Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474188

RESUMEN

Actin-binding filamin C (FLNC) is expressed in cardiomyocytes, where it localizes to Z-discs, sarcolemma, and intercalated discs. Although FLNC truncation variants (FLNCtv) are an established cause of arrhythmias and heart failure, changes in biomechanical properties of cardiomyocytes are mostly unknown. Thus, we investigated the mechanical properties of human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) carrying FLNCtv. CRISPR/Cas9 genome-edited homozygous FLNCKO-/- hiPSC-CMs and heterozygous knock-out FLNCKO+/- hiPSC-CMs were analyzed and compared to wild-type FLNC (FLNCWT) hiPSC-CMs. Atomic force microscopy (AFM) was used to perform micro-indentation to evaluate passive and dynamic mechanical properties. A qualitative analysis of the beating traces showed gene dosage-dependent-manner "irregular" peak profiles in FLNCKO+/- and FLNCKO-/- hiPSC-CMs. Two Young's moduli were calculated: E1, reflecting the compression of the plasma membrane and actin cortex, and E2, including the whole cell with a cytoskeleton and nucleus. Both E1 and E2 showed decreased stiffness in mutant FLNCKO+/- and FLNCKO-/- iPSC-CMs compared to that in FLNCWT. The cell adhesion force and work of adhesion were assessed using the retraction curve of the SCFS. Mutant FLNC iPSC-CMs showed gene dosage-dependent decreases in the work of adhesion and adhesion forces from the heterozygous FLNCKO+/- to the FLNCKO-/- model compared to FLNCWT, suggesting damaged cytoskeleton and membrane structures. Finally, we investigated the effect of crenolanib on the mechanical properties of hiPSC-CMs. Crenolanib is an inhibitor of the Platelet-Derived Growth Factor Receptor α (PDGFRA) pathway which is upregulated in FLNCtv hiPSC-CMs. Crenolanib was able to partially rescue the stiffness of FLNCKO-/- hiPSC-CMs compared to control, supporting its potential therapeutic role.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Fenómenos Biomecánicos , Filaminas/metabolismo , Actinas/metabolismo , Miocardio
2.
Am J Med Genet A ; 191(6): 1508-1517, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36864778

RESUMEN

Variants of filamin C (FLNC) have been identified as rare genetic substrate for hypertrophic cardiomyopathy (HCM). Data on the clinical course of FLNC-related HCM are conflicting with some studies suggesting mild phenotypes whereas other studies have reported more severe outcomes. In this study, we present a novel FLNC variant (Ile1937Asn) that was identified in a large family of French-Canadian descent with excellent segregation data. FLNC-Ile1937Asn is a novel missense variant characterized by full penetrance and poor clinical outcomes. End stage heart failure requiring transplantation occurred in 43% and sudden cardiac death in 29% of affected family members. Other particular features of FLNC-Ile1937Asn include an early disease onset (mean age of 19 years) and the development of a marked atrial myopathy (severe biatrial dilatation with remodeling and multiple complex atrial arrhythmias) that was present in all gene carriers. The FLNC-Ile1937Asn variant is a novel, pathogenic mutation resulting in a severe form of HCM with full disease penetrance. The variant is associated with a high proportion of end-stage heart failure, heart transplantation, and disease-related mortality. Close follow-up and appropriate risk stratification of affected individuals at specialized heart centers is recommended.


Asunto(s)
Fibrilación Atrial , Cardiomiopatía Hipertrófica , Cardiomiopatía Restrictiva , Insuficiencia Cardíaca , Humanos , Cardiomiopatía Restrictiva/genética , Mutación , Filaminas/genética , Canadá , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/genética , Insuficiencia Cardíaca/genética
3.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298584

RESUMEN

Bcl-2-interacting cell death suppressor (BIS), also called BAG3, plays a role in physiological functions such as anti-apoptosis, cell proliferation, autophagy, and senescence. Whole-body Bis-knockout (KO) mice exhibit early lethality accompanied by abnormalities in cardiac and skeletal muscles, suggesting the critical role of BIS in these muscles. In this study, we generated skeletal muscle-specific Bis-knockout (Bis-SMKO) mice for the first time. Bis-SMKO mice exhibit growth retardation, kyphosis, a lack of peripheral fat, and respiratory failure, ultimately leading to early death. Regenerating fibers and increased intensity in cleaved PARP1 immunostaining were observed in the diaphragm of Bis-SMKO mice, indicating considerable muscle degeneration. Through electron microscopy analysis, we observed myofibrillar disruption, degenerated mitochondria, and autophagic vacuoles in the Bis-SMKO diaphragm. Specifically, autophagy was impaired, and heat shock proteins (HSPs), such as HSPB5 and HSP70, and z-disk proteins, including filamin C and desmin, accumulated in Bis-SMKO skeletal muscles. We also found metabolic impairments, including decreased ATP levels and lactate dehydrogenase (LDH) and creatine kinase (CK) activities in the diaphragm of Bis-SMKO mice. Our findings highlight that BIS is critical for protein homeostasis and energy metabolism in skeletal muscles, suggesting that Bis-SMKO mice could be used as a therapeutic strategy for myopathies and to elucidate the molecular function of BIS in skeletal muscle physiology.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Animales , Ratones , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Atrofia Muscular/metabolismo , Metabolismo Energético , Fosforilación , Ratones Noqueados
4.
Cancer Cell Int ; 21(1): 581, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717622

RESUMEN

BACKGROUND: IL-6 plays a pivotal role in resistance to chemotherapeutics, including lobaplatin. However, the underlying mechanisms are still unclear. This study was to investigate the changes in phosphoproteins and their related signaling pathways in the process of IL-6-induced chemoresistance to lobaplain in osteosarcoma cells. METHODS: We performed a quantitative phosphoproteomic analysis of the response of SaOS-2 osteosarcoma cells to recombinant human IL-6 (rhIL-6) intervention prior to lobaplatin treatment. The cells were divided into the control group (Con), the lobaplatin group (Lob), and the rhIL-6-and-lobaplatin group (IL-6). Three biological replicates of each group were included. The differentially expressed phosphoproteins were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Netphos 3.1 was used for the prediction of kinases, and STRING was used for the visualization of protein-protein interactions. The conserved motifs surrounding the phosphorylated residues were analyzed using the motif-x algorithm. Western blot analysis was performed to verify the differential expression of p-FLNC, its predicted kinase and the related signaling pathway. The results of the bioinformatic analysis were validated by immunohistochemical staining of clinical specimens. RESULTS: In total, 3373 proteins and 12,183 peptides, including 3232 phosphorylated proteins and 11,358 phosphorylated peptides, were identified and quantified. Twenty-three significantly differentially expressed phosphoproteins were identified in the comparison between the IL-6 and Lob groups, and p-FLNC ranked second among these phosphoproteins. GO and KEGG analyses revealed the pivotal role of mitogen-activated protein kinase signaling in drug resistance induced by rhIL-6. Four motifs, namely, -SPxxK-, -RxxSP-, -SP-, and -SPK-, demonstrated higher expression in the IL-6 group than in the Lob group. The western blot analysis results verified the higher expression of p-FLNC, AKT1, and p-ERK and the lower expression of p-JNK in the IL-6 group than in the Con and Lob groups. The immunohistochemical staining results showed that p-FLNC, AKT1 and p-ERK1/2 were highly expressed in platinum-resistant clinical specimens but weakly expressed in platinum-sensitive specimens, and platinum-resistant osteosarcoma specimens demonstrated weak expression of p-JNK. CONCLUSIONS: This phosphoproteomic study is the first to reveal the signature associated with rhIL-6 intervention before lobaplatin treatment in human osteosarcoma cells. p-FLNC, AKT1, and MAPK signaling contributes to resistance to lobaplatin in osteosarcoma SaOS-2 cells and may represent molecular targets to overcome osteosarcoma chemoresistance.

5.
J Muscle Res Cell Motil ; 42(2): 381-397, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33710525

RESUMEN

Hypertrophic cardiomyopathy (HCM) often leads to heart failure. Mutations in sarcomeric proteins are most frequently the cause of HCM but in many patients the gene defect is not known. Here we report on a young man who was diagnosed with HCM shortly after birth. Whole exome sequencing revealed a mutation in the FLNC gene (c.7289C > T; p.Ala2430Val) that was previously shown to cause aggregation of the mutant protein in transfected cells. Myocardial tissue from patients with this mutation has not been analyzed before and thus, the underlying etiology is not well understood. Myocardial tissue of our patient obtained during myectomy at the age of 23 years was analyzed in detail by histochemistry, immunofluorescence staining, electron microscopy and western blot analysis. Cardiac histology showed a pathology typical for myofibrillar myopathy with myofibril disarray and abnormal protein aggregates containing BAG3, desmin, HSPB5 and filamin C. Analysis of sarcomeric and intercalated disc proteins showed focally reduced expression of the gap junction protein connexin43 and Xin-positive sarcomeric lesions in the cardiomyocytes of our patient. In addition, autophagy pathways were altered with upregulation of LC3-II, WIPI1 and HSPB5, 6, 7 and 8. We conclude that the p.Ala2430Val mutation in FLNC most probably is associated with HCM characterized by abnormal intercalated discs, disarray of myofibrils and aggregates containing Z-disc proteins similar to myofibrillar myopathy, which supports the pathological effect of the mutation.


Asunto(s)
Cardiomiopatía Hipertrófica , Filaminas , Miopatías Estructurales Congénitas , Proteínas Adaptadoras Transductoras de Señales , Adulto , Proteínas Reguladoras de la Apoptosis , Cardiomiopatía Hipertrófica/genética , Filaminas/genética , Humanos , Masculino , Mutación , Miocitos Cardíacos , Adulto Joven
6.
J Med Genet ; 57(4): 254-257, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31924696

RESUMEN

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heart muscle disease that affects predominantly the right ventricle and is part of the spectrum of arrythmogenic cardiomyopathies (ACMs). ARVC is a genetic condition; however, a pathogenic gene variant is found in only half of patients. OBJECTIVE: Filamin C gene truncations (FLNCtv) have recently been identified in dilated cardiomyopathy with ventricular arrhythmia and sudden cardiac death, a phenotype partially overlapping with ARVC and part of the ACM spectrum. We hypothesised that FLNCtv could be a novel gene associated with ARVC. METHODS: One hundred fifty-six patients meeting 2010 ARVC Task Force Criteria and lacking variants in known ARVC genes were evaluated for FLNC variants. Available family members were tested for cosegregation. RESULTS: We identified two unique FLNCtv variants in two families (c.6565 G>T, p.Glu2189Ter and c.8107delG, p.Asp2703ThrfsTer69), with phenotypes of dominant RV disease fulfilling 'definite' diagnosis of ARVC according to the 2010 Task Force Criteria. Variants in other cardiomyopathy genes were excluded in both kindreds, and segregation analysis revealed that p.Asp2703ThrfsTer69 was a de novo variant. In both families, the disease phenotype was characterised by prominent ventricular arrhythmias and sudden cardiac arrest. CONCLUSION: The identification of FLNCtv as a novel cause of ARVC in two unrelated families expands the spectrum of ARVC non-desmosome disease genes for this disorder. Our findings should prompt inclusion of FLNC genetic testing in ARVC to improve diagnostic yield and testing of at-risk relatives in ARVC.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Filaminas/genética , Predisposición Genética a la Enfermedad , Adulto , Anciano , Displasia Ventricular Derecha Arritmogénica/patología , Femenino , Pruebas Genéticas , Ventrículos Cardíacos , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Fenotipo
7.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802723

RESUMEN

The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.


Asunto(s)
Cardiomiopatías/metabolismo , Proteínas Musculares/metabolismo , Enfermedades Musculares/metabolismo , Animales , Humanos , Modelos Biológicos , Proteínas Musculares/química , Proteínas Musculares/genética , Mutación/genética
8.
Int Heart J ; 62(1): 127-134, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33455984

RESUMEN

Mutations in the sarcomeric protein filamin C (FLNC) gene have been linked to hypertrophic cardiomyopathy (HCM), as they have been determined to increase the risk of ventricular arrhythmia and sudden death. Thus, in this study, we identified a novel missense mutation of FLNC in a Chinese family with HCM, and, interestingly, a second novel truncating mutation of MYLK2 was discobered in one family member with different phenotype.We performed whole-exome sequencing in a Chinese family with HCM of unknown cause. To determine and confirm the function of a novel mutation of FLNC, we introduced the mutant and wild-type gene into AC16 cells (human cardiomyocytes): we then used western blotting to analyze the expression of FLNC in subcellular fractions, and confocal microscope to observe the subcellular distribution of the protein.As per our findings, we were able to identify a novel missense single nucleotide variant (FLNC c.G5935A [p.A1979T]) in the family, which segregates with the disease. FLNC expression levels were observed to be equivalent in both wild-type and p.A1979T cardiomyocytes. However, the expression of the mutant protein has resulted in cytoplasmic protein aggregations, in contrast to wild-type FLNC, which was distributed in the cytoplasm and did not form aggregates. Unexpectedly, a second truncating mutation, NM_033118:exon8:c.G1138T:p.E380X of the MYLK2 gene, was identified in the mother of the proband with dilated cardiomyopathy, which was not found in other subjects.We then identified the FLNC A1979T mutation as a novel pathogenic variant associated with HCM in a Chinese family as well as a second causal mutation in a family member with a distinct phenotype. The possibility that there is more than one causal mutation in cardiomyopathy warrants clinical attention, especially for patients with atypical clinical features.


Asunto(s)
Pueblo Asiatico/genética , Proteínas de Unión al Calcio/genética , Cardiomiopatías/genética , Filaminas/genética , Quinasa de Cadena Ligera de Miosina/genética , Adulto , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/fisiopatología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica/genética , Muerte Súbita Cardíaca/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Mutación Missense/genética , Miocitos Cardíacos/ultraestructura , Linaje , Fenotipo , Factores de Riesgo , Fibrilación Ventricular/epidemiología , Fibrilación Ventricular/mortalidad , Secuenciación del Exoma/métodos
9.
Hum Mutat ; 41(9): 1600-1614, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32516863

RESUMEN

Filamin C (encoded by the FLNC gene) is a large actin-cross-linking protein involved in shaping the actin cytoskeleton in response to signaling events both at the sarcolemma and at myofibrillar Z-discs of cross-striated muscle cells. Multiple mutations in FLNC are associated with myofibrillar myopathies of autosomal-dominant inheritance. Here, we describe for the first time a boy with congenital onset of generalized muscular hypotonia and muscular weakness, delayed motor development but no cardiac involvement associated with a homozygous FLNC mutation c.1325C>G (p.Pro442Arg). We performed ultramorphological, proteomic, and functional investigations as well as immunological studies of known marker proteins for dominant filaminopathies. We show that the mutant protein is expressed in similar quantities as the wild-type variant in control skeletal muscle fibers. The proteomic signature of quadriceps muscle is altered and ultrastructural perturbations are evident. Moreover, filaminopathy marker proteins are comparable both in our homozygous and a dominant control case (c.5161delG). Biochemical investigations demonstrate that the recombinant mutant protein is less stable and more prone to degradation by proteolytic enzymes than the wild-type variant. The unusual congenital presentation of the disease clearly demonstrates that homozygosity for mutations in FLNC severely aggravates the phenotype.


Asunto(s)
Filaminas/genética , Miopatías Estructurales Congénitas/genética , Adolescente , Niño , Preescolar , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Proteoma
10.
Clin Genet ; 97(5): 747-757, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32022900

RESUMEN

FLNC-related myofibrillar myopathy could manifest as autosomal dominant late-onset slowly progressive proximal muscle weakness; involvements of cardiac and/or respiratory functions are common. We describe 34 patients in nine families of FLNC-related myofibrillar myopathy in Hong Kong ethnic Chinese diagnosed over the last 12 years, in whom the same pathogenic variant c.8129G>A (p.Trp2710*) was detected. Twenty-six patients were symptomatic when diagnosed; four patients died of pneumonia and/or respiratory failure. Abnormal amorphous material or granulofilamentous masses were detected in half of the cases, with mitochondrial abnormalities noted in two-thirds. We also show by haplotype analysis the founder effect associated with this Hong Kong variant, which might have occurred 42 to 71 generations ago or around Tang and Song dynasties, and underlain a higher incidence of myofibrillar myopathy among Hong Kong Chinese. The late-onset nature and slowly progressive course of the highly penetrant condition could have significant impact on the family members, and an early diagnosis could benefit the whole family. Considering another neighboring founder variant in FLNC in German patients, we advocate development of specific therapies such as chaperone-based or antisense oligonucleotide strategies for this particular type of myopathy.


Asunto(s)
Filaminas/genética , Músculo Esquelético/patología , Miopatías Estructurales Congénitas/genética , Adulto , Anciano , Pueblo Asiatico , Electromiografía , Femenino , Efecto Fundador , Hong Kong/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Debilidad Muscular/diagnóstico por imagen , Debilidad Muscular/genética , Debilidad Muscular/patología , Músculo Esquelético/diagnóstico por imagen , Mutación/genética , Miopatías Estructurales Congénitas/epidemiología , Miopatías Estructurales Congénitas/patología , Linaje , Fenotipo
11.
Int J Mol Sci ; 21(8)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32295012

RESUMEN

Filamin C (FLNC) is one of three filamin proteins (Filamin A (FLNA), Filamin B (FLNB), and FLNC) that cross-link actin filaments and interact with numerous binding partners. FLNC consists of a N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats with two intervening calpain-sensitive hinges separating R15 and R16 (hinge 1) and R23 and R24 (hinge-2). The FLNC subunit is dimerized through R24 and calpain cleaves off the dimerization domain to regulate mobility of the FLNC subunit. FLNC is localized in the Z-disc due to the unique insertion of 82 amino acid residues in repeat 20 and necessary for normal Z-disc formation that connect sarcomeres. Since phosphorylation of FLNC by PKC diminishes the calpain sensitivity, assembly, and disassembly of the Z-disc may be regulated by phosphorylation of FLNC. Mutations of FLNC result in cardiomyopathy and muscle weakness. Although this review will focus on the current understanding of FLNC structure and functions in muscle, we will also discuss other filamins because they share high sequence similarity and are better characterized. We will also discuss a possible role of FLNC as a mechanosensor during muscle contraction.


Asunto(s)
Filaminas/química , Filaminas/metabolismo , Modelos Moleculares , Estructura Molecular , Células Musculares/metabolismo , Células Musculares/ultraestructura , Animales , Proteínas Portadoras , Humanos , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Mutación , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Relación Estructura-Actividad
12.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824180

RESUMEN

Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.


Asunto(s)
Actinina/metabolismo , Cardiomiopatías/metabolismo , Citoesqueleto/metabolismo , Distrofina/metabolismo , Filaminas/metabolismo , Actinina/genética , Animales , Cardiomiopatías/genética , Cardiomiopatías/patología , Distrofina/genética , Filaminas/genética , Humanos
13.
BMC Neurol ; 19(1): 198, 2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31421687

RESUMEN

BACKGROUND: Myofibrillar myopathies (MFMs) are a genetically heterogeneous group of muscle disorders. Mutations in the filamin C gene (FLNC) have previously been identified in patients with MFM. The phenotypes of FLNC-related MFM are heterogeneous. CASE PRESENTATION: The patient was a 37-year-old male who first experienced weakness in the distal muscles of his hand, which eventually spread to the lower limbs and proximal muscles. Serum creatine kinase levels were moderately elevated. Obvious neuropathic changes in the electromyographic exam and edema changes in lower distal limb magnetic resonance imaging were observed. Histopathological examination revealed the presence of abnormal protein aggregates and angular atrophy in some muscle fibers. Ultrastructural analysis showed inordinate myofibrillar structures and dissolved myofilaments. DNA sequencing analysis detected a heterozygous missense mutation (c.7123G > A, p.V2375I) in the immunoglobulin (Ig)-like domain 21 of FLNC. CONCLUSIONS: FLNC mutation c.7123G > A, p.V2375I in the immunoglobulin (Ig)-like domain 21 can be associated with distal myopathy with typical MFM features and lower motor neuron syndrome. Although electromyographic examination of our patient showed obvious neuropathic changes, MFM could not be excluded. Therefore, genetic testing is necessary to make an accurate diagnosis.


Asunto(s)
Enfermedad de la Neurona Motora/genética , Distrofias Musculares/genética , Adulto , Heterocigoto , Humanos , Masculino , Mutación , Mutación Missense , Fenotipo , Síndrome
14.
Hum Mutat ; 39(9): 1161-1172, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29858533

RESUMEN

Mutations in FLNC for a long time are known in connection to neuromuscular disorders and only recently were described in association with various cardiomyopathies. Here, we report a new clinical phenotype of filaminopathy in four unrelated patients with early-onset restrictive cardiomyopathy (RCM) in combination with congenital myopathy due to FLNC mutations (NM_001458.4:c.3557C>T, p.A1186V, rs1114167361 in three probands and c.[3547G>C; 3548C>T], p.A1183L, rs1131692185 in one proband). In all cases, concurrent myopathy was confirmed by neurological examination, electromyography, and morphological studies. Three of the patients also presented with arthrogryposis. The pathogenicity of the described missense variants was verified by cellular and morphological studies and by in vivo modeling in zebrafish. Combination of in silico and experimental approaches revealed that FLNC missense variants localized in Ig-loop segments often lead to development of RCM. The described FLNC mutations associated with early-onset RCMP extend cardiac spectrum of filaminopathies and facilitate the differential diagnosis of restrictive cardiac phenotype associated with neuromuscular involvement in children.


Asunto(s)
Cardiomiopatía Restrictiva/genética , Anomalías Congénitas/genética , Filaminas/genética , Enfermedades Musculares/genética , Adolescente , Cardiomiopatía Restrictiva/fisiopatología , Preescolar , Anomalías Congénitas/fisiopatología , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Musculares/fisiopatología , Mutación , Linaje , Fenotipo
15.
Cell Biol Int ; 42(2): 132-138, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28980752

RESUMEN

Intermediate filaments (IFs) are one of the three types of cytoskeletal polymers that resist tensile and compressive forces in cells. They crosslink each other as well as with actin filaments and microtubules by proteins, which include desmin, filamin C, plectin, and lamin (A/C). Mutations in these proteins can lead to a wide range of pathologies, some of which exhibit mechanical failure of the skin, skeletal, or heart muscle.


Asunto(s)
Filamentos Intermedios/metabolismo , Desmina/metabolismo , Filaminas/metabolismo , Filamentos Intermedios/química , Filamentos Intermedios/genética , Lamina Tipo A/metabolismo , Plectina/metabolismo
16.
BMC Neurol ; 18(1): 79, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29866061

RESUMEN

BACKGROUND: Filamin C-related myofibrillar myopathies (MFM) are progressive skeletal myopathies with an autosomal dominant inheritance pattern. The conditions are caused by mutations of the filamin C gene (FLNC) located in the chromosome 7q32-q35 region. Genetic variations in the FLNC gene result in various clinical phenotypes. CASE PRESENTATION: We describe a 43-year-old woman who suffered filamin C-related MFM, with symptoms first presenting in the proximal muscles of the lower limbs and eventually spreading to the upper limbs and distal muscles. The patient's serum level of creatine kinase was mildly increased. Mildy myopathic changes in the electromyographic exam and moderate lipomatous alterations in lower limb MRI were found. Histopathological examination revealed increased muscle fiber size variability, disturbances in oxidative enzyme activity, and the presence of abnormal protein aggregates and vacuoles in some muscle fibers. Ultrastructural analysis showed inclusions composed of thin filaments and interspersed granular densities. DNA sequencing analysis detected a novel 15-nucleotide deletion (c.2791_2805del, p.931_935del) in the FLNC gene. The patient's father, sister, brother, three paternal aunts, one paternal uncle, and the uncle's son also had slowly progressive muscle weakness, and thus, we detected an autosomal dominant inheritance pattern of the disorder. CONCLUSIONS: A novel heterogeneous 15-nucleotide deletion (c.2791_2805del, p.931_935del) in the Ig-like domain 7 of the FLNC gene was found to cause filamin C-related MFM. This deletion in the FLNC gene causes protein aggregation, abnormalities in muscle structure, and impairment in muscle fiber function, which leads to muscle weakness.


Asunto(s)
Filaminas/genética , Miopatías Estructurales Congénitas/genética , Adulto , Pueblo Asiatico/genética , Exones/genética , Femenino , Heterocigoto , Humanos , Masculino , Mutación , Linaje , Fenotipo , Eliminación de Secuencia/genética
17.
Curr Cardiol Rep ; 20(10): 83, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30105555

RESUMEN

PURPOSE OF REVIEW: This review aims to summarize the current knowledge on the genetic background of dilated cardiomyopathy (DCM), with particular attention to the genotype-phenotype correlations and the possible implications for clinical management. RECENT FINDINGS: Next generation sequencing (NGS) has led to the identification of an increasing number of genes and mutations responsible for DCM. This genetic variability is probably related to the extreme heterogeneity of disease manifestation. Important findings have associated mutations of Lamin A/C (LMNA) and Filamin C (FLNC) to poor prognosis and the propensity to cause an arrhythmic phenotype, respectively. However, a deeper understanding of the genotype-phenotype correlation is necessary, because it could have several implications for the clinical management of the patients. Furthermore, the correct interpretation of pathogenicity of mutations and the clinical impact of genetic testing in DCM patients still represent important fields to be implemented. A pathogenic gene mutation can be identified in almost 40% of DCM patients. The recent discoveries and future research in the field of genotype-phenotype correlation may lead to a more personalized management of the mutation carriers towards the application of precision medicine in DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Mutación , Arritmias Cardíacas/genética , Arritmias Cardíacas/mortalidad , Cardiomiopatía Dilatada/cirugía , Muerte Súbita Cardíaca/etiología , Estudios de Asociación Genética , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pronóstico , Medición de Riesgo , Factores de Riesgo
18.
Clin Genet ; 92(6): 616-623, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28436997

RESUMEN

Dilated cardiomyopathy (DCM) is one of the leading causes of heart failure with high morbidity and mortality. More than 40 genes have been reported to cause DCM. To provide new insights into the pathophysiology of dilated cardiomyopathy, a next-generation sequencing (NGS) workflow based on a panel of 48 cardiomyopathies-causing genes was used to analyze a cohort of 222 DCM patients. Truncating variants were detected on 63 unrelated DCM cases (28.4%). Most of them were identified, as expected, on TTN (29 DCM probands), but truncating variants were also identified on myofibrillar myopathies causing genes in 17 DCM patients (7.7% of the DCM cohort): 10 variations on FLNC and 7 variations on BAG3 . This study confirms that truncating variants on myofibrillar myopathies causing genes are frequently associated with dilated cardiomyopathies and also suggest that FLNC mutations could be considered as a common cause of dilated cardiomyopathy. Molecular approaches that would allow to detect systematically truncating variants in FLNC and BAG3 into genetic testing should significantly increase test sensitivity, thereby allowing earlier diagnosis and therapeutic intervention for many patients with dilated cardiomyopathy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Cardiomiopatía Dilatada/diagnóstico , Conectina/genética , Filaminas/genética , Mutación , Miopatías Estructurales Congénitas/diagnóstico , Adulto , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/mortalidad , Cardiomiopatía Dilatada/fisiopatología , Estudios de Cohortes , Femenino , Francia , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/mortalidad , Miopatías Estructurales Congénitas/fisiopatología , Linaje , Análisis de Supervivencia
19.
Exp Cell Res ; 348(1): 95-105, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27639425

RESUMEN

Pressure overload induces cardiac remodeling involving both the contractile machinery and intercalated disks (IDs). Filamin C (FlnC) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adapters localizing in IDs of higher vertebrates. Knockout of the gene encoding Xin (Xirp1) in mice leads to a mild cardiac phenotype with ID mislocalization. In order to amplify this phenotype, we performed transverse aortic constriction (TAC) on control and Xirp1-deficient mice. TAC induced similar left ventricular hypertrophy in both genotypes, suggesting that the lack of Xin does not lead to higher susceptibility to cardiac overload. However, in both genotypes, FlnC appeared in "streaming" localizations across multiple sarcomeres proximal to the IDs, suggesting a remodeling response. Furthermore, FlnC-positive areas of remodeling, reminiscent of sarcomeric lesions previously described for skeletal muscles (but so far unreported in the heart), were also observed. These adaptations reflect a similarly strong effect of the pressure induced by TAC in both genotypes. However, 2 weeks post-operation TAC-treated knockout hearts had reduced levels of connexin43 and slightly increased incidents of ventricular tachycardia compared to their wild-type (WT) counterparts. Our findings highlight the FlnC-positive sarcomeric lesions and ID-proximal streaming as general remodeling responses in cardiac overload-induced hypertrophy.


Asunto(s)
Cardiomegalia/patología , Sarcómeros/patología , Animales , Aorta/patología , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/patología , Cardiomegalia/complicaciones , Cardiomegalia/diagnóstico por imagen , Conexina 43/metabolismo , Constricción Patológica , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Electrocardiografía , Femenino , Filaminas/metabolismo , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/patología , Ratones , Miocardio/metabolismo , Miocardio/patología , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Fenotipo , Taquicardia/complicaciones , Taquicardia/diagnóstico por imagen , Taquicardia/patología
20.
Hum Mutat ; 37(3): 269-79, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26666891

RESUMEN

Individuals affected by restrictive cardiomyopathy (RCM) often develop heart failure at young ages resulting in early heart transplantation. Familial forms are mainly caused by mutations in sarcomere proteins and demonstrate a common genetic etiology with other inherited cardiomyopathies. Using next-generation sequencing, we identified two novel missense variants (p.S1624L; p.I2160F) in filamin-C (FLNC), an actin-cross-linking protein mainly expressed in heart and skeletal muscle, segregating in two families with autosomal-dominant RCM. Affected individuals presented with heart failure due to severe diastolic dysfunction requiring heart transplantation in some cases. Histopathology of heart tissue from patients of both families showed cytoplasmic inclusions suggesting protein aggregates, which were filamin-C specific for the p.S1624L by immunohistochemistry. Cytoplasmic aggregates were also observed in transfected myoblast cell lines expressing this mutant filamin-C indicating further evidence for its pathogenicity. Thus, FLNC is a disease gene for autosomal-dominant RCM and broadens the phenotype spectrum of filaminopathies.


Asunto(s)
Cardiomiopatía Restrictiva/genética , Filaminas/genética , Adolescente , Adulto , Cardiomiopatías/metabolismo , Preescolar , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA