RESUMEN
Understanding the influence of cis-regulatory elements on gene regulation poses numerous challenges given complexities stemming from variations in transcription factor (TF) binding, chromatin accessibility, structural constraints, and cell-type differences. This review discusses the role of gene regulatory networks in enhancing understanding of transcriptional regulation and covers construction methods ranging from expression-based approaches to supervised machine learning. Additionally, key experimental methods, including MPRAs and CRISPR-Cas9-based screening, which have significantly contributed to understanding TF binding preferences and cis-regulatory element functions, are explored. Lastly, the potential of machine learning and artificial intelligence to unravel cis-regulatory logic is analyzed. These computational advances have far-reaching implications for precision medicine, therapeutic target discovery, and the study of genetic variations in health and disease.
Asunto(s)
Sistemas CRISPR-Cas , Redes Reguladoras de Genes , Aprendizaje Automático , Humanos , Sistemas CRISPR-Cas/genética , Biología Computacional/métodos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica/genética , Animales , Elementos Reguladores de la Transcripción/genéticaRESUMEN
INTRODUCTION: The immune receptor triggering receptor expressed on myeloid cells 2 (TREM2) is among the strongest genetic risk factors for Alzheimer's disease (AD) and is a therapeutic target. TREM2 multimers have been identified in crystallography and implicated in the efficacy of antibody therapeutics; however, the molecular basis for TREM2 multimerization remains poorly understood. METHODS: We used molecular dynamics simulations and binding energy analysis to determine the effects of AD-associated variants on TREM2 multimerization and validated with experimental results. RESULTS: TREM2 trimers remained stably bound, driven primarily by salt bridge between residues D87 and R76 at the interface of TREM2 units. This salt bridge was disrupted by the AD-associated variants R47H and R98W and nearly ablated by the D87N variant. This decreased binding among TREM2 multimers was validated with co-immunoprecipitation assays. DISCUSSION: This study uncovers a molecular basis for TREM2 forming stable trimers and unveils a novel mechanism by which TREM2 variants may increase AD risk by disrupting TREM2 oligomerization to impair TREM2 normal function. HIGHLIGHTS: Triggering receptor expressed on myeloid cells 2 (TREM2) multimerization could regulate TREM2 activation and function. D87-R76 salt bridges at the interface of TREM2 units drive the formation of stable TREM2 dimers and trimers. Alzheimer's disease (AD)-associated R47H and R98W variants disrupt the D87-R76 salt bridge. The AD-associated D87N variant leads to complete loss of the D87-R76 salt bridge.
Asunto(s)
Enfermedad de Alzheimer , Glicoproteínas de Membrana , Simulación de Dinámica Molecular , Multimerización de Proteína , Receptores Inmunológicos , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , HumanosRESUMEN
Primary hyperoxalurias (PH) are a group of rare heterogeneous disorders characterized by deficiencies in glyoxylate metabolism. To date, three genes have been identified to cause three types of PH (I, II, and III). The HOGA1 gene caused type III in around 10% of the PH cases. Disease-associated pathogenic variants have been reported from several populations and a comprehensive spectrum of these mutations and genotype-phenotype correlation has never been presented. In this study, we describe new cases of the HOGA1 gene pathogenic variants identified in our population. We report the first case of ESKD with successful kidney transplantation with 5 years of follow-up. Furthermore, a comprehensive overview of PH type III associated HOGA1 gene variants was carried out. Compiling the data from the literature, we reviewed 57 distinct HOGA1 gene pathogenic variants in 175 patients worldwide. The majority of reported variants are missense variants that predicted a loss of function mechanism as the underlying pathology. There has been evidence of the presence of founder mutations in several populations like Europeans, Ashkenazi Jews, Arab, and Chinese populations. No significant genotype-phenotype correlation was identified concerning the ages of onset of the disease and biochemical and metabolic parameters. Nephrocalcinosis was rare in patients with disease-associated variants. Most of the patients were presented with urolithiasis early in life; only five cases reported disease progression after the second decade of life. The establishment of impairment of renal function in 8% of all the reported cases makes this type a relatively severe form of primary hyperoxaluria, not a benign etiology as suggested previously.
Asunto(s)
Hiperoxaluria Primaria , Oxo-Ácido-Liasas , Humanos , Hiperoxaluria Primaria/diagnóstico , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/metabolismo , Mutación , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/metabolismoRESUMEN
Pompe disease is an inherited disorder caused by disease-associated variants in the acid α-glucosidase gene (GAA). The Pompe disease GAA variant database (http://www.pompevariantdatabase.nl) is a curated, open-source, disease-specific database, and lists disease-associated GAA variants, in silico predictions, and clinical phenotypes reported until 2016. Here, we provide an update to include 226 disease-associated variants that were published until 2020. We also listed 148 common GAA sequence variants that do not cause Pompe disease. GAA variants with unknown severity that were identified only in newborn screening programs were listed as a new feature to indicate the reason why phenotypes were still unknown. Expression studies were performed for common missense variants to predict their severity. The updated Pompe disease GAA variant database now includes 648 disease-associated variants, 26 variants from newborn screening, and 237 variants with unknown severity. Regular updates of the Pompe disease GAA variant database will be required to improve genetic counseling and the study of genotype-phenotype relationships.
Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Tamizaje Neonatal , Predisposición Genética a la Enfermedad , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Humanos , Recién Nacido , Fenotipo , alfa-Glucosidasas/genéticaRESUMEN
PURPOSE: Achromatopsia (ACHM) is an autosomal recessive cone disorder characterized by pendular nystagmus, photophobia, reduced visual acuity, and partial or total absence of color vision. Mutations in six genes (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6) have been reported in ACHM. There is no information on these disease-associated genes in Thai population. This study aimed to investigate the molecular and clinical characteristics in Thai patients with ACHM. METHODS: Seven unrelated Thai patients with ACHM were recruited. Detailed ophthalmologic examination was performed. Polymerase chain reaction (PCR)-coupled single-strand conformation polymorphism (SSCP) screening followed by Sanger sequencing was used to identify sequence variants in all exons and splice junctions of three genes (CNGA3, CNGB3, and GNAT2). The pathogenicity of the detected variants was interpreted. Segregation analysis was performed to determine variant sharing in available family members. RESULTS: Four patients displayed different SSCP migration patterns. Sequence analysis revealed a reported pathogenic and a novel disease-associated variant in the CNGA3 gene. For the CNGB3 gene, we found two novel disease-associated variants and a reported variant of uncertain significance (VUS). Segregation analysis confirmed that the variants identified in each patient were present in the heterozygous state in their corresponding family members, which was consistent with an autosomal recessive mode of inheritance. CONCLUSIONS: This study demonstrated the first molecular and clinical characterization of ACHM in Thai patients. The identification of disease-associated genes in a specific population leads to a personalized gene therapy benefiting those affected patients.
Asunto(s)
Defectos de la Visión Cromática , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Análisis Mutacional de ADN , Electrorretinografía , Humanos , Mutación , TailandiaRESUMEN
Hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) type I and II is a rare and life-threatening disease caused by SERPING1 gene mutations. Previous genetic studies indicated a wide spectrum of disease-associated variants in the SERPING1 gene and often lack of correlation with patient's phenotypes. The aim of this study was to evaluate the presence, type, and localization of mutations in the SERPING1 gene in 41 Polish patients with C1-INH-HAE and their relation with case/family history, type of C1-INH-HAE, fC1-INH, age of onset, and disease severity. Sanger sequencing and MLPA method were used for detection of disease-associated variants. In 34 (82.9%) patients, mutations located in various regions of SERPING1 gene were revealed. The detected alterations in patients with C1-INH-HAE type I differed and were positioned in various exons/introns of the SERPING1 gene. The most frequent disease-associated variants appeared in exon 3 (especially in type I) and in exon 8 (type I and II). Out of 20 different disease-causing variants, 9 were not previously described. We did not find any relation between the type and location of the mutations and no type of features included in phenotype evaluation of the patients, such as case and family history, type of C1-INH-HAE, age of onset, biochemical parameters, or severity of disease.
RESUMEN
Bipolar disorder (BPD) is a serious psychiatric condition that is characterized by the frequent shifting of mood patterns, ranging from manic to depressive episodes. Although there are already treatment strategies that aim at regulating the manifestations of this disorder, its etiology remains unclear and continues to be a question of interest within the scientific community. The development of RNA sequencing techniques has provided newer and better approaches to studying disorders at the transcriptomic level. Hence, using RNA-seq data, we employed intramodular connectivity analysis and network pharmacology assessment of disease-associated variants to elucidate the biological pathways underlying the complex nature of BPD. This study was intended to characterize the expression profiles obtained from three regions in the brain, which are the nucleus accumbens (nAcc), the anterior cingulate cortex (AnCg), and the dorsolateral prefrontal cortex (DLPFC), provide insights into the specific roles of these regions in the onset of the disorder, and present potential targets for drug design and development. The nAcc was found to be highly associated with genes responsible for the deregulated transcription of neurotransmitters, while the DLPFC was greatly correlated with genes involved in the impairment of components crucial in neurotransmission. The AnCg did show association with some of the expressions, but the relationship was not as strong as the other two regions. Furthermore, disease-associated variants or single nucleotide polymorphisms (SNPs) were identified among the significant genes in BPD, which suggests the genetic interrelatedness of such a disorder and other mental illnesses. DRD2, GFRA2, and DCBLD1 were the genes with disease-associated variants expressed in the nAcc; ST8SIA2 and ADAMTS16 were the genes with disease-associated variants expressed in the AnCg; and FOXO3, ITGA9, CUBN, PLCB4, and RORB were the genes with disease-associated variants expressed in the DLPFC. Aside from unraveling the molecular and cellular mechanisms behind the expression of BPD, this investigation was envisioned to propose a new research pipeline in studying the transcriptome of psychiatric disorders to support and improve existing studies.
RESUMEN
The NMDA receptor (NMDAR) is a ubiquitously expressed glutamate-gated ion channel that plays key roles in brain development and function. Not surprisingly, a variety of disease-associated variants have been identified in genes encoding NMDAR subunits. A critical first step to assess whether these variants contribute to their associated disorder is to characterize their effect on receptor function. However, the complexity of NMDAR function makes this challenging, with many variants typically altering multiple functional properties. At synapses, NMDARs encode pre- and postsynaptic activity to carry a charge transfer that alters membrane excitability and a Ca2+ influx that has both short- and long-term signaling actions. Here, we characterized epilepsy-associated variants in GluN1 and GluN2A subunits with various phenotypic severity in HEK293 cells. To capture the complexity of NMDAR gating, we applied 10 glutamate pulses at 10 Hz to derive a charge integral. This assay is advantageous since it incorporates multiple gating parameters - activation, deactivation, and desensitization - into a single value. We then integrated this gating parameter with Mg2+ block and Ca2+ influx using fractional Ca2+ currents to generate indices of charge transfer and Ca2+ transfer over wide voltage ranges. This approach yields consolidated parameters that can be used as a reference to normalize channel block and allosteric modulation to better define potential patient treatment. This is especially true for variants in the transmembrane domain that affect not only receptor gating but also often Mg2+ block and Ca2+ permeation.
RESUMEN
The advent of precision medicine for genetic diseases has been hampered by the large number of variants that cause familial and somatic disease, a complexity that is further confounded by the impact of genetic modifiers. To begin to understand differences in onset, progression and therapeutic response that exist among disease-causing variants, we present the proteomic variant approach (ProVarA), a proteomic method that integrates mass spectrometry with genomic tools to dissect the etiology of disease. To illustrate its value, we examined the impact of variation in cystic fibrosis (CF), where 2025 disease-associated mutations in the CF transmembrane conductance regulator (CFTR) gene have been annotated and where individual genotypes exhibit phenotypic heterogeneity and response to therapeutic intervention. A comparative analysis of variant-specific proteomics allows us to identify a number of protein interactions contributing to the basic defects associated with F508del- and G551D-CFTR, two of the most common disease-associated variants in the patient population. We demonstrate that a number of these causal interactions are significantly altered in response to treatment with Vx809 and Vx770, small-molecule therapeutics that respectively target the F508del and G551D variants. ProVarA represents the first comparative proteomic analysis among multiple disease-causing mutations, thereby providing a methodological approach that provides a significant advancement to existing proteomic efforts in understanding the impact of variation in CF disease. We posit that the implementation of ProVarA for any familial or somatic mutation will provide a substantial increase in the knowledge base needed to implement a precision medicine-based approach for clinical management of disease.