Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Virus Genes ; 58(5): 448-457, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35716226

RESUMEN

Escherichia coli, a gram-negative bacterium, was generally considered conditional pathogenic bacteria and the proportion of bacteria resistant to commonly used specified antibacterial drugs exceeded 50%. Phage therapeutic application has been revitalized since antibiotic resistance in bacteria was increasing. Compared with antibiotics, phage is the virus specific to bacterial hosts. However, further understanding of phage-host interactions is required. In this study, a novel phage specific to a E. coli strain, named as phage Kayfunavirus ZH4, was isolated and characterized. Transmission electron microscopy showed that phage ZH4 belongs to the family Autographiviridae. The whole-genome analysis showed that the length of phage ZH4 genome was 39,496 bp with 49 coding domain sequence (CDS) and no tRNA was detected. Comparative genome and phylogenetic analysis demonstrated that phage ZH4 was highly similar to phages belonging to the genus Kayfunavirus. Moreover, the highest average nucleotide identity (ANI) values of phage ZH4 with all the known phages was 0.86, suggesting that ZH4 was a relatively novel phage. Temperature and pH stability tests showed that phage ZH4 was stable from 4° to 50 °C and pH range from 3 to 11. Host range of phage ZH4 showed that there were only 2 out of 17 strains lysed by phage ZH4. Taken together, phage ZH4 was considered as a novel phage with the potential for applications in the food and pharmaceutical industries.


Asunto(s)
Bacteriófagos , Caudovirales , Antibacterianos , Bacteriófagos/genética , Caudovirales/genética , Colifagos/genética , Escherichia coli/genética , Genoma Viral , Nucleótidos , Filogenia
2.
Vaccines (Basel) ; 12(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38793723

RESUMEN

Bacterial ghosts (BGs) are hollow bacterial cell envelopes with intact cellular structures, presenting as promising candidates for various biotechnological and biomedical applications. However, the yield and productivity of BGs have encountered limitations, hindering their large-scale preparation and multi-faceted applications of BGs. Further optimization of BGs is needed for the commercial application of BG technology. In this study, we screened out the most effective lysis protein ID52-E-W4A among 13 mutants based on phage ID52 lysis protein E and optimized the liquid culture medium for preparing Escherichia coli Nissle 1917 (EcN). The results revealed a significantly higher lysis rate of ID52-E-W4A compared to that of ID52-E in the 2xYT medium. Furthermore, EcN BGs were cultivated in a fermenter, achieving an initial OD600 as high as 6.0 after optimization, indicating enhanced BG production. Moreover, the yield of ID52-E-W4A-induced BGs reached 67.0%, contrasting with only a 3.1% yield from φX174-E-induced BGs. The extended applicability of the lysis protein ID52-E-W4A was demonstrated through the preparation of Salmonella pullorum ghosts and Salmonella choleraesuis ghosts. Knocking out the molecular chaperone gene slyD and dnaJ revealed that ID52-mediated BGs could still undergo lysis. Conversely, overexpression of integral membrane enzyme gene mraY resulted in the loss of lysis activity for ID52-E, suggesting that the lysis protein ID52-E may no longer rely on SlyD or DnaJ to function, with MraY potentially being the target of ID52-E. This study introduces a novel approach utilizing ID52-E-W4A for recombinant expression, accelerating the BG formation and thereby enhancing BG yield and productivity.

3.
Phage (New Rochelle) ; 4(3): 141-149, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37841386

RESUMEN

Background: The antimicrobial resistance catastrophe is a growing global health threat and predicted to be worse in developing countries. Phages for Global Health (PGH) is training scientists in these regions to isolate relevant therapeutic phages for pathogenic bacteria within their locality, and thus contributing to making phage technology universally available. Materials and Methods: During the inaugural PGH workshop in East Africa, samples from Ugandan municipal sewage facilities were collected and two novel Escherichia coli lytic phages were isolated and characterized. Results: The phages, UP19 (capsid diameter ∼100 nm, contractile tail ∼120/20 nm) and UP30 (capsid diameter ∼70 nm, noncontractile tail of ∼170/20 nm), lysed ∼82% and ∼36% of the 11 clinical isolates examined, respectively. The genomes of UP19 (171.402 kb, 282 CDS) and UP30 (49.834 kb, 75 CDS) closely match the genera Dhakavirus and Tunavirus, respectively. Conclusion: The phages isolated have therapeutic potential for further development against E. coli infections.

4.
Environ Sci Pollut Res Int ; 25(7): 6497-6513, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29255976

RESUMEN

Virus is one of the most potentially harmful microorganisms in groundwater. In this paper, the effects of hydrodynamic and hydrogeochemical conditions on the transportation of the colloidal virus considering managed aquifer recharge were systematically investigated. Escherichia coli phage, vB_EcoM-ep3, has a broad host range and was able to lyse pathogenic Escherichia coli. Bacteriophage with low risk to infect human has been found extensively in the groundwater environment, so it is considered as a representative model of groundwater viruses. Laboratory studies were carried out to analyze the transport of the Escherichia coli phage under varying conditions of pH, ionic strength, cation valence, flow rate, porous media, and phosphate buffer concentration. The results indicated that decreasing the pH will increase the adsorption of Escherichia coli phage. Increasing the ionic strength, either Na+ or Ca2+, will form negative condition for the migration of Escherichia coli phage. A comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than monovalent Na+. As the flow rate increases, the release of Escherichia coli phage increases and the retention of Escherichia coli phage in the aquifer medium reduces. Changes in porous media had a significant effect on Escherichia coli phage migration. With increase of phosphate buffer concentration, the suspension stability and migration ability of Escherichia coli phage are both increased. Based on laboratory-scale column experiments, a one-dimensional transport model was established to quantitatively describe the virus transport in saturated porous medium.


Asunto(s)
Colifagos/aislamiento & purificación , Sedimentos Geológicos/virología , Agua Subterránea/virología , Modelos Teóricos , Adsorción , Sedimentos Geológicos/química , Agua Subterránea/química , Humanos , Hidrodinámica , Concentración Osmolar , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA