Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Coord Chem Rev ; 426: 213544, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32981945

RESUMEN

Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.

2.
Front Chem ; 10: 840758, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372277

RESUMEN

Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising candidates to replace expensive and scarce platinum-based electrocatalysts commonly used in polymer electrolyte membrane fuel cells. MOFs contain ordered connections between metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR). Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being active as well. Thus, a carbon material with Co-N-F doping could possibly be even more promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the mechanochemical formation revealed a direct conversion of starting materials to the products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F containing carbons, which are active toward electrochemical ORR.

3.
Front Chem ; 10: 996560, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277339

RESUMEN

Electrochemical water splitting has enticed fascinating consideration as a key conduit for the advancement of renewable energy systems. Fabricating adequate electrocatalysts for water splitting is fervently preferred to curtail their overpotentials and hasten practical utilizations. In this work, a series of Ce-MOF, GO@Ce-MOF, calcinated Ce-MOF, and calcinated GO@Ce-MOF were synthesized and used as high-proficient electrocatalysts for the oxygen evolution reaction. The physicochemical characteristics of the prepared samples were measured by diverse analytical techniques including SEM, HRTEM, FTIR, BET, XPS, XRD, and EDX. All materials underwent cyclic voltammetry tests and were evaluated by electrochemical impedance spectroscopy and oxygen evolution reaction. Ce-MOF, GO@Ce-MOF, calcinated Ce-MOF, and calcinated GO@Ce-MOF have remarkable properties such as enhanced specific surface area, improved catalytic performance, and outstanding permanency in the alkaline solution (KOH). These factors upsurge ECSA and intensify the OER performance of the prepared materials. More exposed surface active-sites present in calcinated GO@Ce-MOF could be the logic for superior electrocatalytic activity. Chronoamperometry of the catalyst for 15°h divulges long-term stability of Ce-MOF during OER. Impedance measurements indicate higher conductivity of synthesized catalysts, facilitating the charge transfer reaction during electrochemical water splitting. This study will open up a new itinerary for conspiring highly ordered MOF-based surface active resources for distinct electrochemical energy applications.

4.
Front Chem ; 10: 1010857, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386002

RESUMEN

The effect of triplet-triplet annihilation (TTA) on the room-temperature phosphorescence (RTP) in metal-organic frameworks (MOFs) is studied in benchmark RTP MOFs based on Zn metal centers and isophthalic or terephthalic acid linkers (ZnIPA and ZnTPA). The ratio of RTP to singlet fluorescence is observed to decrease with increasing excitation power density. Explicitly, in ZnIPA the ratio of the RTP to fluorescence is 0.58 at 1.04 mW cm-2, but only 0.42 at (the still modest) 52.6 mW cm-2. The decrease in ratio is due to the reduction of RTP efficiency at higher excitation due to TTA. The density of triplet states increases at higher excitation power densities, allowing triplets to diffuse far enough during their long lifetime to meet another triplet and annihilate. On the other hand, the shorter-lived singlet species can never meet an annihilate. Therefore, the singlet fluorescence scales linearly with excitation power density whereas the RTP scales sub-linearly. Equivalently, the efficiency of fluorescence is unaffected by excitation power density but the efficiency of RTP is significantly reduced at higher excitation power density due to TTA. Interestingly, in time-resolved measurements, the fraction of fast decay increases but the lifetime of long tail of the RTP remains unaffected by excitation power density. This may be due to the confinement of triplets to individual grains, leading decay to be faster until there is only one triplet per grain left. Subsequently, the remaining "lone triplets" decay with the unchanging rate expressed by the long tail. These results increase the understanding of RTP in MOFs by explicitly showing the importance of TTA in determining the (excitation power density dependent) efficiency of RTP. Also, for applications in optical sensing, these results suggest that a method based on long tail lifetime of the RTP is preferable to a ratiometric approach as the former will not be affected by variation in excitation power density whereas the latter will be.

5.
Mater Today Bio ; 16: 100419, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36105674

RESUMEN

Bacterial infections can compromise the physical and biological functionalities of humans and pose a huge economical and psychological burden on infected patients. Nitric oxide (NO) is a broad-spectrum antimicrobial agent, whose mechanism of action is not affected by bacterial resistance. S-nitrosoglutathione (GSNO), an endogenous donor and carrier of NO, has gained increasing attention because of its potent antibacterial activity and efficient biocompatibility. Significant breakthroughs have been made in the application of GSNO in biomaterials. This review is based on the existing evidence that comprehensively summarizes the progress of antimicrobial GSNO applications focusing on their anti-infective performance, underlying antibacterial mechanisms, and application in anti-infective biomaterials. We provide an accurate overview of the roles and applications of GSNO in antibacterial biomaterials and shed new light on the avenues for future studies.

6.
Mater Today Bio ; 14: 100223, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35243298

RESUMEN

Inflammatory arthritis is a major cause of disability in the elderly. This condition causes joint pain, loss of function, and deterioration of quality of life, mainly due to osteoarthritis (OA) and rheumatoid arthritis (RA). Currently, available treatment options for inflammatory arthritis include anti-inflammatory medications administered via oral, topical, or intra-articular routes, surgery, and physical rehabilitation. Novel alternative approaches to managing inflammatory arthritis, so far, remain the grand challenge owing to catastrophic financial burden and insignificant therapeutic benefit. In the view of non-targeted systemic cytotoxicity and limited bioavailability of drug therapies, a major concern is to establish stimuli-responsive drug delivery systems using nanomaterials with on-off switching potential for biomedical applications. This review summarizes the advanced applications of triggerable nanomaterials dependent on various internal stimuli (including reduction-oxidation (redox), pH, and enzymes) and external stimuli (including temperature, ultrasound (US), magnetic, photo, voltage, and mechanical friction). The review also explores the progress and challenges with the use of stimuli-responsive nanomaterials to manage inflammatory arthritis based on pathological changes, including cartilage degeneration, synovitis, and subchondral bone destruction. Exposure to appropriate stimuli induced by such histopathological alterations can trigger the release of therapeutic medications, imperative in the joint-targeted treatment of inflammatory arthritis.

7.
Acta Pharm Sin B ; 11(4): 941-960, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33996408

RESUMEN

The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.

8.
ACS Appl Mater Interfaces ; 12(7): 8351-8358, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31965786

RESUMEN

Using flexible structures and components of metal-organic framework (MOF) materials, we designed and developed an artificial nanozyme with dual functions of a catalyst and luminescent sensor specifically for the determination and degradation of hormone 17ß-estradiol (E2) and its derivatives (E1, E3, and EE2), a class of disruptors with strong effect on the human endocrine system. This nanozyme composed of the luminescent Tb3+ ion, catalytic coenzyme factor hemin, and light-harvesting ligand can be used to both degrade E2 like natural horseradish peroxidase (HRP) and sense E2 as low as 50 pM by its luminescence. The nanozyme catalyzes the decomposition of E2 and its derivatives through a mechanism of active hydroxyl radicals and oxidative high-valent iron-oxo intermediates. The prepared nanozyme is pluripotent, stable, and cheap and can replace the widely used combination of natural enzyme and chromogenic substrate. The present strategy of constructing artificial enzymes directly from functional units provides a new way for the design and development of smart, multifunctional artificial enzymes.


Asunto(s)
Disruptores Endocrinos/metabolismo , Estradiol/química , Hemina/química , Estructuras Metalorgánicas/química , Nanopartículas Multifuncionales/química , Peroxidasa/química , Terbio/química , Materiales Biomiméticos/química , Catálisis , Estradiol/análogos & derivados , Peróxido de Hidrógeno/química , Cinética , Ligandos , Luminiscencia , Microscopía Electrónica de Rastreo , Nanopartículas Multifuncionales/ultraestructura
9.
Front Chem ; 8: 617, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903784

RESUMEN

In this work a Metal-Organic Framework (MOF) was prepared using a solvothermal method, taking as precursors 1. 2-di-(4-pyridyl)-ethylene, 1.2.4.5-benzenetetracarboxylic acid and Co(No3)2-6H2O. This MOF was called UV-11 and was evaluated using microscopic, spectroscopic and electrochemical techniques. According to the obtained results, the melting point of the compound is located in a higher interval than its precursors. Stereoscopic microscopy analysis shows the presence of pink crystals in the form of needles. MEB technique displays a laminar morphology as well as crystals with approximate sizes (36 mm wide and 150 mm long). EDS analysis corroborated the presence of precursor elements such as cobalt, carbon and oxygen. Furthermore, the XRD technique shows the cobalt-related phases in the sample, which is cobalt bis (pyridine-6-carboxylic-2-carboxylate). A modified carbon paste electrode was prepared using MOF UV-11 and by cyclic voltammetry electrochemical technique, semi-reversible redox processes are identified, as well as thermodynamic and kinetic parameters were obtained with the Laviron equation, and electrochemical performance properties from the cyclic voltammetry experimental data.

10.
Acta Pharm Sin B ; 10(12): 2404-2416, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33354510

RESUMEN

Pulmonary drug delivery has attracted increasing attention in biomedicine, and porous particles can effectively enhance the aerosolization performance and bioavailability of drugs. However, the existing methods for preparing porous particles using porogens have several drawbacks, such as the inhomogeneous and uncontrollable pores, drug leakage, and high risk of fragmentation. In this study, a series of cyclodextrin-based metal-organic framework (CD-MOF) particles containing homogenous nanopores were delicately engineered without porogens. Compared with commercial inhalation carrier, CD-MOF showed excellent aerosolization performance because of the homogenous nanoporous structure. The great biocompatibility of CD-MOF in pulmonary delivery was also confirmed by a series of experiments, including cytotoxicity assay, hemolysis ratio test, lung function evaluation, in vivo lung injury markers measurement, and histological analysis. The results of ex vivo fluorescence imaging showed the high deposition rate of CD-MOF in lungs. Therefore, all results demonstrated that CD-MOF was a promising carrier for pulmonary drug delivery. This study may throw light on the nanoporous particles for effective pulmonary administration.

11.
Polymers (Basel) ; 10(2)2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30966224

RESUMEN

Taking advantage of the outstanding properties of a naphthalenediimide-based entangled porous coordination polymer, a simple strategy for the achievement of white light emission is herein presented. The dynamic structural transformation of the [Zn2(bdc)2(dpNDI)]n metal-organic framework enhances the interactions with aryl-guests giving rise to different luminescence colors upon UV (ultraviolet) illumination. Thus, through the rational selection of those small aromatic guest molecules with different electron donor substituents at the appropriate proportion, the emission color was tuned by mixture ratio of guest molecules and even white light emission was achieved. Furthermore, domains in large crystals with a complementary response to linearly polarized light were noticed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA