Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(30): e2300981120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459510

RESUMEN

Assessing the distribution of geographically restricted and evolutionarily unique species and their underlying drivers is key to understanding biogeographical processes and critical for global conservation prioritization. Here, we quantified the geographic distribution and drivers of phylogenetic endemism for ~320,000 seed plants worldwide and identified centers and drivers of evolutionarily young (neoendemism) and evolutionarily old endemism (paleoendemism). Tropical and subtropical islands as well as tropical mountain regions displayed the world's highest phylogenetic endemism. Most tropical rainforest regions emerged as centers of paleoendemism, while most Mediterranean-climate regions showed high neoendemism. Centers where high neo- and paleoendemism coincide emerged on some oceanic and continental fragment islands, in Mediterranean-climate regions and parts of the Irano-Turanian floristic region. Global variation in phylogenetic endemism was well explained by a combination of past and present environmental factors (79.8 to 87.7% of variance explained) and most strongly related to environmental heterogeneity. Also, warm and wet climates, geographic isolation, and long-term climatic stability emerged as key drivers of phylogenetic endemism. Neo- and paleoendemism were jointly explained by climatic and geological history. Long-term climatic stability promoted the persistence of paleoendemics, while the isolation of oceanic islands and their unique geological histories promoted neoendemism. Mountainous regions promoted both neo- and paleoendemism, reflecting both diversification and persistence over time. Our study provides insights into the evolutionary underpinnings of biogeographical patterns in seed plants and identifies the areas on Earth with the highest evolutionary and biogeographical uniqueness-key information for setting global conservation priorities.


Asunto(s)
Biodiversidad , Evolución Biológica , Filogenia , Semillas , Geología
2.
Glob Chang Biol ; 30(7): e17426, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39049564

RESUMEN

The ecological impact of non-native species arises from their establishment in local assemblages. However, the rates of non-native spread in new regions and their determinants have not been comprehensively studied. Here, we combined global databases documenting the occurrence of non-native species and residence of non-native birds, mammals, and vascular plants at regional and local scales to describe how the likelihood of non-native occurrence and their proportion in local assemblages relate with their residence time and levels of human usage in different ecosystems. Our findings reveal that local non-native occurrence generally increases with residence time. Colonization is most rapid in croplands and urban areas, while it is slower and variable in natural or semi-natural ecosystems. Notably, non-native occurrence continues to rise even 200 years after introduction, especially for birds and vascular plants, and in other land-use types rather than croplands and urban areas. The impact of residence time on non-native proportions is significant only for mammals. We conclude that the continental exchange of biotas requires considerable time for effects to manifest at the local scale across taxa and land-use types. The unpredictability of future impacts, implied by the slow spread of non-native species, strengthens the call for stronger regulations on the exchange of non-native species to reduce the long-lasting invasion debt looming on ecosystems' future.


Asunto(s)
Aves , Especies Introducidas , Mamíferos , Animales , Plantas , Ecosistema , Biodiversidad , Conservación de los Recursos Naturales
3.
New Phytol ; 240(4): 1687-1702, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37243532

RESUMEN

Taxonomic checklists used to verify published plant names and identify synonyms are a cornerstone of biological research. Four global authoritative checklists for vascular plants exist: Leipzig Catalogue of Vascular Plants, World Checklist of Vascular Plants, World Flora Online (successor of The Plant List, TPL), and WorldPlants. We compared these four checklists in terms of size and differences across taxa. We matched taxon names of these checklists and TPL against each other, identified differences across checklists, and evaluated the consistency of accepted names linked to individual taxon names. We assessed geographic and phylogenetic patterns of variance. All checklists differed strongly compared with TPL and provided identical information on c. 60% of plant names. Geographically, differences in checklists increased from low to high latitudes. Phylogenetically, we detected strong variability across families. A comparison of name-matching performance on taxon names submitted to the functional trait database TRY, and a check of completeness of accepted names evaluated against an independent, expert-curated checklist of the family Meliaceae, showed a similar performance across checklists. This study raises awareness on the differences in data and approach across these checklists potentially impacting analyses. We propose ideas on the way forward exploring synergies and harmonizing the four global checklists.


Asunto(s)
Lista de Verificación , Tracheophyta , Humanos , Filogenia , Plantas , Bases de Datos Factuales
4.
New Phytol ; 239(6): 2389-2403, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37438886

RESUMEN

Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.


Asunto(s)
Ecosistema , Tracheophyta , Tamaño del Genoma , Ciudadanía , Ploidias , Especies Introducidas , ADN
5.
New Phytol ; 237(4): 1432-1445, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36375492

RESUMEN

Despite the paramount role of plant diversity for ecosystem functioning, biogeochemical cycles, and human welfare, knowledge of its global distribution is still incomplete, hampering basic research and biodiversity conservation. Here, we used machine learning (random forests, extreme gradient boosting, and neural networks) and conventional statistical methods (generalized linear models and generalized additive models) to test environment-related hypotheses of broad-scale vascular plant diversity gradients and to model and predict species richness and phylogenetic richness worldwide. To this end, we used 830 regional plant inventories including c. 300 000 species and predictors of past and present environmental conditions. Machine learning showed a superior performance, explaining up to 80.9% of species richness and 83.3% of phylogenetic richness, illustrating the great potential of such techniques for disentangling complex and interacting associations between the environment and plant diversity. Current climate and environmental heterogeneity emerged as the primary drivers, while past environmental conditions left only small but detectable imprints on plant diversity. Finally, we combined predictions from multiple modeling techniques (ensemble predictions) to reveal global patterns and centers of plant diversity at multiple resolutions down to 7774 km2 . Our predictive maps provide accurate estimates of global plant diversity available at grain sizes relevant for conservation and macroecology.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Filogenia , Clima , Modelos Lineales , Plantas
6.
Ecol Lett ; 24(8): 1655-1667, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34031959

RESUMEN

With globalisation facilitating the movement of plants and seeds beyond the native range, preventing potentially harmful introductions requires knowledge of what drives the successful establishment and spread of alien plants. Here, we examined global-scale relationships between naturalisation success (incidence and extent) and invasiveness, soil seed bank properties (type and densities) and key species traits (seed mass, seed dormancy and life form) for 2350 species of angiosperms. Naturalisation and invasiveness were strongly associated with the ability to form persistent (vs. transient) seed banks but relatively weakly with seed bank densities and other traits. Our findings suggest that seed bank persistence is a trait that better captures the ability to become naturalised and invasive compared to seed traits more widely available in trait databases. Knowledge of seed persistence can contribute to our ability to predict global naturalisation and invasiveness and to identify potentially invasive flowering plants before they are introduced.


Asunto(s)
Magnoliopsida , Banco de Semillas , Latencia en las Plantas , Semillas , Suelo
7.
New Phytol ; 229(5): 2998-3008, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33078849

RESUMEN

Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges.


Asunto(s)
Ecosistema , Plantas , Geografía , Especies Introducidas , Filogenia , Plantas/genética
8.
New Phytol ; 232(4): 1849-1862, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34455590

RESUMEN

The functioning of present ecosystems reflects deep evolutionary history of locally cooccurring species if their functional traits show high phylogenetic signal (PS). However, we do not understand what drives local PS. We hypothesize that local PS is high in undisturbed and stressful habitats, either due to ongoing local assembly of species that maintained ancestral traits, or to past evolutionary maintenance of ancestral traits within habitat species-pools, or to both. We quantified PS and diversity of 10 traits within 6704 local plant communities across 38 Dutch habitat types differing in disturbance or stress. Mean local PS varied 50-fold among habitat types, often independently of phylogenetic or trait diversity. Mean local PS decreased with disturbance but showed no consistent relationship to stress. Mean local PS exceeded species-pool PS, reflecting nonrandom subsampling from the pool. Disturbance or stress related more strongly to mean local than to species-pool PS. Disturbed habitats harbour species with evolutionary divergent trait values, probably driven by ongoing, local assembly of species: environmental fluctuations might maintain different trait values within lineages through an evolutionary storage effect. If functional traits do not reflect phylogeny, ecosystem functioning might not be contingent on the presence of particular lineages, and lineages might establish evolutionarily novel interactions.


Asunto(s)
Evolución Biológica , Ecosistema , Biodiversidad , Fenotipo , Filogenia , Plantas/genética
9.
Nature ; 525(7567): 100-3, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26287466

RESUMEN

All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.


Asunto(s)
Biodiversidad , Mapeo Geográfico , Especies Introducidas/estadística & datos numéricos , Plantas , Bases de Datos Factuales , América del Norte , Islas del Pacífico , Filogeografía
10.
Proc Natl Acad Sci U S A ; 115(37): 9270-9275, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30158167

RESUMEN

One of the best-known general patterns in island biogeography is the species-isolation relationship (SIR), a decrease in the number of native species with increasing island isolation that is linked to lower rates of natural dispersal and colonization on remote oceanic islands. However, during recent centuries, the anthropogenic introduction of alien species has increasingly gained importance and altered the composition and richness of island species pools. We analyzed a large dataset for alien and native plants, ants, reptiles, mammals, and birds on 257 (sub) tropical islands, and showed that, except for birds, the number of naturalized alien species increases with isolation for all taxa, a pattern that is opposite to the negative SIR of native species. We argue that the reversal of the SIR for alien species is driven by an increase in island invasibility due to reduced diversity and increased ecological naiveté of native biota on the more remote islands.


Asunto(s)
Especies Introducidas , Islas , Modelos Biológicos , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA