Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 37: 285-310, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34314591

RESUMEN

Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division.


Asunto(s)
Citoesqueleto , Miosina Tipo II , Citoesqueleto de Actina/metabolismo , Movimiento Celular/genética , Citoesqueleto/metabolismo , Miosina Tipo II/química , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Transducción de Señal
2.
Cell ; 176(4): 757-774.e23, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30712866

RESUMEN

ROCK-Myosin II drives fast rounded-amoeboid migration in cancer cells during metastatic dissemination. Analysis of human melanoma biopsies revealed that amoeboid melanoma cells with high Myosin II activity are predominant in the invasive fronts of primary tumors in proximity to CD206+CD163+ tumor-associated macrophages and vessels. Proteomic analysis shows that ROCK-Myosin II activity in amoeboid cancer cells controls an immunomodulatory secretome, enabling the recruitment of monocytes and their differentiation into tumor-promoting macrophages. Both amoeboid cancer cells and their associated macrophages support an abnormal vasculature, which ultimately facilitates tumor progression. Mechanistically, amoeboid cancer cells perpetuate their behavior via ROCK-Myosin II-driven IL-1α secretion and NF-κB activation. Using an array of tumor models, we show that high Myosin II activity in tumor cells reprograms the innate immune microenvironment to support tumor growth. We describe an unexpected role for Myosin II dynamics in cancer cells controlling myeloid function via secreted factors.


Asunto(s)
Movimiento Celular/fisiología , Miosina Tipo II/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular/inmunología , Proteínas del Citoesqueleto , Femenino , Humanos , Interleucina-1alfa/metabolismo , Masculino , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Persona de Mediana Edad , FN-kappa B/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Fosforilación , Proteómica , Receptor Cross-Talk/fisiología , Transducción de Señal , Microambiente Tumoral/inmunología
3.
Physiol Rev ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451233

RESUMEN

Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed, and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so called "power-stroke" that causes sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to the power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II, in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, and how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.

4.
EMBO J ; 43(13): 2715-2732, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769437

RESUMEN

Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.


Asunto(s)
Adhesiones Focales , Cinesinas , Microtúbulos , Factores de Intercambio de Guanina Nucleótido Rho , Adhesiones Focales/metabolismo , Microtúbulos/metabolismo , Humanos , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Miosina Tipo II/metabolismo , Talina/metabolismo , Talina/genética , Animales
5.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38639390

RESUMEN

The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.


Asunto(s)
División Celular , Polaridad Celular , Drosophila melanogaster , Células Epiteliales , Metafase , Huso Acromático , Estrés Mecánico , Animales , Metafase/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Huso Acromático/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/citología , Polaridad Celular/fisiología , Tipificación del Cuerpo , Miosina Tipo II/metabolismo , Embrión no Mamífero/citología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Gastrulación/fisiología
6.
J Cell Sci ; 137(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277157

RESUMEN

S100A11 is a small Ca2+-activatable protein known to localize along stress fibers (SFs). Analyzing S100A11 localization in HeLa and U2OS cells further revealed S100A11 enrichment at focal adhesions (FAs). Strikingly, S100A11 levels at FAs increased sharply, yet transiently, just before FA disassembly. Elevating intracellular Ca2+ levels with ionomycin stimulated both S100A11 recruitment and subsequent FA disassembly. However, pre-incubation with the non-muscle myosin II (NMII) inhibitor blebbistatin or with an inhibitor of the stretch-activatable Ca2+ channel Piezo1 suppressed S100A11 recruitment, implicating S100A11 in an actomyosin-driven FA recruitment mechanism involving Piezo1-dependent Ca2+ influx. Applying external forces on peripheral FAs likewise recruited S100A11 to FAs even if NMII activity was inhibited, corroborating the mechanosensitive recruitment mechanism of S100A11. However, extracellular Ca2+ and Piezo1 function were indispensable, indicating that NMII contraction forces act upstream of Piezo1-mediated Ca2+ influx, in turn leading to S100A11 activation and FA recruitment. S100A11-knockout cells display enlarged FAs and had delayed FA disassembly during cell membrane retraction, consistent with impaired FA turnover in these cells. Our results thus demonstrate a novel function for S100A11 in promoting actomyosin contractility-driven FA disassembly.


Asunto(s)
Actomiosina , Adhesiones Focales , Humanos , Adhesiones Focales/metabolismo , Actomiosina/metabolismo , Calcio/metabolismo , Proteínas del Citoesqueleto/metabolismo , Miosina Tipo II/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo
7.
Semin Cell Dev Biol ; 147: 2-11, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36376196

RESUMEN

Animal tissues are composed of heterogenous cells, and their sorting into different compartments of the tissue is a pivotal process for organogenesis. Cells accomplish sorting by themselves-it is well known that singly dispersed cells can self-organize into tissue-like structures in vitro. Cell sorting is regulated by both biochemical and physical mechanisms. Adhesive proteins connect cells together, selecting particular partners through their specific binding properties, while physical forces, such as cell-cortical tension, control the cohesiveness between cells and in turn cell assembly patterns in mechanical ways. These processes cooperate in determining the overall cell sorting behavior. This article focuses on the 'cadherin' family of adhesion molecules as a biochemical component of cell-cell interactions, addressing how they regulate cell sorting by themselves or by cooperating with other factors. New ideas beyond the classical models of cell sorting are also discussed.


Asunto(s)
Cadherinas , Comunicación Celular , Animales , Cadherinas/metabolismo , Adhesión Celular/fisiología , Movimiento Celular
8.
J Cell Sci ; 136(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601895

RESUMEN

Cyclic guanosine 3',5'-monophosphate (cGMP) is a ubiquitous important second messenger involved in various physiological functions. Here, intracellular cGMP (cGMPi) was visualized in chemotactic Dictyostelium cells using the fluorescent probe, D-Green cGull. When wild-type cells were stimulated with a chemoattractant, fluorescence transiently increased, but guanylate cyclase-null cells did not show a change in fluorescence, suggesting that D-Green cGull is a reliable indicator of cGMPi. In the aggregation stage, the responses of cGMPi propagated in a wave-like fashion from the aggregation center. The oscillation of the cGMPi wave was synchronized almost in phase with those of other second messengers, such as the intracellular cAMP and Ca2+. The phases of these waves preceded those of the oscillations of actomyosin and cell velocity, suggesting that these second messengers are upstream of the actomyosin and chemotactic migration. An acute increase in cGMPi concentration released from membrane-permeable caged cGMP induced a transient shuttle of myosin II between the cytosol and cell cortex, suggesting a direct link between cGMP signaling and myosin II dynamics.


Asunto(s)
Dictyostelium , Dictyostelium/fisiología , Quimiotaxis/fisiología , Actomiosina , GMP Cíclico/farmacología , GMP Cíclico/fisiología , Miosina Tipo II
9.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36718636

RESUMEN

The regulation of mechanical tension exerted at cell junctions guides cell behavior during tissue formation and homeostasis. Cell junctions along compartment boundaries, which are lineage restrictions separating cells with different fates and functions within tissues, are characterized by increased mechanical tension compared to that of cell junctions in the bulk of the tissue. Mechanical tension depends on the actomyosin cytoskeleton; however, the mechanisms by which mechanical tension is locally increased at cell junctions along compartment boundaries remain elusive. Here, we show that non-muscle Myosin II and F-actin transiently accumulate and mechanical tension is increased at cell junctions along the forming anteroposterior compartment boundary in the Drosophila melanogaster pupal abdominal epidermis. Fluorescence recovery after photobleaching experiments showed that Myosin II accumulation correlated with its increased stabilization at these junctions. Moreover, photoconversion experiments indicated that Myosin II is preferentially recruited within cells to junctions along the compartment boundary. Our results indicate that the preferential recruitment and stabilization of Myosin II contribute to the initial build-up of mechanical tension at compartment boundaries.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster , Estrés Mecánico , Miosina Tipo II , Actomiosina
10.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35451459

RESUMEN

Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.


Asunto(s)
Actomiosina , Ectodermo , Actomiosina/metabolismo , Animales , Ectodermo/metabolismo , Morfogénesis/fisiología , Cadenas Pesadas de Miosina , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Xenopus laevis/metabolismo
11.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35593401

RESUMEN

Tissue fusion frequently requires the removal of an epithelium that intervenes distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion support their importance in MES removal. However, genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES results in complete loss of cell death and cell extrusion, but successful removal of the MES. Novel static- and live-imaging approaches reveal that the MES is removed through streaming migration of epithelial trails and islands to reach the oral and nasal epithelial surfaces. Epithelial trail cells that express the basal epithelial marker ΔNp63 begin to express periderm markers, suggesting that migration is concomitant with differentiation. Live imaging reveals anisotropic actomyosin contractility within epithelial trails, and genetic ablation of actomyosin contractility results in dispersion of epithelial collectives and failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis, and reveal a crucial and unique form of collective epithelial migration during tissue fusion.


Asunto(s)
Fisura del Paladar , Hueso Paladar , Actomiosina/metabolismo , Animales , Apoptosis , Células Epiteliales/metabolismo , Epitelio/metabolismo , Mamíferos , Hueso Paladar/metabolismo
12.
Cell Mol Life Sci ; 81(1): 248, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832964

RESUMEN

Contractile actomyosin bundles play crucial roles in various physiological processes, including cell migration, morphogenesis, and muscle contraction. The intricate assembly of actomyosin bundles involves the precise alignment and fusion of myosin II filaments, yet the underlying mechanisms and factors involved in these processes remain elusive. Our study reveals that LUZP1 plays a central role in orchestrating the maturation of thick actomyosin bundles. Loss of LUZP1 caused abnormal cell morphogenesis, migration, and the ability to exert forces on the environment. Importantly, knockout of LUZP1 results in significant defects in the concatenation and persistent association of myosin II filaments, severely impairing the assembly of myosin II stacks. The disruption of these processes in LUZP1 knockout cells provides mechanistic insights into the defective assembly of thick ventral stress fibers and the associated cellular contractility abnormalities. Overall, these results significantly contribute to our understanding of the molecular mechanism involved in actomyosin bundle formation and highlight the essential role of LUZP1 in this process.


Asunto(s)
Actomiosina , Movimiento Celular , Contracción Muscular , Miosina Tipo II , Humanos , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Contracción Muscular/fisiología , Miosina Tipo II/metabolismo , Miosina Tipo II/genética
13.
J Biol Chem ; 299(9): 105143, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562567

RESUMEN

Recent genomic studies reported that 90 to 95% of human genes can undergo alternative splicing, by which multiple isoforms of proteins are synthesized. However, the functional consequences of most of the isoforms are largely unknown. Here, we report a novel alternatively spliced isoform of nonmuscle myosin IIA (NM IIA), called NM IIA2, which is generated by the inclusion of 21 amino acids near the actin-binding region (loop 2) of the head domain of heavy chains. Expression of NM IIA2 is found exclusively in the brain tissue, where it reaches a maximum level at 24 h during the circadian rhythm. The actin-dependent Mg2+-ATPase activity and in vitro motility assays reveal that NM IIA2 lacks its motor activities but localizes with actin filaments in cells. Interestingly, NM IIA2 can also make heterofilaments with NM IIA0 (noninserted isoform of NM IIA) and can retard the in vitro motility of NM IIA, when the two are mixed. Altogether, our findings provide the functional importance of a previously unknown alternatively spliced isoform, NM IIA2, and its potential physiological role in regulating NM IIA activity in the brain.


Asunto(s)
Empalme Alternativo , Encéfalo , Miosina Tipo IIA no Muscular , Humanos , Actinas/metabolismo , Encéfalo/metabolismo , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ritmo Circadiano , ATPasa de Ca(2+) y Mg(2+)/metabolismo , Especificidad de Órganos
14.
J Cell Sci ; 135(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35274133

RESUMEN

In multi-nucleate cells of Dictyostelium, cytokinesis is performed by unilateral cleavage furrows that ingress the large cells from their border. We use a septase (sepA)-null mutant with delayed cytokinesis to show that in anaphase a pattern is generated in the cell cortex of cortexillin and myosin II. In multi-nucleate cells, these proteins decorate the entire cell cortex except circular zones around the centrosomes. Unilateral cleavage furrows are initiated at spaces free of microtubule asters and invade the cells along trails of cortexillin and myosin II accumulation. Where these areas widen, the cleavage furrow may branch or expand. When two furrows meet, they fuse, thus separating portions of the multi-nucleate cell from each other. Unilateral furrows are distinguished from the contractile ring of a normal furrow by their expansion rather than constriction. This is particularly evident for expanding ring-shaped furrows that are formed in the centre of a large multi-nucleate cell. Our data suggest that the myosin II-enriched area in multi-nucleate cells is a contractile sheet that pulls on the unilateral furrows and, in that way, expands them.


Asunto(s)
Dictyostelium , Anafase , Centrosoma/metabolismo , Citocinesis , Dictyostelium/genética , Dictyostelium/metabolismo , Microtúbulos/metabolismo , Miosina Tipo II/metabolismo
15.
Genes Cells ; 28(12): 845-856, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37844904

RESUMEN

Cytokinesis, the final process of cell division, involves the accumulation of actin and myosin II filaments at the cell's equator, forming a contractile ring that facilitates the division into two daughter cells. While light microscopy has provided valuable insights into the molecular mechanism of this process, it has limitations in examining individual filaments in vivo. In this study, we utilized transmission electron microscopy to observe actin and myosin II filaments in the contractile rings of dividing Dictyostelium cells. To synchronize cytokinesis, we developed a novel method that allowed us to visualize dividing cells undergoing cytokinesis with a frequency as high as 18%. This improvement enabled us to examine the lengths and alignments of individual filaments within the contractile rings. As the furrow constricted, the length of actin filaments gradually decreased. Moreover, both actin and myosin II filaments reoriented perpendicularly to the long axis during furrow constriction. Through experiments involving myosin II null cells, we discovered that myosin II plays a role in regulating both the lengths and alignments of actin filaments. Additionally, dynamin-like protein A was found to contribute to regulating the length of actin filaments, while cortexillins were involved in regulating their alignment.


Asunto(s)
Actomiosina , Dictyostelium , Actomiosina/metabolismo , Actinas/metabolismo , Dictyostelium/metabolismo , Citoesqueleto de Actina/metabolismo , Citocinesis , Miosina Tipo II/metabolismo
16.
FASEB J ; 37(12): e23310, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010922

RESUMEN

Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.


Asunto(s)
Actinas , Proteínas de Unión al GTP rap1 , Animales , Ratones , Actinas/metabolismo , Cadherinas/metabolismo , Permeabilidad Capilar , Adhesión Celular/fisiología , Endotelio Vascular/metabolismo , Lipopolisacáridos/metabolismo , Pulmón/metabolismo , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo
17.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928453

RESUMEN

Production of functional myosin heavy chain (MHC) of striated muscle myosin II for studies of isolated proteins requires mature muscle (e.g., C2C12) cells for expression. This is important both for fundamental studies of molecular mechanisms and for investigations of deleterious diseases like cardiomyopathies due to mutations in the MHC gene (MYH7). Generally, an adenovirus vector is used for transfection, but recently we demonstrated transfection by a non-viral polymer reagent, JetPrime. Due to the rather high costs of JetPrime and for the sustainability of the virus-free expression method, access to more than one transfection reagent is important. Here, we therefore evaluate such a candidate substance, GenJet. Using the human cardiac ß-myosin heavy chain (ß-MHC) as a model system, we found effective transfection of C2C12 cells showing a transfection efficiency nearly as good as with the JetPrime reagent. This was achieved following a protocol developed for JetPrime because a manufacturer-recommended application protocol for GenJet to transfect cells in suspension did not perform well. We demonstrate, using in vitro motility assays and single-molecule ATP turnover assays, that the protein expressed and purified from cells transfected with the GenJet reagent is functional. The purification yields reached were slightly lower than in JetPrime-based purifications, but they were achieved at a significantly lower cost. Our results demonstrate the sustainability of the virus-free method by showing that more than one polymer-based transfection reagent can generate useful amounts of active MHC. Particularly, we suggest that GenJet, due to its current ~4-fold lower cost, is useful for applications requiring larger amounts of a given MHC variant.


Asunto(s)
Cadenas Pesadas de Miosina , Transfección , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Humanos , Transfección/métodos , Línea Celular , Animales , Ratones , Miosinas Cardíacas
18.
J Biol Chem ; 298(6): 102054, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35598826

RESUMEN

Myosins belong to a large superfamily of actin-dependent molecular motors. Nonmuscle myosin II (NM II) is involved in the morphology and function of neurons, but little is known about how NM II activity is regulated. Brain-derived neurotrophic factor (BDNF) is a prevalent neurotrophic factor in the brain that encourages growth and differentiation of neurons and synapses. In this study, we report that BDNF upregulates the phosphorylation of myosin regulatory light chain (MLC2), to increases the activity of NM II. The role of BDNF on modulating the phosphorylation of MLC2 was validated by using Western blotting in primary cultured hippocampal neurons. This result was confirmed by injecting BDNF into the dorsal hippocampus of mice and detecting the phosphorylation level of MLC2 by Western blotting. We further perform coimmunoprecipitation assay to confirm that this process depends on the activation of the LYN kinase through binding with tyrosine kinase receptor B, the receptor of BDNF, in a kinase activity-dependent manner. LYN kinase subsequently phosphorylates MLCK, further promoting the phosphorylation of MLC2. Taken together, our results suggest a new molecular mechanism by which BDNF regulates MLC2 activity, which provides a new perspective for further understanding the functional regulation of NM II in the nervous system.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cadenas Ligeras de Miosina , Miosina Tipo II , Quinasa de Cadena Ligera de Miosina , Familia-src Quinasas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Ratones , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II/metabolismo , Quinasa de Cadena Ligera de Miosina/química , Neuronas/metabolismo , Fosforilación , Familia-src Quinasas/metabolismo
19.
J Cell Sci ; 134(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722978

RESUMEN

The mechanisms underlying the cellular response to extracellular matrices (ECMs) that consist of multiple adhesive ligands are still poorly understood. Here, we address this topic by monitoring specific cellular responses to two different extracellular adhesion molecules - the main integrin ligand fibronectin and galectin-8, a lectin that binds ß-galactoside residues  - as well as to mixtures of the two proteins. Compared with cell spreading on fibronectin, cell spreading on galectin-8-coated substrates resulted in increased projected cell area, more-pronounced extension of filopodia and, yet, the inability to form focal adhesions and stress fibers. These differences can be partially reversed by experimental manipulations of small G-proteins of the Rho family and their downstream targets, such as formins, the Arp2/3 complex and Rho kinase. We also show that the physical adhesion of cells to galectin-8 was stronger than adhesion to fibronectin. Notably, galectin-8 and fibronectin differently regulate cell spreading and focal adhesion formation, yet act synergistically to upregulate the number and length of filopodia. The physiological significance of the coherent cellular response to a molecularly complex matrix is discussed. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Adhesivos , Fibronectinas , Adhesión Celular , Galectinas , Seudópodos
20.
J Cell Sci ; 134(1)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33298514

RESUMEN

Cells can adopt both mesenchymal and amoeboid modes of migration through membrane protrusive activities, namely formation of lamellipodia and blebbing. How the molecular players control the transition between lamellipodia and blebs is yet to be explored. Here, we show that addition of the ROCK inhibitor Y27632 or low doses of blebbistatin, an inhibitor of non-muscle myosin II (NMII) ATPase activity and filament partitioning, induces blebbing to lamellipodia conversion (BLC), whereas addition of low doses of ML7, an inhibitor of myosin light chain kinase (MLCK), induces lamellipodia to blebbing conversion (LBC) in human MDA-MB-231 cells. Similarly, siRNA-mediated knockdown of ROCK and MLCK induces BLC and LBC, respectively. Interestingly, both blebs and lamellipodia membrane protrusions are able to maintain the ratio of phosphorylated to unphosphorylated regulatory light chain at cortices when MLCK and ROCK, respectively, are inhibited either pharmacologically or genetically, suggesting that MLCK and ROCK activities are interlinked in BLC and LBC. Such BLCs and LBCs are also inducible in other cell lines, including MCF7 and MCF10A. These studies reveal that the relative activity of ROCK and MLCK, which controls both the ATPase activity and filament-forming property of NMII, is a determining factor in whether a cell exhibits blebbing or lamellipodia.


Asunto(s)
Seudópodos , Quinasas Asociadas a rho , Humanos , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosforilación , Seudópodos/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA