Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 18(4): 1827-1841, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30793910

RESUMEN

Arctic ground squirrels provide a unique model to investigate metabolic responses to hibernation in mammals. During winter months these rodents are exposed to severe hypothermia, prolonged fasting, and hypoxemia. In the light of their role in oxygen transport/off-loading and owing to the absence of nuclei and organelles (and thus de novo protein synthesis capacity), mature red blood cells have evolved metabolic programs to counteract physiological or pathological hypoxemia. However, red blood cell metabolism in hibernation has not yet been investigated. Here we employed targeted and untargeted metabolomics approaches to investigate erythrocyte metabolism during entrance to torpor to arousal, with a high resolution of the intermediate time points. We report that torpor and arousal promote metabolism through glycolysis and pentose phosphate pathway, respectively, consistent with previous models of oxygen-dependent metabolic modulation in mature erythrocytes. Erythrocytes from hibernating squirrels showed up to 100-fold lower levels of biomarkers of reperfusion injury, such as the pro-inflammatory dicarboxylate succinate. Altered tryptophan metabolism during torpor was here correlated to the accumulation of potentially neurotoxic catabolites kynurenine, quinolinate, and picolinate. Arousal was accompanied by alterations of sulfur metabolism, including sudden spikes in a metabolite putatively identified as thiorphan (level 1 confidence)-a potent inhibitor of several metalloproteases that play a crucial role in nociception and inflammatory complication to reperfusion secondary to ischemia or hemorrhage. Preliminary studies in rats showed that intravenous injection of thiorphan prior to resuscitation mitigates metabolic and cytokine markers of reperfusion injury, etiological contributors to inflammatory complications after shock.


Asunto(s)
Nivel de Alerta/fisiología , Eritrocitos , Metaboloma/fisiología , Sciuridae , Letargo/fisiología , Animales , Eritrocitos/metabolismo , Eritrocitos/fisiología , Hibernación/fisiología , Sciuridae/sangre , Sciuridae/metabolismo , Sciuridae/fisiología , Azufre/metabolismo , Triptófano/metabolismo
2.
Sci Rep ; 12(1): 22191, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564503

RESUMEN

Extracellular vesicles (EVs) participate in cell-to-cell communication and contribute toward homeostasis under physiological conditions. But EVs can also contribute toward a wide array of pathophysiology like cancer, sepsis, sickle cell disease, and thrombotic disorders. COVID-19 infected patients are at an increased risk of aberrant coagulation, consistent with elevated circulating levels of ultra-high molecular weight VWF multimers, D-dimer and procoagulant EVs. The role of EVs in COVID-19 related hemostasis may depend on cells of origin, vesicular cargo and size, however this is not well defined. We hypothesized that the procoagulant potential of EV isolates from COVID-19 (+) patient plasmas could be defined by thrombin generation assays. Here we isolated small EVs (SEVs) and large EVs (LEVs) from hospitalized COVID-19 (+) patient (n = 21) and healthy donor (n = 20) plasmas. EVs were characterized by flow cytometry, Transmission electron microscopy, nanoparticle tracking analysis, plasma thrombin generation and a multi-omics approach to define coagulation potential. These data were consistent with differences in EV metabolite, lipid, and protein content when compared to healthy donor plasma isolated SEVs and LEVs. Taken together, the effect of EVs on plasma procoagulant potential as defined by thrombin generation and supported by multi-omics is enhanced in COVID-19. Further, we observe that this effect is driven both by EV size and phosphatidyl serine.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Trombosis , Humanos , Trombina/metabolismo , COVID-19/complicaciones , Vesículas Extracelulares/metabolismo , Coagulación Sanguínea , Trombosis/metabolismo
3.
Pulm Circ ; 11(4): 20458940211055996, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777785

RESUMEN

Sickle cell anemia and ß-thalassemia intermedia are very different genetically determined hemoglobinopathies predisposing to pulmonary hypertension. The etiologies responsible for the associated development of pulmonary hypertension in both diseases are multi-factorial with extensive mechanistic contributors described. Both sickle cell anemia and ß-thalassemia intermedia present with intra and extravascular hemolysis. And because sickle cell anemia and ß-thalassemia intermedia share features of extravascular hemolysis, macrophage iron excess and anemia we sought to characterize the common features of the pulmonary hypertension phenotype, cardiac mechanics, and function as well as lung and right ventricular metabolism. Within the concept of iron, we have defined a unique pulmonary vascular iron accumulation in lungs of sickle cell anemia pulmonary hypertension patients at autopsy. This observation is unlike findings in idiopathic or other forms of pulmonary arterial hypertension. In this study, we hypothesized that a common pathophysiology would characterize the pulmonary hypertension phenotype in sickle cell anemia and ß-thalassemia intermedia murine models. However, unlike sickle cell anemia, ß-thalassemia is also a disease of dyserythropoiesis, with increased iron absorption and cellular iron extrusion. This process is mediated by high erythroferrone and low hepcidin levels as well as dysregulated iron transport due transferrin saturation, so there may be differences as well. Herein we describe common and divergent features of pulmonary hypertension in aged Berk-ss (sickle cell anemia) and Hbbth/3+ (intermediate ß-thalassemia) mice and suggest translational utility as proof-of-concept models to study pulmonary hypertension therapeutics specific to genetic anemias.

4.
Nat Commun ; 10(1): 4766, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628327

RESUMEN

Trisomy 21 (T21) causes Down syndrome (DS), affecting immune and neurological function by ill-defined mechanisms. Here we report a large metabolomics study of plasma and cerebrospinal fluid, showing in independent cohorts that people with DS produce elevated levels of kynurenine and quinolinic acid, two tryptophan catabolites with potent immunosuppressive and neurotoxic properties, respectively. Immune cells of people with DS overexpress IDO1, the rate-limiting enzyme in the kynurenine pathway (KP) and a known interferon (IFN)-stimulated gene. Furthermore, the levels of IFN-inducible cytokines positively correlate with KP dysregulation. Using metabolic tracing assays, we show that overexpression of IFN receptors encoded on chromosome 21 contribute to enhanced IFN stimulation, thereby causing IDO1 overexpression and kynurenine overproduction in cells with T21. Finally, a mouse model of DS carrying triplication of IFN receptors exhibits KP dysregulation. Together, our results reveal a mechanism by which T21 could drive immunosuppression and neurotoxicity in DS.


Asunto(s)
Cromosomas Humanos Par 21/genética , Síndrome de Down/genética , Quinurenina/metabolismo , Receptores de Interferón/genética , Trisomía , Animales , Vías Biosintéticas/genética , Línea Celular , Citocinas/metabolismo , Síndrome de Down/metabolismo , Expresión Génica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Metabolómica/métodos , Ratones Endogámicos C57BL , Ácido Quinolínico/metabolismo , Receptores de Interferón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA