Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38684007

RESUMEN

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Asunto(s)
Anfibios , Biodiversidad , Filogenia , Animales , Anfibios/clasificación , China , Conservación de los Recursos Naturales
2.
Clin Chem Lab Med ; 61(6): 1069-1074, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36635945

RESUMEN

OBJECTIVES: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become a common technique in clinical laboratories in recent years. Because most methods are laboratory-developed tests (LDTs), their reproducibility and quality control (QC) have been controversial. In this study, Westgard Sigma Rules were used to evaluate the analytical performance and establish an individualised internal QC (IQC) strategy for these LDTs. METHODS: Taking the LC-MS/MS LDT method for homocysteine (Hcy) as an example, the 'desirable specifications' from the Biological Variation Database were used as quality goals. Based on the external quality assessment (EQA) samples, bias was calculated and the coefficient of variation (CV) was also calculated by IQC measurements for six consecutive months. The analytical performance was evaluated by calculated sigma metrics and an IQC strategy was designed using the Westgard Sigma Rules with run size. RESULTS: Over 116 days within 6 months, a total of 850 data points were collected for each of IQC 1 and IQC 2. The monthly coefficient of variation CV% was 2.57-4.01%, which was non-significant (p-value: 0.75). The absolute bias% for IQC1 and IQC2 was 1.23 and 1.87%, respectively. The allowable total error (TEa) was selected as 15.5%, Sigma metrics were 4.02 and 4.30, and the analytical performance was 'Good'. The 13s/22s/R4s/41s multi rules (n=4, r=1) with a run size of 200 samples were suggested for the Hcy IQC scheme. The quality goal index (QGI) values were over 1.2, indicating that trueness needed to be improved. CONCLUSIONS: The analytical performance of the Hcy LC-MS/MS LDT conformed to the Six Sigma rating level, achieving 'good' (four Sigma). Clinical practice indicated that calibration bias was the primary factor affecting trueness.


Asunto(s)
Espectrometría de Masas en Tándem , Gestión de la Calidad Total , Humanos , Cromatografía Liquida , Reproducibilidad de los Resultados , Control de Calidad , Gestión de la Calidad Total/métodos
3.
BMC Endocr Disord ; 23(1): 101, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147636

RESUMEN

BACKGROUND: To explore the characteristics of retina microvascular changes in patients with diabetic nephropathy (DN) and its risk factors. METHODS: Retrospective, observational study. 145 patients with type 2 diabetic mellitus (DM) and DN were included in the study. Demographic and clinical parameters were obtained from medical records. Presence of diabetic retinopathy (DR), hard exudates (HEs) and diabetic macular edema (DME) were evaluated according to the color fundus images, optical coherence tomography (OCT) and fluorescence angiography (FFA). RESULTS: DR accounted for 61.4% in type 2 DM patients with DN, of which proliferative diabetic retinopathy (PDR) accounted for 23.6% and sight threatening DR accounted for 35.7%. DR group had significantly higher levels of low-density lipoprotein cholesterol (LDL-C) (p = 0.004), HbA1c (P = 0.037), Urine albumin creatine ratio (ACR) (p < 0.001) and lower level of estimated glomerular filtration rate (eGFR) (P = 0.013). Logistic regression analysis showed DR was significantly associated with ACR stage (p = 0.011). Subjects with ACR stage3 had higher incidence of DR compared with subjects with ACR stage1 (OR = 24.15, 95%CI: 2.06-282.95). 138 eyes of 138 patients were analyzed for HEs and DME, of which 23.2% had HEs in posterior pole and 9.4% had DME. Visual acuity was worse in HEs group than in non-HEs group. There was significant difference in the LDL-C cholesterol level, total cholesterol (CHOL) level and ACR between HEs group and non-HEs group. CONCLUSIONS: A relatively higher prevalence of DR was found in type 2 DM patients with DN. ACR stage could be recognized as a risk factor for DR in DN patients. Patients with DN needs ophthalmic examination more timely and more frequently.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Retinopatía Diabética , Edema Macular , Humanos , Retinopatía Diabética/epidemiología , Retinopatía Diabética/etiología , Retinopatía Diabética/diagnóstico , Nefropatías Diabéticas/complicaciones , Estudios Retrospectivos , Edema Macular/diagnóstico , Edema Macular/etiología , Diabetes Mellitus Tipo 2/complicaciones , LDL-Colesterol , Retina
4.
Pestic Biochem Physiol ; 190: 105338, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36740337

RESUMEN

Bradysia odoriphaga and Bradysia difformis are destructive root maggots that cause severe losses to vegetables, flowers and edible fungi. Due to the long-term dependence on single pesticides, Bradysia resistance to insecticides has increased, and field control efficacy has decreased obviously. To screen alternative insecticides, and compare the insecticide susceptibility of these two species, we tested the toxicity of eight insecticides to B. odoriphaga and B. difformis, and measured the sublethal effects of Dinotefuran and Lufenuron on life-history parameters and detoxification enzyme activities. Bioassay results indicated that Dinotefuran and Lufenuron had relatively higher toxicity to B. odoriphaga and B. difformis compared to other neonicotinoid and insect growth regulator insecticides, respectively. Significant adverse impacts caused by sublethal concentrations (LC20) of Dinotefuran and Lufenuron on the life-history parameters of F0 and F1 generations of B. odoriphaga and B. difformis were observed. These included reduced survival, prolonged larval development and reduced adult longevity and fecundity. B. odoriphaga had greater resistance and adaptation to insecticides than B. difformis, and an LC20 concentration of Dinotefuran stimulated the reproduction of B. odoriphaga F1 generation and increased the life table parameters. Detoxifying enzymes (CarE and GSTs) and P450 activities fluctuated after a sublethal concentration (Dinotefuran and Lufenuron) treatment, and at the peak value of enzyme activities, the enhancement of detoxifying enzymes of B. odoriphaga was significantly higher than that of B. difformis. These results indicated that Dinotefuran and Lufenuron should be considered as alternatives to other insecticides for control of root maggots. B. odoriphaga exhibited stronger adaptation to insecticides than B. difformis. These data provide guidance for control of root maggots, and the basic information presented here can help reveal the differences in adaptive mechanisms between B. odoriphaga and B. difformis.


Asunto(s)
Dípteros , Insecticidas , Animales , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Larva
5.
J Nanobiotechnology ; 20(1): 197, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459250

RESUMEN

BACKGROUND: By 2050, the world population will increase to 10 billion which urged global demand for food production to double. Plant disease and land drought will make the situation more dire, and safer and environment-friendly materials are thus considered as a new countermeasure. The rice blast fungus, Magnaporthe oryzae, causes one of the most destructive diseases of cultivated rice worldwide that seriously threatens rice production. Unfortunately, traditional breeding nor chemical approaches along control it well. Nowadays, nanotechnology stands as a new weapon against these mounting challenges and silica nanoparticles (SiO2 NPs) have been considered as potential new safer agrochemicals recently but the systematically studies remain limited, especially in rice. RESULTS: Salicylic acid (SA) is a key plant hormone essential for establishing plant resistance to several pathogens and its further affected a special form of induced resistance, the systemic acquired resistance (SAR), which considered as an important aspect of plant innate immunity from the locally induced disease resistance to the whole plant. Here we showed that SiO2 NPs could stimulate plant immunity to protect rice against M. oryzae through foliar treatment that significantly decreased disease severity by nearly 70% within an appropriate concentration range. Excessive concentration of foliar treatment led to disordered intake and abnormal SA responsive genes expressions which weaken the plant resistance and even aggravated the disease. Importantly, this SA-dependent fungal resistance could achieve better results with root treatment through a SAR manner with no phytotoxicity since the orderly and moderate absorption. What's more, root treatment with SiO2 NPs could also promote root development which was better to deal with drought. CONCLUSIONS: Taken together, our findings not only revealed SiO2 NPs as a potential effective and safe strategy to protect rice against biotic and abiotic stresses, but also identify root treatment for the appropriate application method since it seems not causing negative effects and even have promotion on root development.


Asunto(s)
Magnaporthe , Nanopartículas , Oryza , Ascomicetos , Regulación de la Expresión Génica de las Plantas , Magnaporthe/metabolismo , Oryza/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Dióxido de Silicio/farmacología , Estrés Fisiológico
6.
J Environ Manage ; 314: 115121, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35472840

RESUMEN

Wind erosion causes significant dust emissions in northwest China, resulting in large amounts of soil organic matter and nutrient losses. It has a significant impact on air quality, climate change, vegetation growth, and economic growth at the regional scale. In this work, the Weather Research Forecasting with Chemistry atmospheric chemical transport model was used to simulate the temporal and spatial processes of dust emissions in northwest China from 1980 to 2015. The temporal and spatial variation characteristics of the loss of soil organic matter and nutrients (total nitrogen and total phosphorus) due to dust emissions, and the economic damage from wind erosion, were simulated and calculated. Spatial patterns of soil organic matter and nutrient losses are consistent with dust emission rates across the research region. The average annual dust emissions were approximately 65.17 million tons, with losses of soil organic matter, total nitrogen, and total phosphorus resulting from dust emissions of 531,494 tons, 30,754 tons, and 37,095 tons, respectively. In addition, the average annual economic loss caused by wind erosion was 309.25 million yuan in northwest China during the entire study period. This research is valuable for understanding the role of wind erosion on the carbon and nutrient cycles and the mechanism of soil degradation in northwest China and estimating the economic impacts of wind erosion.


Asunto(s)
Suelo , Viento , China , Polvo/análisis , Nitrógeno , Fósforo
7.
Molecules ; 27(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011551

RESUMEN

Tomato is an economically crucial vegetable/fruit crop globally. Tomato is rich in nutrition and plays an essential role in a healthy human diet. Phenylpropanoid, a critical compound in tomatoes, reduces common degenerative and chronic diseases risk caused by oxidative stress. As an MYB transcription factor, ATMYB12 can increase phenylpropanoid content by activating phenylpropanoid synthesis related genes, such as PAL, C4H, 4CL, CHS. However, the heterologous expression of AtMYB12 in tomatoes can be altered through transgenic technologies, such as unstable expression vectors and promoters with different efficiency. In the current study, the efficiency of other fruit-specific promoters, namely E8S, 2A12, E4, and PG, were compared and screened, and we determined that the expression efficiency of AtMYB12 was driven by the E8S promoter was the highest. As a result, the expression of phenylpropanoid synthesis related genes was regulated by AtMYB12, and the phenylpropanoid accumulation in transgenic tomato fruits increased 16 times. Additionally, the total antioxidant capacity of fruits was measured through Trolox equivalent antioxidant capacity (TEAC) assay, which was increased by 2.4 times in E8S transgenic lines. TEAC was positively correlated with phenylpropanoid content. Since phenylpropanoid plays a crucial role in the human diet, expressing AtMYB12 with stable and effective fruit-specific promoter E8S could improve tomato's phenylpropanoid and nutrition content and quality. Our results can provide genetic resources for the subsequent improvement of tomato varieties and quality, which is significant for human health.


Asunto(s)
Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Propanoles/metabolismo , Solanum lycopersicum/fisiología , Factores de Transcripción/genética , Vías Biosintéticas , Cromatografía Líquida de Alta Presión , Especificidad de Órganos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Molecules ; 27(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558179

RESUMEN

In this work, a simple one-step hydrothermal method was employed to prepare the Ce-doped Fe2O3 ordered nanorod arrays (CFT). The Ce doping successfully narrowed the band gap of Fe2O3, which improved the visible light absorption performance. In addition, with the help of Ce doping, the recombination of electron/hole pairs was significantly inhibited. The external voltage will make the performance of the Ce-doped sample better. Therefore, the Ce-doped Fe2O3 has reached superior photoelectrochemical (PEC) performance with a high photocurrent density of 1.47 mA/cm2 at 1.6 V vs. RHE (Reversible Hydrogen Electrode), which is 7.3 times higher than that of pristine Fe2O3 nanorod arrays (FT). The Hydrogen (H2) production from PEC water splitting of Fe2O3 was highly improved by Ce doping to achieve an evolution rate of 21 µmol/cm2/h.

9.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34575823

RESUMEN

To investigate the effect of 14,15-EET on the parthanatos in neurons induced by cerebral ischemia and reperfusion, middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen glucose deprivation/reoxygenation (OGD/R) were used to simulate cerebral ischemia reperfusion in vivo and in vitro, respectively. TTC staining and the Tunel method were used to detect cerebral infarct volume and neuronal apoptosis. Western blot and immunofluorescence were used to detect poly (ADP-ribose) polymerase-1 (PARP-1) activation and AIF nuclear translocation. The production of reactive oxygen species (ROS) and the expression of antioxidant genes were detected by Mito SOX, DCFH-DA and qPCR methods. MCAO/R increased cerebral infarct volume and neuronal apoptosis in mice, while 14,15-EET pretreatment increased cerebral infarct volume and neuronal apoptosis. OGD/R induced reactive oxygen species generation, PARP-1 cleavage, and AIF nuclear translocation in cortical neurons. 14,15-EET pretreatment could enhance the antioxidant gene expression of glutathione peroxidase (GSH-Px), heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) in cortical neurons after ischemia and reperfusion. 14,15-EET inhibits the neuronal parthanatos induced by MCAO/R through upregulation of the expression of antioxidant genes and by reducing the generation of reactive oxygen species. This study advances the EET neuroprotection theory and provides a scientific basis for targeted clinical drugs that reduce neuronal parthanatos following cerebral ischemia and reperfusion.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Isquemia Encefálica/complicaciones , Neuronas/efectos de los fármacos , Parthanatos/efectos de los fármacos , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Isquemia Encefálica/etiología , Modelos Animales de Enfermedad , Glucosa/metabolismo , Masculino , Ratones , Modelos Biológicos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología
10.
Sensors (Basel) ; 20(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230867

RESUMEN

Embedded and mobile smart devices face problems related to limited computing power and excessive power consumption. To address these problems, we propose Mixed YOLOv3-LITE, a lightweight real-time object detection network that can be used with non-graphics processing unit (GPU) and mobile devices. Based on YOLO-LITE as the backbone network, Mixed YOLOv3-LITE supplements residual block (ResBlocks) and parallel high-to-low resolution subnetworks, fully utilizes shallow network characteristics while increasing network depth, and uses a "shallow and narrow" convolution layer to build a detector, thereby achieving an optimal balance between detection precision and speed when used with non-GPU based computers and portable terminal devices. The experimental results obtained in this study reveal that the size of the proposed Mixed YOLOv3-LITE network model is 20.5 MB, which is 91.70%, 38.07%, and 74.25% smaller than YOLOv3, tiny-YOLOv3, and SlimYOLOv3-spp3-50, respectively. The mean average precision (mAP) achieved using the PASCAL VOC 2007 dataset is 48.25%, which is 14.48% higher than that of YOLO-LITE. When the VisDrone 2018-Det dataset is used, the mAP achieved with the Mixed YOLOv3-LITE network model is 28.50%, which is 18.50% and 2.70% higher than tiny-YOLOv3 and SlimYOLOv3-spp3-50, respectively. The results prove that Mixed YOLOv3-LITE can achieve higher efficiency and better performance on mobile terminals and other devices.

11.
Sensors (Basel) ; 20(1)2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906062

RESUMEN

Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis are constructed manually, which is very cumbersome because of the requirement for lots of expertise. To handle this issue, this paper proposed a variational stacked autoencoder (VSAE) to adaptively extract features from angular domain signals. As an unsupervised algorithm, VSAE can extract high-level features with the help of multiple encoding layers. Layer-wise pre-training and fine-tuning are introduced to get a better network initialization value. Moreover, the dropout technique and the batch normalization technique are carried out to prevent over-fitting and implement fast convergence. Finally, the harmony search optimizer (HSO) algorithm is introduced to get an appropriate hyper-parameter setting in the VSAE model, as well as make adaptive adjustment of the network structure. In order to verify the proposed method, the valve train fault data is collected on the diesel engine test rig under twelve operating conditions. The results indicate that the proposed scheme can effectively diagnose different degrees of intake valve fault, exhaust valve fault, and coupling fault under various operating conditions. Furthermore, the classification accuracy improved from 94.10% to 98.85%VSAE compared with stacked autoencoder (SAE) and some other traditional fault diagnosis algorithms.

12.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842440

RESUMEN

: For a diesel engine, operating conditions have extreme importance in fault detection and diagnosis. Limited to various special circumstances, the multi-factor operating conditions of a diesel engine are difficult to measure, and the demand of automatic condition recognition based on vibration signals is urgent. In this paper, multi-factor operating condition recognition using a one-dimensional (1D) convolutional long short-term network (1D-CLSTM) is proposed. Firstly, a deep neural network framework is proposed based on a 1D convolutional neural network (CNN) and long short-Term network (LSTM). According to the characteristics of vibration signals of a diesel engine, batch normalization is introduced to regulate the input of each convolutional layer by fixing the mean value and variance. Subsequently, adaptive dropout is proposed to improve the model sparsity and prevent overfitting in model training. Moreover, the vibration signals measured under 12 operating conditions were used to verify the performance of the trained 1D-CLSTM classifier. Lastly, the vibration signals measured from another kind of diesel engine were applied to verify the generalizability of the proposed approach. Experimental results show that the proposed method is an effective approach for multi-factor operating condition recognition. In addition, the adaptive dropout can achieve better training performance than the constant dropout ratio. Compared with some state-of-the-art methods, the trained 1D-CLSTM classifier can predict new data with higher generalization accuracy.

13.
Sensors (Basel) ; 19(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174383

RESUMEN

The diesel engine has been a significant component of large-scale mechanical systems for the intelligent manufacturing industry. Because of its complex structure and poor working environment, it has trouble effectively acquiring the representative fault features. Further, fault diagnosis of the diesel engine faces great challenges. This paper presents a new fault diagnosis method for the detection of diesel engine faults under multiple operation conditions instead of conventional methods confined to a single condition. First, an adaptive correlation threshold process is designed as a preprocessing unit to enhance data quality by weakening non-impact region characteristics. Next, a feature extraction method for sound signals based on the Mel frequency cepstrum (MFC) is improved and introduced into the machinery fault diagnosis. Then, the combination of the improved feature and vibrational mode decomposition (VMD) is proposed to incorporate VMD into an effective adaptive decomposition of non-stationary signals to combine it with an excellent feature representation of the vibration signal. Finally, the vector quantization algorithm is adopted to reduce the feature dimensions and generate codebook model bases, which trains the K-Nearest Neighbor classifiers. Five comparative methods were carried out, and the experimental results show that the proposed method offers a good effect of the common valve clearance fault of diesel engines under different conditions.

14.
BMC Ophthalmol ; 15: 50, 2015 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-25956877

RESUMEN

BACKGROUND: Blunt injuries/contusion on eyes might cause retina blunt trauma. This study is to evaluate the protective function of BN52021 against retinal trauma. METHODS: A total of 70 cats, 6 months old, were divided into six groups: Group A to E (n = 12) and normal control (N) group (n = 10). The right eyes in Group A to E were contused. All experiments were performed under general anesthetization. Retrobulbar injections of medication in right eyes were performed. Cats were administrated with 0.5 mL of normal saline (NS), dimethyl sulphoxide, 0.2 g/L BN52021, 1 g/L BN52021 and 5 g/L BN52021, respectively. Cats in Group N were administrated with 0.5 mL of NS. Intraocular pressure (IOP), flash electroretinogram (ERG), and retinal nerve fiber layer (RNFL) thickness were measured. Hematoxylin and eosin (HE) staining and transmission electron microscope (TEM) were detected. RESULTS: No significant difference was observed in IOP levels among groups. Comparing with cats in Group N, those in Group A to E showed significant lower amplitudes of rod a- and b-waves (P < 0.05). Amplitudes of rod a- and b-waves were increased by administration of high concentration of BN52021 (≥ 1 g/L). Moreover, high concentration of BN52021 decreased the RNFL thickness increased by contusion. Axons in RNFL in Group E arranged neatly at 7 days after modeling. CONCLUSIONS: The degenerated axons caused by contusion were repaired by BN52021. The administration of high concentration of (≥ 1 g/L) BN52021 could partially repair retinal function in contused cat eyes.


Asunto(s)
Contusiones/tratamiento farmacológico , Lesiones Oculares/tratamiento farmacológico , Fibrinolíticos/administración & dosificación , Ginkgólidos/administración & dosificación , Lactonas/administración & dosificación , Retina/lesiones , Enfermedades de la Retina/tratamiento farmacológico , Animales , Gatos , Contusiones/diagnóstico , Modelos Animales de Enfermedad , Electrorretinografía/efectos de los fármacos , Lesiones Oculares/diagnóstico , Femenino , Presión Intraocular , Masculino , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/patología , Factor de Activación Plaquetaria/antagonistas & inhibidores , Enfermedades de la Retina/diagnóstico , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Tomografía de Coherencia Óptica , Tonometría Ocular
15.
Math Biosci Eng ; 21(1): 170-185, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303418

RESUMEN

DNA-protein binding is crucial for the normal development and function of organisms. The significance of accurately identifying DNA-protein binding sites lies in its role in disease prevention and the development of innovative approaches to disease treatment. In the present study, we introduce a precise and robust identifier for DNA-protein binding residues. In the context of protein representation, we combine the evolutionary information of the protein, represented by its position-specific scoring matrix, with the spatial information of the protein's secondary structure, enriching the overall informational content. This approach initially employs a combination of Bi-directional Long Short-Term Memory and Transformer encoder to jointly extract the interdependencies among residues within the protein sequence. Subsequently, convolutional operations are applied to the resulting feature matrix to capture local features of the residues. Experimental results on the benchmark dataset demonstrate that our method exhibits a higher level of competitiveness when compared to contemporary classifiers. Specifically, our method achieved an MCC of 0.349, SP of 96.50%, SN of 44.03% and ACC of 94.59% on the PDNA-41 dataset.


Asunto(s)
Memoria a Corto Plazo , Proteínas , Unión Proteica , Proteínas/química , Sitios de Unión , ADN/química
16.
Mol Plant Pathol ; 25(1): e13409, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38069667

RESUMEN

Auxin plays a pivotal role in the co-evolution of plants and microorganisms. Xanthomonas oryzae pv. oryzicola (Xoc) stands as a significant factor that affects rice yield and quality. However, the current understanding of Xoc's capability for indole 3-acetic acid (IAA) synthesis and its mechanistic implications remains elusive. In this study, we performed a comprehensive genomic analysis of Xoc strain RS105, leading to the identification of two nitrilase enzyme family (NIT) genes, designated as AKO15524.1 and AKO15829.1, subsequently named NIT24 and NIT29, respectively. Our investigation unveiled that the deletion of NIT24 and NIT29 resulted in a notable reduction in IAA synthesis capacity within RS105, thereby impacting extracellular polysaccharide production. This deficiency was partially ameliorated through exogenous IAA supplementation. The study further substantiated that NIT24 and NIT29 have nitrilase activity and the ability to catalyse IAA production in vitro. The lesion length and bacterial population statistics experiments confirmed that NIT24 and NIT29 positively regulated the pathogenicity of RS105, suggesting that NIT24 and NIT29 may regulate Xoc invasion by affecting IAA synthesis. Furthermore, our analysis corroborated mutant strains, RS105_ΔNIT24 and RS105_ΔNIT29, which elicited the outbreak of reactive oxygen species, the deposition of callose and the upregulation of defence-related gene expression in rice. IAA exerted a significant dampening effect on the immune responses incited by these mutant strains in rice. In addition, the absence of NIT24 and NIT29 affected the growth-promoting effect of Xoc on rice. This implies that Xoc may promote rice growth by secreting IAA, thus providing a more suitable microenvironment for its own colonization. In summary, our study provides compelling evidence for the existence of a nitrilase-dependent IAA biosynthesis pathway in Xoc. IAA synthesis-related genes promote Xoc colonization by inhibiting rice immune defence response and affecting rice growth by increasing IAA content in Xoc.


Asunto(s)
Oryza , Xanthomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Oryza/microbiología , Virulencia , Suplementos Dietéticos , Enfermedades de las Plantas/microbiología
17.
Plant Commun ; 5(6): 100859, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38444161

RESUMEN

Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a continuous threat to rice cultivation, leading to substantial yield losses with socioeconomic implications. Iron ions are essential mineral nutrients for plant growth, but little information is available on how they influence mechanisms of rice immunity against Xoc. Here, we investigated the role of the myeloblastosis-related (MYB) transcriptional repressor OsMYBxoc1 in modulation of rice resistance through control of iron ion transport. Overexpression of OsMYBxoc1 significantly increased rice resistance, whereas OsMYBxoc1 RNA-interference lines and knockout mutants showed the opposite result. Suppression of OsMYBxoc1 expression dampened the immune response induced by pathogen-associated molecular patterns. We demonstrated that OsMYBxoc1 binds specifically to the OsNRAMP5 promoter and represses transcription of OsNRAMP5. OsNRAMP5, a negative regulator of rice resistance to bacterial leaf streak, possesses metal ion transport activity, and inhibition of OsMYBxoc1 expression increased the iron ion content in rice. Activity of the ion-dependent H2O2 scavenging enzyme catalase was increased in plants with suppressed expression of OsMYBxoc1 or overexpression of OsNRAMP5. We found that iron ions promoted Xoc infection and interfered with the production of reactive oxygen species induced by Xoc. The type III effector XopAK directly inhibited OsMYBxoc1 transcription, indicating that the pathogen may promote its own proliferation by relieving restriction of iron ion transport in plants. In addition, iron complemented the pathogenicity defects of the RS105_ΔXopAK mutant strain, further confirming that iron utilization by Xoc may be dependent upon XopAK. In conclusion, our study reveals a novel mechanism by which OsMYBxoc1 modulates rice resistance by regulating iron accumulation and demonstrates that Xoc can accumulate iron ions by secreting the effector XopAK to promote its own infection.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Hierro , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Xanthomonas , Oryza/genética , Oryza/microbiología , Oryza/metabolismo , Xanthomonas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hierro/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
ACS Nano ; 18(27): 17672-17680, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38920321

RESUMEN

Layer-engineered interlayer excitons from heterostructures of transition-metal dichalcogenides (TMDCs) exhibit a rich variety of emissive states and intriguing valley spin-selection rules, the effective modulation of which is crucial for excitonic physics and related device applications. Strain or high pressure provides the possibility to tune the energy of the interlayer excitons; however, the reported emission intensity is substantially quenched, which greatly limits their practical application in optoelectronic devices. Here, via applying uniaxial strain based on polyvinyl alcohol (PVA) encapsulation technique, we report enhanced layer-engineered interlayer exciton emission intensity with largely modulated emission energy in WSe2/WS2 heterobilayer and heterotrilayer. Both momentum-direct and momentum-indirect interlayer excitons were observed, and their emission energies show an opposite shift tendency upon applied strain, which agrees with our DFT calculations. We further demonstrate that intralayer and interlayer exciton states with low phonon interactions can be modulated through the mechanical strain applied to the PVA substrate at low temperatures. Due to strain-induced breaking of the 3-fold rotational symmetry, we observe the enhanced valley polarization of interlayer excitons. Our study contributes to the understanding and modulation of the optical properties of interlayer excitons, which could be exploited for optoelectronic device applications.

19.
Mol Plant ; 17(5): 807-823, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38664971

RESUMEN

The plant apoplast, which serves as the frontline battleground for long-term host-pathogen interactions, harbors a wealth of disease resistance resources. However, the identification of the disease resistance proteins in the apoplast is relatively lacking. In this study, we identified and characterized the rice secretory protein OsSSP1 (Oryza sativa secretory small protein 1). OsSSP1 can be secreted into the plant apoplast, and either in vitro treatment of recombinant OsSSP1 or overexpression of OsSSP1 in rice could trigger plant immune response. The expression of OsSSP1 is suppressed significantly during Magnaporthe oryzae infection in the susceptible rice variety Taibei 309, and OsSSP1-overexpressing lines all show strong resistance to M. oryzae. Combining the knockout and overexpression results, we found that OsSSP1 positively regulates plant immunity in response to fungal infection. Moreover, the recognition and immune response triggered by OsSSP1 depend on an uncharacterized transmembrane OsSSR1 (secretory small protein receptor 1) and the key co-receptor OsBAK1, since most of the induced immune response and resistance are lost in the absence of OsSSR1 or OsBAK1. Intriguingly, the OsSSP1 protein is relatively stable and can still induce plant resistance after 1 week of storage in the open environment, and exogenous OsSSP1 treatment for a 2-week period did not affect rice yield. Collectively, our study reveals that OsSSP1 can be secreted into the apoplast and percepted by OsSSR1 and OsBAK1 during fungal infection, thereby triggering the immune response to enhance plant resistance to M. oryzae. These findings provide novel resources and potential strategies for crop breeding and disease control.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Oryza/microbiología , Oryza/genética , Oryza/metabolismo , Oryza/inmunología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta , Magnaporthe/fisiología , Ascomicetos/fisiología
20.
Plant Methods ; 20(1): 70, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755668

RESUMEN

BACKGROUND: Phytophthora sojae, a soil-borne oomycete pathogen, has been a yield limiting factor for more than 60 years on soybean. The resurgence of P. sojae (Phytophthora sojae) is primarily ascribed to the durable oospores found in soil and remnants of the disease. P. sojae is capable of infesting at any growth periods of the soybean, and the succeed infestation of P. sojae is predominantly attributed to long-lived oospores present in soil. Comprehending the molecular mechanisms that drive oospores formation and their significance in infestation is the key for effective management of the disease. However, the existing challenges in isolating and extracting significant quantities of oospores pose limitations in investigating the sexual reproductive stages of P. sojae. RESULTS: The study focused on optimizing and refining the culture conditions and extraction process of P. sojae, resulting in establishment of an efficient and the dependable method for extraction. Novel optimized approach was yielded greater quantities of high-purity P. sojae oospores than traditional methods. The novel approach exceeds the traditional approaches with respect to viability, survival ability, germination rates of new oospores and the pathogenicity of oospores in potting experiments. CONCLUSION: The proposed method for extracting P. sojae oospores efficiently yielded a substantial quantity of highly pure, viable, and pathogenic oospores. The enhancements in oospores extraction techniques will promote the research on the sexual reproductive mechanisms of P. sojae and lead to the creation of innovative and effective approaches for managing oomycete diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA