Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(15): 4433-4438, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564276

RESUMEN

Twisted bilayer graphene (TBG) has the natural merits of tunable flat bands and localized states distributed as a triangular lattice. However, the application of this state remains obscure. By density functional theory (DFT) and pz orbital tight-binding model calculations, we investigate the tip-shaped electrostatic potential of top valence electrons of TBG at half filling. Adsorption energy scanning of molecules above the TBG reveals that this tip efficiently attracts molecules selectively to AA-stacked or AB-stacked regions. Tip shapes can be controlled by their underlying electronic structure, with electrons of low bandwidth exhibiting a more localized feature. Our results indicate that TBG tips offer applications in noninvasive and nonpolluting measurements in scanning probe microscopy and theoretical guidance for 2D material-based probes.

2.
Nano Lett ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185821

RESUMEN

Although several porous carbon/graphene nanoribbons (GNRs) have been prepared, a direct comparison of the electronic properties between a nonporous GNR and its periodically perforated counterpart is still missing. Here, we report the synthesis of porous 12-atom-wide armchair-edged GNRs from a bromoarene precursor on a Au(111) surface via hierarchical Ullmann and dehydrogenative coupling. The selective formation of porous 12-GNRs was achieved through thermodynamic and kinetic reaction control combined with tailored precursor design. The structure and electronic properties of the porous 12-GNR were elucidated by scanning tunneling microscopy/spectroscopy and density functional theory calculations, revealing that the pores induce a 2.17 eV band gap increase compared to the nonporous 12-AGNR on the same surface.

3.
Nano Lett ; 24(12): 3598-3605, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38407029

RESUMEN

Precise measurement and control of local heating in plasmonic nanostructures are vital for diverse nanophotonic devices. Despite significant efforts, challenges in understanding temperature-induced plasmonic nonlinearity persist, particularly in light absorption and near-field enhancement due to the absence of suitable measurement techniques. This study presents an approach allowing simultaneous measurements of light absorption and near-field enhancement through angle-resolved near-field scanning optical microscopy with iterative opto-thermal analysis. We revealed gold thin films exhibit sublinear nonlinearity in near-field enhancement due to nonlinear opto-thermal effects, while light absorption shows both sublinear and superlinear behaviors at varying thicknesses. These observations align with predictions from a simple harmonic oscillation model, in which changes in damping parameters affect light absorption and field enhancement differently. The sensitivity of our method was experimentally examined by measuring the opto-thermal responses of three-dimensional nanostructure arrays. Our findings have direct implications for advancing plasmonic applications, including photocatalysis, photovoltaics, photothermal effects, and surface-enhanced Raman spectroscopy.

4.
Small ; : e2403504, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140377

RESUMEN

Confinement of monolayers into quasi-1D atomically thin nanoribbons could lead to novel quantum phenomena beyond those achieved in their bulk and monolayer counterparts. However, current experimental availability of nanoribbon species beyond graphene is limited to bottom-up synthesis or lithographic patterning. In this study, a versatile and direct approach is introduced to exfoliate bulk van der Waals crystals as nanoribbons. Akin to the Scotch tape exfoliation method for producing monolayers, this technique provides convenient access to a wide range of nanoribbons derived from their corresponding bulk crystals, including MoS2, WS2, MoSe2, WSe2, MoTe2, WTe2, ReS2, and hBN. The nanoribbons are predominantly monolayer, single-crystalline, parallel-aligned, flat, and exhibit high aspect ratios. The role of confinement, strain, and edge configuration of these nanoribbons is observed in their electrical, magnetic, and optical properties. This versatile exfoliation technique provides a universal route for producing a variety of nanoribbon materials and supports the study of their fundamental properties and potential applications.

5.
Biol Chem ; 405(1): 31-41, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-37950644

RESUMEN

Growth cones of oligodendrocyte progenitor cells (OPCs) are challenging to investigate with conventional light microscopy due to their small size. Especially substructures such as filopodia, lamellipodia and their underlying cytoskeleton are difficult to resolve with diffraction limited microscopy. Light microscopy techniques, which surpass the diffraction limit such as stimulated emission depletion microscopy, often require expensive setups and specially trained personnel rendering them inaccessible to smaller research groups. Lately, the invention of expansion microscopy (ExM) has enabled super-resolution imaging with any light microscope without the need for additional equipment. Apart from the necessary resolution, investigating OPC growth cones comes with another challenge: Imaging the topography of membranes, especially label- and contact-free, is only possible with very few microscopy techniques one of them being scanning ion conductance microscopy (SICM). We here present a new imaging workflow combining SICM and ExM, which enables the visualization of OPC growth cone nanostructures. We correlated SICM recordings and ExM images of OPC growth cones captured with a conventional widefield microscope. This enabled the visualization of the growth cones' membrane topography as well as their underlying actin and tubulin cytoskeleton.


Asunto(s)
Microscopía , Células Precursoras de Oligodendrocitos , Microscopía/métodos , Conos de Crecimiento , Citoesqueleto , Microtúbulos
6.
Chemistry ; 30(32): e202304127, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38587984

RESUMEN

We report on-surface synthesis of heterochiral 1D heptahelicene oligomers after deposition of a racemic heptahelicene monomer on an Au(111) surface followed by Ullmann coupling under ultrahigh vacuum conditions. Structure, chirality and mode of adsorption of the resulting dimers to octamers are inferred from the scanning probe microscopy and theoretical calculations.

7.
Chemphyschem ; : e202400419, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38945838

RESUMEN

Scanning probe microscopy (SPM), in particular at low temperature (LT) under ultra-high vacuum (UHV) conditions, offers the possibility of real-space imaging with resolution reaching the atomic level. However, its potential for the analysis of complex biological molecules has been hampered by requirements imposed by sample preparation. Transferring molecules onto surfaces in UHV is typically accomplished by thermal sublimation in vacuum. This approach however is limited by the thermal stability of the molecules, i. e. not possible for biological molecules with low vapour pressure. Bypassing this limitation, electrospray ionisation offers an alternative method to transfer molecules from solution to the gas-phase as intact molecular ions. In soft-landing electrospray ion beam deposition (ESIBD), these molecular ions are subsequently mass-selected and gently landed on surfaces which permits large and thermally fragile molecules to be analyzed by LT-UHV SPM. In this concept, we discuss how ESIBD+SPM prepares samples of complex biological molecules at a surface, offering controls of the molecular structural integrity, three-dimensional shape, and purity. These achievements unlock the analytical potential of SPM which is showcased by imaging proteins, peptides, DNA, glycans, and conjugates of these molecules, revealing details of their connectivity, conformation, and interaction that could not be accessed by any other technique.

8.
Nano Lett ; 23(19): 8953-8959, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37737103

RESUMEN

Kelvin probe force microscopy measures surface potential and delivers insights into nanoscale electronic properties, including work function, doping levels, and localized charges. Recently developed pulsed force Kelvin probe force microscopy (PF-KPFM) provides sub-10 nm spatial resolution under ambient conditions, but its original implementation is hampered by instrument complexity and limited operational speed. Here, we introduce a solution for overcoming these two limitations: a lock-in amplifier-based PF-KPFM. Our method involves phase-synchronized switching of a field effect transistor to mediate the Coulombic force between the probe and the sample. We validate its efficacy on two-dimensional material MXene and aged perovskite photovoltaic films. Lock-in-based PF-KPFM successfully identifies the contact potential difference (CPD) of stacked flakes and finds that the CPDs of monoflake MXene are different from those of their multiflake counterparts, which are otherwise similar in value. In perovskite films, we uncover electrical degradation that remains elusive with surface topography.

9.
Angew Chem Int Ed Engl ; 63(14): e202400103, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38230920

RESUMEN

Strained macrocycles display interesting properties, such as conformational rigidity, often resulting in enhanced π-conjugation or enhanced affinity for non-covalent guest binding, yet they can be difficult to synthesize. Here we use computational modeling to design a template to direct the formation of an 18-porphyrin nanoring with direct meso-meso bonds between the porphyrin units. Coupling of a linear 18-porphyrin oligomer in the presence of this template gives the target nanoring, together with an unexpected 36-porphyrin ring by-product. Scanning tunneling microscopy (STM) revealed the elliptical conformations and flexibility of these nanorings on a Au(111) surface.

10.
Angew Chem Int Ed Engl ; : e202411865, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185688

RESUMEN

Spin-crossover compounds can be switched between two stable states with different magnetic moments, conformations, electronic, and optical properties, which opens appealing perspectives for technological applications including miniaturization down to the scale of single molecules. Although control of the spin states is crucial their direct identification is challenging in single-molecule experiments. Here we investigate the spin-crossover complex [Fe(HB(1,2,4-triazol-1-yl)3)2] on a Cu(111) surface with scanning tunneling microscopy and density functional theory calculations. Spin crossover of single molecules in dense islands is achieved via electron injection. Spin-flip excitations are resolved in scanning tunneling spectra in a magnetic field enabling the direct identification of the molecular spin state, and revealing the existence of magnetic anisotropy in the HS molecules.

11.
Angew Chem Int Ed Engl ; 63(14): e202319387, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38372499

RESUMEN

Photoresponsive supramolecular polymers have a major potential for applications in responsive materials that are externally triggered by light with spatio-temporal control of their polymerisation state. While changes in macroscopic properties revealed the adaptive nature of these materials, it remains challenging to capture the dynamic depolymerisation process at the molecular level, which requires fast observation techniques combined with in situ irradiation. By implementing in situ UV illumination into a High-Speed Atomic Force Microscope (HS-AFM) setup, we have been able to capture the disassembly of a light-driven molecular motor-based supramolecular polymer. The real-time visualisation of the light-triggered disassembly process not only reveals cooperative depolymerisation, it also shows that this process continues after illumination is halted. Combining the data with cryo-electron microscopy and spectroscopy approaches, we obtain a molecular-level description of the motor-based polymer dynamics reminiscent of actin chain-end depolymerisation. Our detailed understanding of supramolecular depolymerisation will drive the development of future responsive polymer systems.

12.
Small ; 19(20): e2207220, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36807547

RESUMEN

Exceptional electronic, optoelectronic, and sensing properties of inorganic Cs-based perovskites are significantly influenced by the defect chemistry of the material. Although organic halide perovskites that have a polycrystalline structure are heavily studied, understanding of the defect properties at the grain boundaries (GB) of inorganic Cs-based perovskite quantum dots (QDs) is still limited. Here, morphology-dependent charge carrier dynamics of CsPbBr3 quantum dots at the nanoscale by performing scanning probe microscopy of thermally treated samples are investigated. The grain boundaries of defect-engineered samples show higher surface potential than the grain interiors under light illumination, suggesting an effective role of GBs as charge collection and transport channels. The lower density of crystallographic defects and lower trap density at GBs specifically of heat-treated samples cause insignificant dark current, lower local current hysteresis, and higher photocurrent, than the control samples. It is also shown that the decay rate of surface photovoltage of the heated sample is quicker than the control sample, which implies a considerable impact of ion migration on the relaxation dynamic of photogenerated charge carriers. These findings reveal that the annealing process is an effective strategy to control not only the morphology but also the optoelectrical properties of GB defects, and the dynamic of ion migration. Understanding the origin of photoelectric activity in this material allows for designing and engineering optoelectronic QD devices with enhanced functionality.

13.
Small ; : e2308233, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050945

RESUMEN

The interplay between chirality and magnetism is a source of fascination among scientists for over a century. In recent years, chirality-induced spin selectivity (CISS) has attracted renewed interest. It is observed that electron transport through layers of homochiral molecules leads to a significant spin polarization of several tens of percent. Despite the abundant experimental evidence gathered through mesoscopic transport measurements, the exact mechanism behind CISS remains elusive. This study reports spin-selective electron transport through single helical aromatic hydrocarbons that are sublimed in vacuo onto ferromagnetic cobalt surfaces and examined with spin-polarized scanning tunneling microscopy (SP-STM) at a temperature of 5 K. Direct comparison of two enantiomers under otherwise identical conditions revealed magnetochiral conductance asymmetries of up to 50% when either the molecular handedness is exchanged or the magnetization direction of the STM tip or Co substrate is reversed. Importantly, the results rule out electron-phonon coupling and ensemble effects as primary mechanisms responsible for CISS.

14.
Small ; 19(40): e2303442, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37269212

RESUMEN

Understanding the solid electrolyte interphase (SEI) formation and (de)lithiation phenomena at silicon (Si) electrodes is key to improving the performance and lifetime of Si-based lithium-ion batteries. However, these processes remain somewhat elusive, and, in particular, the role of Si surface termination merits further consideration. Here, scanning electrochemical cell microscopy (SECCM) is used in a glovebox, followed by secondary ion mass spectrometry (SIMS) at identical locations to study the local electrochemical behavior and associated SEI formation, comparing Si (100) with a native oxide layer (SiOx /Si) and etched with hydrofluoric acid (HF-Si). HF-Si shows greater spatial electrochemical heterogeneity and inferior lithiation reversibility than SiOx /Si. This is attributed to a weakly passivating SEI and irreversible lithium trapping at the Si surface. Combinatorial screening of charge/discharge cycling by SECCM with co-located SIMS reveals SEI chemistry as a function of depth. While the SEI thickness is relatively independent of the cycle number, the chemistry - particularly in the intermediate layers - depends on the number of cycles, revealing the SEI to be dynamic during cycling. This work serves as a foundation for the use of correlative SECCM/SIMS as a powerful approach to gain fundamental insights on complex battery processes at the nano- and microscales.

15.
Chemphyschem ; 24(17): e202300160, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37369072

RESUMEN

Photochromic molecules can undergo a reversible conversion between two isomeric forms upon exposure to external stimuli such as electromagnetic radiation. A significant physical transformation accompanying the photoisomerization process defines them as photoswitches, with potential applications in various molecular electronic devices. As such, a detailed understanding of the photoisomerization process on surfaces and the influence of the local chemical environment on switching efficiency is essential. Herein, we use scanning tunneling microscopy to observe the photoisomerization of 4-(phenylazo)benzoic acid (PABA) assembled on Au(111) in kinetically constrained metastable states guided by pulse deposition. Photoswitching is observed at low molecular density and is absent in tight-packed islands. Furthermore, switching events were noted in PABA molecules coadsorbed in a host octanethiol monolayer, suggesting an influence of the surrounding chemical environment on photoswitching efficiency.

16.
Methods ; 197: 30-38, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34157416

RESUMEN

Scanning probe microscopy is a group of measurements that provides 3D visualization of viruses in different environmental conditions including liquids and air. Besides 3D topography it is possible to measure the properties like mechanical rigidity and stability, adhesion, tendency to crystallization, surface charge, etc. Choosing the right substrate and scanning parameters makes it much easier to obtain reliable data. Rational interpretation of experimental results should take into account possible artifacts, proper filtering and data presentation using specially designed software packages. Animal and human virus characterization is in the focus of many intensive studies because of their potential harm to higher organisms. The article focuses on high-resolution visualization of plant viruses. Tobacco mosaic virus, potato viruses X and B and others are not dangerous for the human being and are widely used in different applications such as vaccine preparation, construction of building units in nanotechnology and material science applications, nanoparticle production and delivery, and even metrology. The methods of virus's deposition, visualization, and consequent image processing and interpretation are described in details. Specific examples of viruses imaging are illustrated using the FemtoScan Online software, which has typical and all the necessary built-in functions for constructing three-dimensional images, their processing and analysis. Despite visible progress in visualizing the viruses using probe microscopy, many unresolved problems still remain. At present time the probe microscopy data on viruses is not systemized. There is no descriptive atlas of the images and morphology as revealed by this type of high resolution microscopy. It is worth emphasizing that new virus investigation methods will appear due to the progress of science.


Asunto(s)
Microscopía de Sonda de Barrido , Virus de Plantas , Animales , Procesamiento de Imagen Asistido por Computador , Nanotecnología/métodos
17.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617132

RESUMEN

Ferroelectric materials attract much attention for applications in resistive memory devices due to the large current difference between insulating and conductive states and the ability of carefully controlling electronic transport via the polarization set-up. Bismuth ferrite films are of special interest due to the combination of high spontaneous polarization and antiferromagnetism, implying the possibility to provide multiple physical mechanisms for data storage and operations. Macroscopic conductivity measurements are often hampered to unambiguously characterize the electric transport, because of the strong influence of the diverse material microstructure. Here, we studied the electronic transport and resistive switching phenomena in polycrystalline bismuth ferrite using advanced conductive atomic force microscopy (CAFM) at different temperatures and electric fields. The new approach to the CAFM spectroscopy and corresponding data analysis are proposed, which allow deep insight into the material band structure at high lateral resolution. Contrary to many studies via macroscopic methods, postulating electromigration of the oxygen vacancies, we demonstrate resistive switching in bismuth ferrite to be caused by the pure electronic processes of trapping/releasing electrons and injection of the electrons by the scanning probe microscopy tip. The electronic transport was shown to be comprehensively described by the combination of the space charge limited current model, while a Schottky barrier at the interface is less important due to the presence of the built-in subsurface charge.

18.
Nano Lett ; 22(20): 8210-8215, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36198056

RESUMEN

Molecular diffusion is a fundamental process underpinning surface-confined molecular self-assembly and synthesis. Substrate topography influences molecular assembly, alignment, and reactions with the relationship between topography and diffusion linked to the thermodynamic evolution of such processes. Here, we observe preferential adsorption sites for tetraphenylporphyrin (2H-TPP) on Au(111) and interpret nucleation and growth of molecular islands at these sites in terms of spatial variation in diffusion barrier driven by local atomic arrangements of the Au(111) surface (the 22× âˆš3 "herringbone" reconstruction). Variable-temperature scanning tunnelling microscopy facilitates characterization of molecular diffusion, and Arrhenius analysis allows quantitative characterization of diffusion barriers within fcc and hcp regions of the surface reconstruction (where the in-plane arrangement of the surface atoms is identical but the vertical stacking differs). The higher barrier for diffusion within fcc locations underpins the ubiquitous observation of preferential island growth within fcc regions, demonstrating the relationship between substrate-structure, diffusion, and molecular self-assembly.

19.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108439

RESUMEN

The contact at the molecule-electrode interface is a key component for a range of molecule-based devices involving electron transport. An electrode-molecule-electrode configuration is a prototypical testbed for quantitatively studying the underlying physical chemistry. Rather than the molecular side of the interface, this review focuses on examples of electrode materials in the literature. The basic concepts and relevant experimental techniques are introduced.


Asunto(s)
Nanotecnología , Transporte de Electrón , Conformación Molecular , Electrodos , Química Física
20.
Dokl Biol Sci ; 509(1): 103-106, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37208575

RESUMEN

Developing technologies for efficient targeted drug delivery for oncotherapy requires new methods to analyze the features of micro- and nanoscale distributions of antitumor drugs in cells and tissues. A new approach to three-dimensional analysis of the intracellular distribution of cytostatics was developed using fluorescence scanning optical-probe nanotomography. A correlative analysis of the nanostructure and distribution of injected doxorubicin in MCF-7 human breast adenocarcinoma cells revealed the features of drug penetration and accumulation in the cell. The technology is based on the principles of scanning optical probe nanotomography and is applicable to studying the distribution patterns of various fluorescent or fluorescence-labelled substances in cells and tissues.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Humanos , Femenino , Células MCF-7 , Colorantes Fluorescentes , Doxorrubicina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Adenocarcinoma/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA