exercise intolerance, and dilated cardiomyopathy. Abnormal protein glycosylation has been observed in this disease. Oral supplementation with D-galactose efficiently restores protein glycosylation by replenishing the lacking pool of UDP-galactose, and rescues some symptoms, such as hypoglycemia, hepatopathy, and growth delay. However, D-galactose effects on skeletal muscle and heart symptoms remain unclear. In this study, we established an in vitro muscle model for PGM1 deficiency to investigate the role of PGM1 and the effect of D-galactose on nucleotide sugars and energy metabolism. Genome-editing of C2C12 myoblasts via CRISPR/Cas9 resulted in Pgm1 (mouse homologue of human PGM1, according to updated nomenclature) knockout clones, which showed impaired maturation to myotubes. No difference was found for steady-state levels of nucleotide sugars, while dynamic flux analysis based on 13C6-galactose suggested a block in the use of galactose for energy production in knockout myoblasts. Subsequent analyses revealed a lower basal respiration and mitochondrial ATP production capacity in the knockout myoblasts and myotubes, which were not restored by D-galactose. In conclusion, an in vitro mouse muscle cell model has been established to study the muscle-specific metabolic mechanisms in PGM1 deficiency, which suggested that galactose was unable to restore the reduced energy production capacity.


Asunto(s)
Hipoglucemia , Fosfoglucomutasa , Animales , Ratones , Galactosa/farmacología , Glucosa , Homeostasis , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Nucleótidos , Fosfatos , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo
10.
Bioconjug Chem ; 33(3): 530-540, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35230093

RESUMEN

Because positron emission tomography (PET) and optical imaging are very complementary, the combination of these two imaging modalities is very enticing in the oncology field. Such bimodal imaging generally relies on imaging agents bearing two different imaging reporters. In the bioconjugation field, this is mainly performed by successive random conjugations of the two reporters on the protein vector, but these random conjugations can alter the vector properties. In this study, we aimed at abrogating the heterogeneity of the bimodal imaging immunoconjugate and mitigating the impact of multiple random conjugations. A trivalent platform bearing a DFO chelator for 89Zr labeling, a NIR fluorophore, IRDye800CW, and a bioconjugation handle was synthesized. This bimodal probe was site-specifically grafted to trastuzumab via glycan engineering. This new bimodal immunoconjugate was then investigated in terms of radiochemistry, in vitro and in vivo, and compared to the clinically relevant random equivalent. In vitro and in vivo, our strategy provides several improvements over the current clinical standard. The combination of site-specific conjugation with the monomolecular platform reduced the heterogeneity of the final immunoconjugate, improved the resistance of the fluorophore toward radiobleaching, and reduced the nonspecific uptake in the spleen and liver compared to the standard random immunoconjugate. To conclude, the strategy developed is very promising for the synthesis of better defined dual-labeled immunoconjugates, although there is still room for improvement. Importantly, this conjugation strategy is highly modular and could be used for the synthesis of a wide range of dual-labeled immunoconjugates.


Asunto(s)
Inmunoconjugados , Neoplasias , Línea Celular Tumoral , Colorantes Fluorescentes/química , Humanos , Inmunoconjugados/química , Tomografía de Emisión de Positrones/métodos , Radioisótopos/química , Distribución Tisular , Circonio/química
11.
Clin Chem ; 67(6): 867-875, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33709101

RESUMEN

BACKGROUND: Due to improved treatment, more patients with multiple myeloma (MM) reach a state of minimal residual disease (MRD). Different strategies for MM MRD monitoring include flow cytometry, allele-specific oligonucleotide-quantitative PCR, next-generation sequencing, and mass spectrometry (MS). The last 3 methods rely on the presence and the stability of a unique immunoglobulin fingerprint derived from the clonal plasma cell population. For MS-MRD monitoring it is imperative that MS-compatible clonotypic M-protein peptides are identified. To support implementation of molecular MRD techniques, we studied the presence and stability of these clonotypic features in the CoMMpass database. METHODS: An analysis pipeline based on MiXCR and HIGH-VQUEST was constructed to identify clonal molecular fingerprints and their clonotypic peptides based on transcriptomic datasets. To determine the stability of the clonal fingerprints, we compared the clonal fingerprints during disease progression for each patient. RESULTS: The analysis pipeline to establish the clonal fingerprint and MS-suitable clonotypic peptides was successfully validated in MM cell lines. In a cohort of 609 patients with MM, we demonstrated that the most abundant clone harbored a unique clonal molecular fingerprint and that multiple unique clonotypic peptides compatible with MS measurements could be identified for all patients. Furthermore, the clonal immunoglobulin gene fingerprints of both the light and heavy chain remained stable during MM disease progression. CONCLUSIONS: Our data support the use of the clonal immunoglobulin gene fingerprints in patients with MM as a suitable MRD target for MS-MRD analyses.


Asunto(s)
Genes de Inmunoglobulinas/fisiología , Mieloma Múltiple , Péptidos/química , Biomarcadores , Progresión de la Enfermedad , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Neoplasia Residual/genética , Péptidos/genética
12.
Exp Eye Res ; 213: 108798, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695439

RESUMEN

Age-related macular degeneration (AMD) has been associated with protective genetic variants in the ß1-3 glucosyltransferase (B3GLCT) locus through genome-wide association studies. B3GLCT mediates modification of proteins with thrombospondin type I repeats (TSR) that contain O-linked glucose ß1-3 fucose and C-linked mannose glycosylation motifs. B3GLCT-mediated modification is required for proper secretion of TSR-containing proteins. We aimed to start understanding the role of B3GLCT in AMD by evaluating its effect on glycosylation and secretion of proteins from retinal pigment epithelium (RPE) cells. We generated B3GLCT knockout (KO) RPE cells and analyzed glycosylation and secretion of thrombospondin 1 (TSP1), a protein involved in cellular processes highly relevant to AMD. Glycopeptide analysis confirmed the presence of the glucose-ß1,3-fucose product of B3GLCT on TSP1 in wildtype (WT) cells and its absence in KO cells. C-mannosylation was variably present on WT TSP1 and increased on TSR domains 1 and 3 in KO cells. Secretion of TSP1 was not affected by the absence of B3GLCT, even not when TSP1 was upregulated by TNFα treatment or when TSP1 was overexpressed in HEK293T cells. Future research is needed to elucidate the effect of the observed glycosylation defects in the context of AMD, which might involve functional loss of TSP1 or effects on other TSR proteins.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Galactosiltransferasas/genética , Glucosiltransferasas/genética , Degeneración Macular/genética , Epitelio Pigmentado de la Retina/metabolismo , Western Blotting , Sistemas CRISPR-Cas , Línea Celular , Expresión Génica/fisiología , Técnicas de Inactivación de Genes , Glicosilación , Humanos , Degeneración Macular/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en Tándem
13.
J Hum Genet ; 65(9): 743-750, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32313197

RESUMEN

Variants in SLC35C1 underlie leucocyte adhesion deficiency (LADII) or congenital disorder of glycosylation type 2c (CDGIIc), an autosomal recessive disorder of fucosylation. This immunodeficiency syndrome is generally characterized by severe recurrent infections, Bombay blood group, reduced growth and intellectual disability (ID). Features are all caused by an inability to generate key fucosylated molecules due to a defective transport of GDP-fucose into the Golgi. Here we report the use of exome sequencing to identify biallelic variants in SLC35C1 (c.501_503delCTT, p.(Phe168del) and c.891T > G, p.(Asn297Lys)) in an individual with short stature and ID. Retrospective clinical examination based on the genetic findings revealed increased otitis media as the only immunological feature present in this child. Biochemical analysis of patient serum identified a clear but mild decrease in protein fucosylation. Modelling all described missense mutations on a SLC35C1 protein model showed pathogenic substitutions localise to close to the dimer interface, providing insight into the possible pathophysiology of non-synonymous causative variants identified in patients. Our evidence confirms this is the second family presenting with only a subset of features and broadens the clinical presentation of this syndrome. Of note, both families segregated a common allele (p.Phe168del), suggesting there could be an associated genotype-phenotype relationship for specific variants. Based on two out of 14 reported families not presenting with the characteristic features of SLC35C1-CDG, we suggest there is clinical utility in considering this gene in patients with short stature and ID.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Enanismo/genética , Discapacidad Intelectual/genética , Proteínas de Transporte de Monosacáridos/genética , Alelos , Preescolar , Cromatografía Liquida , Trastornos Congénitos de Glicosilación/sangre , Trastornos Congénitos de Glicosilación/complicaciones , Enanismo/sangre , Enanismo/complicaciones , Enanismo/fisiopatología , Femenino , Estudios de Asociación Genética , Glicómica , Humanos , Discapacidad Intelectual/sangre , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/fisiopatología , Proteínas de Transporte de Monosacáridos/química , Mutación Missense , Plasma/química , Plasma/inmunología , Plasma/metabolismo , Estudios Retrospectivos , Alineación de Secuencia , Espectrometría de Masas en Tándem , Secuenciación del Exoma
14.
Protein Expr Purif ; 174: 105677, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32461183

RESUMEN

INTRODUCTION: Assessing the specificity of protein binders is an essential first step in protein biomarker assay development. Affimers are novel protein binders and can potentially replace antibodies in multiple protein capture-based assays. Affimers are selected for their high specificity against the target protein and have benefits over antibodies like batch-to-batch reproducibility and are stable across a wide range of chemical conditions. Here we mimicked a typical initial screening of affimers and commercially available monoclonal antibodies against two non-related proteins, IL-37b and proinsulin, to assess the potential of affimers as alternative to antibodies. METHODS: Binding specificity of anti-IL-37b and anti-proinsulin affimers and antibodies was investigated via magnetic bead-based capture of their recombinant protein targets in human plasma. Captured proteins were analyzed using SDS-PAGE, Coomassie blue staining, Western blotting and LC-MS/MS-based proteomics. RESULTS: All affimers and antibodies were able to bind their target protein in human plasma. Gel and LC-MS/MS analysis showed that both affimer and antibody-based captures resulted in co-purified background proteins. However, affimer-based captures showed the highest relative enrichment of IL-37b and proinsulin. CONCLUSIONS: For both proteins tested, affimers show higher specificity in purifying their target proteins from human plasma compared to monoclonal antibodies. These results indicate that affimers are promising antibody-replacement tools for protein biomarker assay development.


Asunto(s)
Materiales Biomiméticos/química , Interleucina-1 , Proinsulina , Biomarcadores , Humanos , Interleucina-1/antagonistas & inhibidores , Interleucina-1/química , Proinsulina/antagonistas & inhibidores , Proinsulina/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
15.
Expert Rev Proteomics ; 16(2): 105-115, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30468403

RESUMEN

INTRODUCTION: The onset of type 2 diabetes mellitus (T2DM) is strongly associated with obesity and subsequent perturbations in immuno-metabolic responses. To understand the complexity of these systemic changes and better monitor the health status of people at risk, validated clinical biomarkers are needed. Omics technologies are increasingly applied to measure the interplay of genes, proteins and metabolites in biological systems, which is imperative in understanding molecular mechanisms of disease and selecting the best possible molecular biomarkers for clinical use. Areas covered: This review describes the complex onset of T2DM, the contribution of obesity and adipose tissue inflammation to the T2DM disease mechanism, and the output of current biomarker strategies. A new biomarker approach is described that combines published and new self-generated data to merge multiple -omes (i.e. genome, proteome, metabolome etc.) toward understanding of mechanism of disease on the individual level and design multiparameter biomarker panels that drive significant impacts on personalized healthcare. Expert commentary: We here propose an approach to use cross-omics analyses to contextualize published biomarker data and better understand molecular mechanisms of health and disease. This will improve the current and future innovation gaps in translation of discovered putative biomarkers to clinically applicable biomarker tests.


Asunto(s)
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Biomarcadores/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Humanos , Investigación Biomédica Traslacional/métodos
16.
Biochim Biophys Acta ; 1857(10): 1694-704, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27461995

RESUMEN

Electron transport, or oxidative phosphorylation, is one of the hallmarks of life. To this end, prokaryotes evolved a vast variety of protein complexes, only a small part of which have been discovered and studied. These protein complexes allow them to occupy virtually every ecological niche on Earth. Here, we applied the method of proteomics-based complexome profiling to get a better understanding of the electron transport systems of the anaerobic ammonium-oxidizing (anammox) bacteria, the N2-producing key players of the global nitrogen cycle. By this method nearly all respiratory complexes that were previously predicted from genome analysis to be involved in energy and cell carbon fixation were validated. More importantly, new and unexpected ones were discovered. We believe that complexome profiling in concert with (meta)genomics offers great opportunities to expand our knowledge on bacterial respiratory processes at a rapid and massive pace, in particular in new and thus far poorly investigated non-model and environmentally-relevant species.


Asunto(s)
Compuestos de Amonio/metabolismo , Anaerobiosis/fisiología , Bacterias/metabolismo , Transporte de Electrón/fisiología , Membranas/metabolismo , Fenómenos Bioquímicos/fisiología , Respiración de la Célula/fisiología , Electrones , Nitrógeno/metabolismo , Oxidación-Reducción , Fosforilación/fisiología , Proteómica/métodos , Compuestos de Amonio Cuaternario/metabolismo
17.
Nature ; 478(7369): 412-6, 2011 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22012399

RESUMEN

Extremophilic organisms require specialized enzymes for their exotic metabolisms. Acid-loving thermophilic Archaea that live in the mudpots of volcanic solfataras obtain their energy from reduced sulphur compounds such as hydrogen sulphide (H(2)S) and carbon disulphide (CS(2)). The oxidation of these compounds into sulphuric acid creates the extremely acidic environment that characterizes solfataras. The hyperthermophilic Acidianus strain A1-3, which was isolated from the fumarolic, ancient sauna building at the Solfatara volcano (Naples, Italy), was shown to rapidly convert CS(2) into H(2)S and carbon dioxide (CO(2)), but nothing has been known about the modes of action and the evolution of the enzyme(s) involved. Here we describe the structure, the proposed mechanism and evolution of a CS(2) hydrolase from Acidianus A1-3. The enzyme monomer displays a typical ß-carbonic anhydrase fold and active site, yet CO(2) is not one of its substrates. Owing to large carboxy- and amino-terminal arms, an unusual hexadecameric catenane oligomer has evolved. This structure results in the blocking of the entrance to the active site that is found in canonical ß-carbonic anhydrases and the formation of a single 15-Å-long, highly hydrophobic tunnel that functions as a specificity filter. The tunnel determines the enzyme's substrate specificity for CS(2), which is hydrophobic. The transposon sequences that surround the gene encoding this CS(2) hydrolase point to horizontal gene transfer as a mechanism for its acquisition during evolution. Our results show how the ancient ß-carbonic anhydrase, which is central to global carbon metabolism, was transformed by divergent evolution into a crucial enzyme in CS(2) metabolism.


Asunto(s)
Acidianus/enzimología , Disulfuro de Carbono/metabolismo , Evolución Molecular , Hidrolasas/genética , Acidianus/clasificación , Acidianus/genética , Dominio Catalítico , Cristalografía por Rayos X , Hidrolasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Filogenia , Estructura Terciaria de Proteína
18.
Nature ; 464(7288): 543-8, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20336137

RESUMEN

Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.


Asunto(s)
Anaerobiosis , Bacterias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Genoma Bacteriano/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Oxígeno/metabolismo , Oxigenasas/genética , Filogenia , Microbiología del Suelo
19.
Mol Microbiol ; 94(4): 794-802, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25287816

RESUMEN

Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere.


Asunto(s)
Amoníaco/metabolismo , Bacterias/aislamiento & purificación , Orgánulos/metabolismo , Anaerobiosis , Bacterias/metabolismo , Bacterias/ultraestructura , Proteínas Bacterianas/metabolismo , Metabolismo Energético , Microscopía Electrónica de Transmisión , Orgánulos/química , Orgánulos/ultraestructura , Oxidación-Reducción , Proteoma/análisis
20.
Acta Neuropathol Commun ; 12(1): 6, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191511

RESUMEN

Cerebral amyloid angiopathy (CAA) is a form of small vessel disease characterised by the progressive deposition of amyloid ß protein in the cerebral vasculature, inducing symptoms including cognitive impairment and cerebral haemorrhages. Due to their accessibility and homogeneous disease phenotypes, animal models are advantageous platforms to study diseases like CAA. Untargeted proteomics studies of CAA rat models (e.g. rTg-DI) and CAA patients provide opportunities for the identification of novel biomarkers of CAA. We performed untargeted, data-independent acquisition proteomic shotgun analyses on the cerebrospinal fluid of rTg-DI rats and wild-type (WT) littermates. Rodents were analysed at 3 months (n = 6/10), 6 months (n = 8/8), and 12 months (n = 10/10) for rTg-DI and WT respectively. For humans, proteomic analyses were performed on CSF of sporadic CAA patients (sCAA) and control participants (n = 39/28). We show recurring patterns of differentially expressed (mostly increased) proteins in the rTg-DI rats compared to wild type rats, especially of proteases of the cathepsin protein family (CTSB, CTSD, CTSS), and their main inhibitor (CST3). In sCAA patients, decreased levels of synaptic proteins (e.g. including VGF, NPTX1, NRXN2) and several members of the granin family (SCG1, SCG2, SCG3, SCG5) compared to controls were discovered. Additionally, several serine protease inhibitors of the SERPIN protein family (including SERPINA3, SERPINC1 and SERPING1) were differentially expressed compared to controls. Fifteen proteins were significantly altered in both rTg-DI rats and sCAA patients, including (amongst others) SCG5 and SERPING1. These results identify specific groups of proteins likely involved in, or affected by, pathophysiological processes involved in CAA pathology such as protease and synapse function of rTg-DI rat models and sCAA patients, and may serve as candidate biomarkers for sCAA.


Asunto(s)
Angiopatía Amiloide Cerebral , Roedores , Humanos , Ratas , Animales , Proteína Inhibidora del Complemento C1 , Péptidos beta-Amiloides , Proteómica , Endopeptidasas , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA