Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 606(7913): 358-367, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35477154

RESUMEN

The composition of the intestinal microbiome varies considerably between individuals and is correlated with health1. Understanding the extent to which, and how, host genetics contributes to this variation is essential yet has proved to be difficult, as few associations have been replicated, particularly in humans2. Here we study the effect of host genotype on the composition of the intestinal microbiota in a large mosaic pig population. We show that, under conditions of exacerbated genetic diversity and environmental uniformity, microbiota composition and the abundance of specific taxa are heritable. We map a quantitative trait locus affecting the abundance of Erysipelotrichaceae species and show that it is caused by a 2.3 kb deletion in the gene encoding N-acetyl-galactosaminyl-transferase that underpins the ABO blood group in humans. We show that this deletion is a ≥3.5-million-year-old trans-species polymorphism under balancing selection. We demonstrate that it decreases the concentrations of N-acetyl-galactosamine in the gut, and thereby reduces the abundance of Erysipelotrichaceae that can import and catabolize N-acetyl-galactosamine. Our results provide very strong evidence for an effect of the host genotype on the abundance of specific bacteria in the intestine combined with insights into the molecular mechanisms that underpin this association. Our data pave the way towards identifying the same effect in rural human populations.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Acetilgalactosamina , Microbioma Gastrointestinal , Genotipo , Porcinos , Sistema del Grupo Sanguíneo ABO/genética , Acetilgalactosamina/metabolismo , Animales , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Sitios de Carácter Cuantitativo , Porcinos/genética , Porcinos/microbiología
2.
BMC Microbiol ; 18(1): 215, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30547751

RESUMEN

BACKGROUND: There are growing evidences showing that gut microbiota should play an important role in host appetite and feeding behavior. However, what kind of microbe(s) and how they affect porcine appetite remain unknown. RESULTS: In this study, 280 commercial Duroc pigs were raised in a testing station with the circadian feeding behavior records for a continuous period of 30-100 kg. We first analyzed the influences of host gender and genetics in porcine average daily feed intake (ADFI), but no significant effect was observed. We found that the Prevotella-predominant enterotype had a higher ADFI than the Treponema enterotype-like group. Furthermore, 12 out of the 18 OTUs positively associated with the ADFI were annotated to Prevotella, and Prevotella was the hub bacteria in the co-abundance network. These results suggested that Prevotella might be a keystone bacterial taxon for increasing host feed intake. However, some bacteria producing short-chain fatty acids (SCFAs) and lactic acid (e.g. Ruminococcaceae and Lactobacillus) showed negative associations with the ADFI. Predicted function capacity analysis showed that the genes for amino acid biosynthesis had significantly different enrichment between pigs with high and low ADFI. CONCLUSIONS: The present study provided important information on the profound effect of gut microbiota on porcine appetite and feeding behavior. This will profit us to regulate porcine appetite through modulating the gut microbiome in the pig industry.


Asunto(s)
Apetito , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Porcinos/microbiología , Porcinos/fisiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Ácidos Grasos Volátiles/metabolismo , Conducta Alimentaria , Femenino , Masculino , Filogenia
3.
Opt Express ; 26(17): 21490-21500, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130855

RESUMEN

We have fabricated a compact and integrated 4-channel analog optical transceiver for radio over fiber application. In the fabricated module, the transmitter optical sub-assembly is composed of four directly modulated DFB laser chips integrated with an optical multiplexer based on an arrayed waveguide grating (AWG) using silica-based planar lightwave circuit (PLC) technology. The receiver optical sub-assembly consists of a PIN photodiode array integrated with an AWG-PLC-type optical de-multiplexer. For all the lanes, the 3 dB bandwidth exceeds 19.1 GHz and the measured spurious-free dynamic range (SFDR) is up to 90.5 dB⋅Hz2/3 when the input RF frequency is from 2 GHz to 14 GHz. Meanwhile, the electrical inter-channel crosstalk of the transceiver is less than -20 dB when the carry frequency is below 18.5 GHz. This module shows a great transmission performance in radio over fiber system. Under simultaneous 4-channel different 600 Mb/s 5-band 64QAM-OFDM RF signal operation, the measured error vector magnitude (EVM) performance below 8% is achieved after 15.5 km single-mode fiber propagation for all lanes. This scheme has potential applications in guiding high-dense, cost-effective and high-linearity analog optical transceiver design to realize high-capacity radio over fiber transmission systems.

4.
Microbiol Spectr ; 12(4): e0409423, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38411058

RESUMEN

Insulin resistance is the primary pathophysiological basis for metabolic syndrome and type 2 diabetes. Gut microbiota and microbiota-derived metabolites are pivotal in insulin resistance. However, identifying the specific microbes and key metabolites with causal roles is a challenging task, and the underlying mechanisms require further exploration. Here, we successfully constructed a model of insulin resistance in mice induced by a high-fat diet (HFD) and screened potential biomarkers associated with insulin resistance by integrating metagenomics and untargeted metabolomics. Our findings showed a significant increase in the abundance of 30 species of Alistipes in HFD mice compared to normal diet (ND) mice, while the abundance of Desulfovibrio and Candidatus Amulumruptor was significantly lower in HFD mice than in ND mice. Non-targeted metabolomics analysis identified 21 insulin resistance-associated metabolites, originating from the microbiota or co-metabolized by both the microbiota and the host. These metabolites were primarily enriched in aromatic amino acid metabolism (tryptophan metabolism, tyrosine metabolism, and phenylalanine metabolism) and arginine biosynthesis. Further analysis revealed a significant association between the three distinct genera and 21 differentiated metabolites in the HFD and ND mice. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of representative genomes from 12 species of the three distinct genera further revealed the functional potential in aromatic amino acid metabolism and arginine biosynthesis. This study lays the groundwork for future investigations into the mechanisms through which the gut microbiota and its metabolites impact insulin resistance. IMPORTANCE: In this study, we aim to identify the microbes and metabolites linked to insulin resistance, some of which have not been previously reported in insulin resistance-related studies. This adds a complementary dimension to existing research. Furthermore, we establish a correlation between alterations in the gut microbiota and metabolite levels. These findings serve as a foundation for identifying the causal bacterial species and metabolites. They also offer insights that guide further exploration into the mechanisms through which these factors influence host insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Ratones , Dieta Alta en Grasa , Metabolómica , Biomarcadores , Aminoácidos Aromáticos , Arginina
5.
Nat Commun ; 14(1): 4868, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573429

RESUMEN

Respiratory diseases and its treatments are highly concerned in both the pig industry and human health. However, the composition and distribution of antibiotic resistance genes (ARGs) in swine lower respiratory tract microbiome remain unknown. The relationships of ARGs with mobile genetic elements (MGEs) and lung health are unclear. Here, we characterize antibiotic resistomes of the swine lower respiratory tract microbiome containing 1228 open reading frames belonging to 372 ARGs using 745 metagenomes from 675 experimental pigs. Twelve ARGs conferring resistance to tetracycline are related to an MGE Tn916 family, and multiple types of ARGs are related to a transposase gene tnpA. Most of the linkage complexes between ARGs and MGEs (the Tn916 family and tnpA) are also observed in pig gut microbiomes and human lung microbiomes, suggesting the high risk of these MGEs mediating ARG transfer to both human and pig health. Gammaproteobacteria are the major ARG carriers, within which Escherichia coli harbored >50 ARGs and >10 MGEs. Although the microbial compositions structure the compositions of ARGs, we identify 73 ARGs whose relative abundances are significantly associated with the severity of lung lesions. Our results provide the first overview of ARG profiles in the swine lower respiratory tract microbiome.


Asunto(s)
Antibacterianos , Microbiota , Animales , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Microbiota/genética , Sistema Respiratorio , Porcinos
6.
Microb Biotechnol ; 16(6): 1293-1311, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36916818

RESUMEN

Gut microbiota plays important roles in host metabolism. Whether and how much the gut microbiota in different gut locations contributes to the variations of host serum metabolites are largely unknown, because it is difficult to obtain microbial samples from different gut locations on a large population scale. Here, we quantified the gut microbial compositions using 16S rRNA gene sequencing for 1070 samples collected from the ileum, cecum and faeces of 544 F6 pigs from a mosaic pig population. Untargeted metabolome measurements determined serum metabolome profiles. We found 1671, 12,985 and 103,250 significant correlations between circulating serum metabolites and bacterial ASVs in the ileum, cecum, and faeces samples. We detected nine serum metabolites showing significant correlations with gut bacteria in more than one gut location. However, most metabolite-microbiota pairwise associations were gut location-specific. Targeted metabolome analysis revealed that CDCA, taurine, L-leucine and N-acetyl-L-alanine can be used as biomarkers to predict porcine fatness. Enriched taxa in fat pigs, for example Prevotella and Lawsonia intracellularis were positively associated with L-leucine, while enriched taxa in lean pigs, such as Clostridium butyricum, were negatively associated with L-leucine and CDCA, but positively associated with taurine and N-acetyl-L-alanine. These results suggested that the contributions of gut microbiota in each gut location to the variations of serum metabolites showed spatial heterogeneity.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Porcinos , ARN Ribosómico 16S/genética , Leucina , Ciego/microbiología , Metaboloma , Bacterias/genética
7.
J Anim Sci Biotechnol ; 14(1): 155, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38115159

RESUMEN

BACKGROUND: Sex hormones play important roles in the estrus return of post-weaning sows. Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota. However, the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown. RESULTS: In this study, we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing and identified significant associations between microbes and estrus return of post-weaning sows. Using metagenomic sequencing data from 85 fecal samples, we identified 37 bacterial species that were significantly associated with estrus return. Normally returning sows were characterized by increased abundances of L. reuteri and P. copri and decreased abundances of B. fragilis, S. suis, and B. pseudolongum. The changes in gut microbial composition significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome. The results were confirmed in a validation cohort. Significant changes in sex steroid hormones and related compounds were found between normal and non-return sows via metabolome analysis. An integrated analysis of differential bacterial species, metagenome, and fecal metabolome provided evidence that normal return-associated bacterial species L. reuteri and Prevotella spp. participated in the degradation of pregnenolone, progesterone, and testosterone, thereby promoting estrogen biosynthesis. Furthermore, the microbial metabolites related to sow energy and nutrient supply or metabolic disorders also showed relationships with sow estrus return. CONCLUSIONS: An integrated analysis of differentially abundant bacterial species, metagenome, and fecal metabolome revealed the involvement of L. reuteri and Prevotella spp. in sow estrus return. These findings provide deep insight into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut microbiota and sex hormones, suggesting that the manipulation of the gut microbiota could be an effective strategy to improve sow estrus return after weaning.

8.
Microbiol Res ; 260: 127023, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35430490

RESUMEN

Reference genomes are essential for analyzing the metabolic and functional potentials of microbiomes. However, microbial genome resources are limited because most of microorganisms are difficult to culture. Genome binning is a culture-independent approach that can recover a vast number of microbial genomes from short-read high throughput shotgun metagenomic sequencing data. In this review, we summarize methods commonly used for reconstructing metagenome-assembled genomes (MAGs) to provide a reference for researchers to choose propriate software programs among the numerous and complicated tools and pipelines that are available for these analyses. In addition, we discuss application prospects, challenges, and opportunities for recovering MAGs from metagenomic sequencing data.


Asunto(s)
Metagenoma , Microbiota , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica/métodos , Microbiota/genética
9.
Micromachines (Basel) ; 13(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35056296

RESUMEN

This article presents a novel cross-rib micro-channel (MC-CR) heat sink to make fluid self-rotate. For a thermal test chip (TTC) with 100 w/cm2, the cross-ribs micro-channel were compared with the rectangular (MC-R) and horizontal rib micro-channel (MC-HR) heat sinks. The results show that, with the cross-rib micro-channel, the junction temperature of the thermal test chip was 336.49 K, and the pressure drop was 22 kPa. Compared with the rectangular and horizontal ribs heat sink, the cross-rib micro-channel had improvements of 28.6% and 14.3% in cooling capability, but the pressure drop increased by 10.7-fold and 5.5-fold, respectively. Then, the effects of the aspect ratio (λ) of micro-channel in different flow rates were studied. It was found that the aspect ratio and cooling performance were non-linear. To reduce the pressure drop, the inclination (α) and spacing (S) of the cross-ribs were optimized. When α = 30°, S = 0.1 mm, and λ = 4, the pressure drop was reduced from 22 kPa to 4.5 kPa. In addition, the heat dissipation performance of the rectangular, staggered fin (MC-SF), staggered rib (MC-SR) and cross-rib micro-channels were analyzed in the condition of the same pressure drop, MC-CR still has superior heat dissipation performance.

10.
Materials (Basel) ; 15(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268913

RESUMEN

This paper focuses on characterizing the evolution of warpage, effects of epoxy molding compound (EMC), and effects of carrier 2 (the second carrier in the process) of 12 inch RDL-first multi-die fan-out wafer-level packaging (FOWLP) during the manufacturing process. The linear viscoelasticity properties of EMC and polyimide (PI) were characterized using dynamic mechanical analysis (DMA) in the frequency domain at different temperatures., The elastic and viscoelastic model were used for PI and EMC, the finite element analyses (FEA) of the cured structure were carried out and the results were compared with the test results. The viscoelastic properties of the EMC in the FEA could predict the wafer warpage more accurately. The FEA and experiments were used to investigate the evolution of warpage. The molding had a great influence on the warpage. The effects of the EMC and carrier 2 were also investigated with FEA. The wafer warpage could be reduced by lowering the thickness of the EMC, increasing the thickness of carrier 2, and selecting EMC and carrier 2 with a matched coefficient of thermal expansion (CTE).

11.
Microbiome ; 10(1): 39, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246246

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) has been regarded as a major threat to global health. Pigs are considered an important source of antimicrobial resistance genes (ARGs). However, there is still a lack of large-scale quantitative data on the distribution of ARGs in the pig production industry. The bacterial species integrated ARGs in the gut microbiome have not been clarified. RESULTS: In the present study, we used deep metagenomic sequencing data of 451 samples from 425 pigs including wild boars, Tibetan pigs, and commercial or cross-bred experimental pigs under different rearing modes, to comprehensively survey the diversity and distribution of ARGs and detect the bacteria integrated in these ARGs. We identified a total of 1295 open reading frames (ORFs) recognized as antimicrobial resistance protein-coding genes. The ORFs were clustered into 349 unique types of ARGs, and these could be further classified into 69 drug resistance classes. Tetracycline resistance was most enriched in pig feces. Pigs raised on commercial farms had a significantly higher AMR level than pigs under semi-free ranging conditions or wild boars. We tracked the changes in the composition of ARGs at different growth stages and gut locations. There were 30 drug resistance classes showing significantly different abundances in pigs between 25 and 240 days of age. The richness of ARGs and 41 drug resistance classes were significantly different between cecum lumen and feces in pigs from commercial farms, but not in wild boars. We identified 24 bacterial species that existed in almost all tested samples (core bacteria) and were integrated 128 ARGs in their genomes. However, only nine ARGs of these 128 ARGs were core ARGs, suggesting that most of the ARGs in these bacterial species might be acquired rather than constitutive. We selected three subsets of ARGs as indicators for evaluating the pollution level of ARGs in samples with high accuracy (r = 0.73~0.89). CONCLUSIONS: This study provides a primary overview of ARG profiles in various farms under different rearing modes, and the data serve as a reference for optimizing the use of antimicrobials and evaluating the risk of pollution by ARGs in pig farms. Video abstract.


Asunto(s)
Antibacterianos , Antiinfecciosos , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Metagenoma/genética , Metagenómica , Porcinos
12.
Nat Commun ; 12(1): 1106, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597514

RESUMEN

Gut microbiota plays an important role in pig health and production. Still, availability of sequenced genomes and functional information for most pig gut microbes remains limited. Here we perform a landscape survey of the swine gut microbiome, spanning extensive sample sources by deep metagenomic sequencing resulting in an expanded gene catalog named pig integrated gene catalog (PIGC), containing 17,237,052 complete genes clustered at 90% protein identity from 787 gut metagenomes, of which 28% are unknown proteins. Using binning analysis, 6339 metagenome-assembled genomes (MAGs) were obtained, which were clustered to 2673 species-level genome bins (SGBs), among which 86% (2309) SGBs are unknown based on current databases. Using the present gene catalog and MAGs, we identified several strain-level differences between the gut microbiome of wild boars and commercial Duroc pigs. PIGC and MAGs provide expanded resources for swine gut microbiome-related research.


Asunto(s)
Microbioma Gastrointestinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenoma/genética , Metagenómica/métodos , Animales , Bacterias/clasificación , Bacterias/genética , Femenino , Genes Microbianos/genética , Filogenia , Especificidad de la Especie , Porcinos
13.
Front Microbiol ; 12: 729039, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603257

RESUMEN

Parturition is a crucial event in the sow reproduction cycle, which accompanies by a series of physiological changes, including sex hormones, metabolism, and immunity. More and more studies have indicated the changes of the gut microbiota from pregnancy to parturition. However, what bacterial species and functional capacities of the gut microbiome are changed around parturition has been largely unknown, and the correlations between the changes of gut bacterial species and host metabolome were also uncovered. In this study, by combining 16S rRNA gene and shotgun metagenomic sequencing data, and the profiles of serum metabolome and fecal short-chain fatty acids (SCFAs), we investigated the changes of gut microbiome, serum metabolite features and fecal SCFAs from late pregnancy (LP) to postpartum (PO) stage. We found the significant changes of gut microbiota from LP to PO stage in both 16S rRNA gene sequencing and metagenomic sequencing analyses. The bacterial species from Lactobacillus, Streptococcus, and Clostridium were enriched at the LP stage, while the species from Bacteroides, Escherichia, and Campylobacter had higher abundances at the PO stage. Functional capacities of the gut microbiome were also significantly changed and associated with the shifts of gut bacteria. Untargeted metabolomic analyses revealed that the metabolite features related to taurine and hypotaurine metabolism, and arginine biosynthesis and metabolism were enriched at the LP stage, and positively associated with those bacterial species enriched at the LP stage, while the metabolite features associated with vitamin B6 and glycerophospholipid metabolism had higher abundances at the PO stage and were positively correlated with the bacteria enriched at the PO stage. Six kinds of SCFAs were measured in feces samples and showed higher concentrations at the LP stage. These results suggested that the changes of gut microbiome from LP to PO stage lead to the shifts of host lipid, amino acids and vitamin metabolism and SCFA production. The results from this study provided new insights for the changes of sow gut microbiome and host metabolism around parturition, and gave new knowledge for guiding the feeding and maternal care of sows from late pregnancy to lactation in the pig industry.

14.
Microbiome ; 9(1): 175, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419147

RESUMEN

BACKGROUND: Excessive fat accumulation of pigs is undesirable, as it severely affects economic returns in the modern pig industry. Studies in humans and mice have examined the role of the gut microbiome in host energy metabolism. Commercial Duroc pigs are often fed formula diets with high energy and protein contents. Whether and how the gut microbiome under this type of diet regulates swine fat accumulation is largely unknown. RESULTS: In the present study, we systematically investigated the correlation of gut microbiome with pig lean meat percentage (LMP) in 698 commercial Duroc pigs and found that Prevotella copri was significantly associated with fat accumulation of pigs. Fat pigs had significantly higher abundance of P. copri in the gut. High abundance of P. copri was correlated with increased concentrations of serum metabolites associated with obesity, e.g., lipopolysaccharides, branched chain amino acids, aromatic amino acids, and the metabolites of arachidonic acid. Host intestinal barrier permeability and chronic inflammation response were increased. A gavage experiment using germ-free mice confirmed that the P. copri isolated from experimental pigs was a causal species increasing host fat accumulation and altering serum metabolites. Colon, adipose tissue, and muscle transcriptomes in P. copri-gavaged mice indicated that P. copri colonization activated host chronic inflammatory responses through the TLR4 and mTOR signaling pathways and significantly upregulated the expression of the genes related to lipogenesis and fat accumulation, but attenuated the genes associated with lipolysis, lipid transport, and muscle growth. CONCLUSIONS: Taken together, the results proposed that P. copri in the gut microbial communities of pigs fed with commercial formula diets activates host chronic inflammatory responses by the metabolites through the TLR4 and mTOR signaling pathways, and increases host fat deposition significantly. The results provide fundamental knowledge for reducing fat accumulation in pigs through regulating the gut microbial composition. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Prevotella , Animales , Dieta , Ratones , Obesidad , Prevotella/genética , Porcinos
15.
Microb Biotechnol ; 14(4): 1316-1330, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33305898

RESUMEN

Failed puberty is one of the main reasons for eliminating gilts from production herds. This is often caused by disorders of sex hormones. An increasing number of studies have suggested that the gut microbiota may regulate sex hormones and vice versa. Whether the gut microbiota is involved in the failure of oestrus in gilts remains unknown. We used 16S rRNA gene sequencing, network-based microbiota analysis and prediction of functional capacity from 16S rRNA gene sequences to explore the shifts in the gut microbiota throughout a heat cycle in 22 eight-month-old gilts. We found that a module of co-occurrence networks composed of Sphaerochaeta and Treponema, co-occurred with oestrus during a heat cycle. The mcode score of this module reflecting the stability and importance in the network achieved the highest value at the oestrus stage. We then identified bacterial biosignatures associated with the failure to show puberty in 163 gilts. Prevotella, Treponema, Faecalibacterium, Oribacterium, Succinivibrio and Anaerovibrio were enriched in gilts showing normal heat cycles, while Lachnospiraceae, Ruminococcus, Coprococcus and Oscillospira had higher abundance in gilts failing to show puberty. Prediction of functional capacity of the gut microbiome identified a lesser abundance of the pathway 'retinol metabolism' in gilts that failed to undergo puberty. This pathway was also significantly associated with those bacterial taxa involved in failed puberty identified in this study (P < 0.05). This result suggests that the changed gut bacteria might result in a disorder of retinol metabolism, and this may be an explanation for the failure to enter oestrus.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Biomarcadores , Heces , Femenino , Calor , ARN Ribosómico 16S/genética , Porcinos
16.
Onco Targets Ther ; 13: 9429-9441, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061429

RESUMEN

OBJECTIVE: The purpose of this study was to explore the effect of microRNA-6071 (miR-6071) on glioblastoma (GBM) and its potential mechanisms. METHODS: In this study, the expressions of miR-6071 and UL16 binding protein 2 (ULBP2) were measured by qRT-RCR in GBM tissues and cells. The prognostic values of miR-6071 and ULBP2 were evaluated by Kaplan-Meier methods using the data obtained from The Cancer Genome Atlas (TCGA) database. The cell clones, proliferation, apoptosis, migration and invasion in GBM cells were detected by colony formation assay, EdU assay, flow cytometry, wound-healing assay and transwell assay. The targeting relationship between miR-6071 and ULBP2 was predicted by Targetscan 7.2 and further verified by dual-luciferase reporter gene assay. Moreover, the expressions of Bax, caspase-3, Bcl-2, matrix metalloproteinases 2 (MMP-2), MMP-9, phosphatidylinositol 3'-kinase (PI3K), p-PI3K, protein kinase B (AKT), p-AKT, mammalian target of rapamycin (mTOR) and p-mTOR were measured by Western blot. RESULTS: miR-6071 was lowly expressed and ULBP2 was highly expressed in GBM tissues and cells. miR-6071 significantly repressed the proliferation, migration and invasion, and promoted apoptosis in GBM cells. Moreover, miR-6071 also inhibited the activation of PI3K/AKT/mTOR pathway in GBM cells. Additionally, miR-6071 has been shown to negatively regulate ULBP2 expression. We also confirmed that ULBP2 could reverse the effects of miR-6071 on GBM cells through regulating PI3K/AKT/mTOR pathway. CONCLUSION: Our study demonstrated that miR-6071 could suppress cell proliferation, migration and invasion, as well as promote apoptosis through the inhibition of PI3K/Akt/mTOR pathway by binding to ULBP2 in GBM.

17.
Front Microbiol ; 10: 1359, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275280

RESUMEN

Gut microbiota regulates host metabolism and immunity. The phylogenetic composition of gut microbiota is influenced by diverse factors that include host gender. In this study, the effects of gender on gut microbial composition and its subsequent influence on serum metabolites in pigs were evaluated. The bacterial composition of feces samples was determined by 16S rRNA gene sequencing in 293 pure-bred Duroc pigs (108 gilts and 185 entire boars) and 64 validated pigs from an eight-breed mosaic F6 population. Twenty-eight F6 boars were castrated at 80 days of age to evaluate the effects of androgen on gut microbial composition. Untargeted serum metabolite features were determined in 45 boars and 26 gilts by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The study observed an obvious influence of host gender on the gut microbial composition and identified numerous sex-biased bacterial taxa. These included Veillonellaceae, Roseburia, Bulleidia, and Escherichia which showed the higher abundance in boars, and Treponema and Bacteroides which were over-represented in gilts. Castration significantly shifted the fecal microbiota composition of the boars toward that of gilts. The predicted functional pathways of the gut microbiome related to obesity and energy harvest were enriched in gilts, and positively associated with gilt-enriched bacteria. Functional pathways related to peptidases and carbohydrate metabolism were enriched in boars and positively associated with boar-enriched bacteria. Serum metabolites related to androgen and cresol metabolism were identified as sex-biased metabolites. Correlation analysis between serum metabolites and sex-biased bacteria identified that the serum concentration of androgen-related metabolites was positively correlated with Bulleidia and Escherichia, but negatively associated with Treponema, suggesting a significant interaction between gut microbiota and host sex hormone metabolism. These results offer basic knowledge of how host gender and gut microbiota influence host metabolism.

18.
Front Microbiol ; 10: 2123, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572329

RESUMEN

Perinatal care is important in mammals due to its contribution to fetal growth, maternal health, and lactation. Substantial changes in host hormones, metabolism, and immunity around the parturition period may be accompanied by alterations in the gut microbiome. However, to our knowledge, changes in the gut microbiome and their contribution to the shifts in host metabolism around parturition have not been investigated in pigs. Furthermore, pigs are an ideal biomedical model for studying the interactions of the gut microbiota with host metabolism, due to the ease of controlling feeding conditions. Here we report dramatic remodeling of the gut microbiota and the potential functional capacity during the late stages of pregnancy (5 days before parturition, LP) to postpartum (within 6 h after delivery, PO) in both experimental and validated populations of sows (n = 107). The richness of bacteria in the gut of both pregnant and delivery sows significantly decreased, whilst the ß-diversity dramatically expanded. The ratio of Bacteroidetes to Firmicutes, and the relative abundance of Prevotella significantly decreased, whilst the relative abundance of the predominant genus Lactobacillus significantly increased from LP to PO state. The predicted functional capacities of the gut microbiome related to amino acid metabolism, the metabolism of cofactors and vitamins, and glycan biosynthesis were significantly decreased from LP to PO state. However, the abundance of the functional capacities associated with carbohydrate and lipid metabolism were increased. Consistent with these changes, serum metabolites enriched at the LP stage were associated with the metabolism of amino acids and vitamins. In contrast, metabolites enriched at the PO stage were related to lipid metabolism. We further identified that the richness and ß-diversity of the gut microbiota and the abundance of Lactobacillus accounted for shifts in the levels of bile acid metabolites associated with lipid metabolism. The results suggest that host-microbiota interactions during the perinatal period impact host metabolism. These benefit the lactation of sows by providing energy from lipid metabolism for milk production.

19.
J Mol Cell Biol ; 11(9): 761-769, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30535390

RESUMEN

X chromosome inactivation and genomic imprinting are two classic epigenetic regulatory processes that cause mono-allelic gene expression. In female mammals, mono-allelic expression of the long non-coding RNA gene X-inactive specific transcript (XIST) is essential for initiation of X chromosome inactivation upon differentiation. We have previously demonstrated that the central factor of super elongation complex-like 3 (SEC-L3), AFF3, is enriched at gamete differentially methylated regions (DMRs) of the imprinted loci and regulates the imprinted gene expression. Here, we found that AFF3 can also bind to the DMR downstream of the XIST promoter. Knockdown of AFF3 leads to de-repression of the inactive allele of XIST in terminally differentiated cells. In addition, the binding of AFF3 to the XIST DMR relies on DNA methylation and also regulates DNA methylation level at DMR region. However, the KAP1-H3K9 methylation machineries, which regulate the imprinted loci, might not play major roles in maintaining the mono-allelic expression pattern of XIST in these cells. Thus, our results suggest that the differential mechanisms involved in the XIST DMR and gDMR regulation, which both require AFF3 and DNA methylation.


Asunto(s)
Alelos , Diferenciación Celular/genética , Metilación de ADN , Regulación de la Expresión Génica , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Femenino , Silenciador del Gen , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA