RESUMEN
Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.
Asunto(s)
COVID-19 , Células Dendríticas , Inmunidad Innata , Lupus Eritematoso Sistémico , SARS-CoV-2 , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , COVID-19/inmunología , Animales , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Lupus Eritematoso Sistémico/inmunología , Receptores Toll-Like/metabolismo , Diferenciación Celular , Linaje de la CélulaRESUMEN
Infection with SARS-CoV-2 results in clinical outcomes ranging from silent or benign infection in most individuals to critical pneumonia and death in a few. Genetic studies in patients have established that critical cases can result from inborn errors of TLR3- or TLR7-dependent type I interferon immunity, or from preexisting autoantibodies neutralizing primarily IFN-α and/or IFN-ω. These findings are consistent with virological studies showing that multiple SARS-CoV-2 proteins interfere with pathways of induction of, or response to, type I interferons. They are also congruent with cellular studies and mouse models that found that type I interferons can limit SARS-CoV-2 replication in vitro and in vivo, while their absence or diminution unleashes viral growth. Collectively, these findings point to insufficient type I interferon during the first days of infection as a general mechanism underlying critical COVID-19 pneumonia, with implications for treatment and directions for future research.
Asunto(s)
COVID-19 , Interferón Tipo I , Ratones , Humanos , Animales , Interferones/farmacología , SARS-CoV-2RESUMEN
DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.
Asunto(s)
ADN/inmunología , Inmunidad Innata , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Biomarcadores , Citoplasma/inmunología , Citoplasma/metabolismo , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Evasión Inmune , Interferón Tipo I/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismoRESUMEN
Recognition of foreign nucleic acids is the primary mechanism by which a type I interferon-mediated antiviral response is triggered. Given that human cells are replete with DNA and RNA, this evolutionary strategy poses an inherent biological challenge, i.e., the fundamental requirement to reliably differentiate self-nucleic acids from nonself nucleic acids. We suggest that the group of Mendelian inborn errors of immunity referred to as the type I interferonopathies relate to a breakdown of self/nonself discrimination, with the associated mutant genotypes involving molecules playing direct or indirect roles in nucleic acid signaling. This perspective begs the question as to the sources of self-derived nucleic acids that drive an inappropriate immune response. Resolving this question will provide fundamental insights into immune tolerance, antiviral signaling, and complex autoinflammatory disease states. Here we develop these ideas, discussing type I interferonopathies within the broader framework of nucleic acid-driven inflammation.
Asunto(s)
Antígenos Virales/inmunología , Autoantígenos/inmunología , Enfermedades del Sistema Inmune/inmunología , Ácidos Nucleicos/inmunología , Virosis/inmunología , Animales , Humanos , Enfermedades del Sistema Inmune/genética , Tolerancia Inmunológica , Inmunidad Innata , Interferón Tipo I/metabolismo , Virosis/genéticaRESUMEN
Protective immune responses to viral infection are initiated by innate immune sensors that survey extracellular and intracellular space for foreign nucleic acids. The existence of these sensors raises fundamental questions about self/nonself discrimination because of the abundance of self-DNA and self-RNA that occupy these same compartments. Recent advances have revealed that enzymes that metabolize or modify endogenous nucleic acids are essential for preventing inappropriate activation of the innate antiviral response. In this review, we discuss rare human diseases caused by dysregulated nucleic acid sensing, focusing primarily on intracellular sensors of nucleic acids. We summarize lessons learned from these disorders, we rationalize the existence of these diseases in the context of evolution, and we propose that this framework may also apply to a number of more common autoimmune diseases for which the underlying genetics and mechanisms are not yet fully understood.
Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Autoinmunidad , Lupus Eritematoso Sistémico/inmunología , Malformaciones del Sistema Nervioso/inmunología , Ácidos Nucleicos/inmunología , Virosis/inmunología , Animales , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Receptores Toll-Like/metabolismoRESUMEN
Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.
Asunto(s)
Encéfalo , Interferón Tipo I , Microglía , Animales , Ratones , Interferón Tipo I/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Pez Cebra , Encéfalo/citología , Encéfalo/crecimiento & desarrolloRESUMEN
Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.
Asunto(s)
Linfocitos T CD8-positivos , Proteínas de Unión al ADN , Interferón Tipo I , Proteínas de la Membrana , Neoplasias , Transducción de Señal , Factores de Transcripción , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Mutación , Neoplasias/inmunología , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Masculino , Quimiocinas/genética , Quimiocinas/metabolismoRESUMEN
Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.
Asunto(s)
Síndrome Post Agudo de COVID-19 , Serotonina , Humanos , COVID-19/complicaciones , Progresión de la Enfermedad , Inflamación , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/patología , Serotonina/sangre , VirosisRESUMEN
Mycobacterium tuberculosis (Mtb) causes 1.6 million deaths annually. Active tuberculosis correlates with a neutrophil-driven type I interferon (IFN) signature, but the cellular mechanisms underlying tuberculosis pathogenesis remain poorly understood. We found that interstitial macrophages (IMs) and plasmacytoid dendritic cells (pDCs) are dominant producers of type I IFN during Mtb infection in mice and non-human primates, and pDCs localize near human Mtb granulomas. Depletion of pDCs reduces Mtb burdens, implicating pDCs in tuberculosis pathogenesis. During IFN-driven disease, we observe abundant DNA-containing neutrophil extracellular traps (NETs) described to activate pDCs. Cell-type-specific disruption of the type I IFN receptor suggests that IFNs act on IMs to inhibit Mtb control. Single-cell RNA sequencing (scRNA-seq) indicates that type I IFN-responsive cells are defective in their response to IFNγ, a cytokine critical for Mtb control. We propose that pDC-derived type I IFNs act on IMs to permit bacterial replication, driving further neutrophil recruitment and active tuberculosis disease.
Asunto(s)
Interferón Tipo I , Tuberculosis , Humanos , Ratones , Animales , Macrófagos/microbiología , Citocinas , Neutrófilos , Células DendríticasRESUMEN
Mitochondrial DNA (mtDNA) is a potent agonist of the innate immune system; however, the exact immunostimulatory features of mtDNA and the kinetics of detection by cytosolic nucleic acid sensors remain poorly defined. Here, we show that mitochondrial genome instability promotes Z-form DNA accumulation. Z-DNA binding protein 1 (ZBP1) stabilizes Z-form mtDNA and nucleates a cytosolic complex containing cGAS, RIPK1, and RIPK3 to sustain STAT1 phosphorylation and type I interferon (IFN-I) signaling. Elevated Z-form mtDNA, ZBP1 expression, and IFN-I signaling are observed in cardiomyocytes after exposure to Doxorubicin, a first-line chemotherapeutic agent that induces frequent cardiotoxicity in cancer patients. Strikingly, mice lacking ZBP1 or IFN-I signaling are protected from Doxorubicin-induced cardiotoxicity. Our findings reveal ZBP1 as a cooperative partner for cGAS that sustains IFN-I responses to mitochondrial genome instability and highlight ZBP1 as a potential target in heart failure and other disorders where mtDNA stress contributes to interferon-related pathology.
Asunto(s)
Cardiotoxicidad , ADN Mitocondrial , Animales , Ratones , ADN Mitocondrial/metabolismo , Inmunidad Innata , Interferones/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , FosforilaciónRESUMEN
The observation that a subset of cancer patients show evidence for spontaneous CD8+ T cell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment.
Asunto(s)
Inmunidad Innata , Neoplasias/inmunología , Neoplasias/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Citotoxicidad Inmunológica , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Sistema Inmunológico/citología , Inmunoterapia , Ligandos , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Microbiota , Neoplasias/microbiología , Neoplasias/terapia , Transducción de SeñalRESUMEN
The current dogma of RNA-mediated innate immunity is that sensing of immunostimulatory RNA ligands is sufficient for the activation of intracellular sensors and induction of interferon (IFN) responses. Here, we report that actin cytoskeleton disturbance primes RIG-I-like receptor (RLR) activation. Actin cytoskeleton rearrangement induced by virus infection or commonly used reagents to intracellularly deliver RNA triggers the relocalization of PPP1R12C, a regulatory subunit of the protein phosphatase-1 (PP1), from filamentous actin to cytoplasmic RLRs. This allows dephosphorylation-mediated RLR priming and, together with the RNA agonist, induces effective RLR downstream signaling. Genetic ablation of PPP1R12C impairs antiviral responses and enhances susceptibility to infection with several RNA viruses including SARS-CoV-2, influenza virus, picornavirus, and vesicular stomatitis virus. Our work identifies actin cytoskeleton disturbance as a priming signal for RLR-mediated innate immunity, which may open avenues for antiviral or adjuvant design.
Asunto(s)
Actinas , COVID-19 , Citoesqueleto de Actina , Antivirales , Humanos , Interferones , Ligandos , Proteína Fosfatasa 1 , ARN , ARN Helicasas , Receptores de Ácido Retinoico/metabolismo , SARS-CoV-2RESUMEN
TANK binding kinase 1 (TBK1) regulates IFN-I, NF-κB, and TNF-induced RIPK1-dependent cell death (RCD). In mice, biallelic loss of TBK1 is embryonically lethal. We discovered four humans, ages 32, 26, 7, and 8 from three unrelated consanguineous families with homozygous loss-of-function mutations in TBK1. All four patients suffer from chronic and systemic autoinflammation, but not severe viral infections. We demonstrate that TBK1 loss results in hypomorphic but sufficient IFN-I induction via RIG-I/MDA5, while the system retains near intact IL-6 induction through NF-κB. Autoinflammation is driven by TNF-induced RCD as patient-derived fibroblasts experienced higher rates of necroptosis in vitro, and CC3 was elevated in peripheral blood ex vivo. Treatment with anti-TNF dampened the baseline circulating inflammatory profile and ameliorated the clinical condition in vivo. These findings highlight the plasticity of the IFN-I response and underscore a cardinal role for TBK1 in the regulation of RCD.
Asunto(s)
Inflamación/enzimología , Proteínas Serina-Treonina Quinasas/deficiencia , Factor de Necrosis Tumoral alfa/farmacología , Células A549 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Autoinmunidad/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Muerte Celular/efectos de los fármacos , Citocinas/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Femenino , Células HEK293 , Homocigoto , Humanos , Quinasa I-kappa B/metabolismo , Inmunofenotipificación , Inflamación/patología , Interferón Tipo I/metabolismo , Interferón gamma/metabolismo , Mutación con Pérdida de Función/genética , Masculino , Linaje , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Receptor Toll-Like 3/metabolismo , Transcriptoma/genética , Vesiculovirus/efectos de los fármacos , Vesiculovirus/fisiologíaRESUMEN
Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.
Asunto(s)
COVID-19/patología , Interferones/metabolismo , Sistema Respiratorio/virología , Índice de Severidad de la Enfermedad , Factores de Edad , Envejecimiento/patología , COVID-19/genética , COVID-19/inmunología , Células Epiteliales/patología , Células Epiteliales/virología , Regulación de la Expresión Génica , Humanos , Interferones/genética , Leucocitos/patología , Leucocitos/virología , Pulmón/patología , Pulmón/virología , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Carga ViralRESUMEN
Tn7-like transposons have co-opted CRISPR systems, including class 1 type I-F, I-B, and class 2 type V-K. Intriguingly, although these CRISPR-associated transposases (CASTs) undergo robust CRISPR RNA (crRNA)-guided transposition, they are almost never found in sites targeted by the crRNAs encoded by the cognate CRISPR array. To understand this paradox, we investigated CAST V-K and I-B systems and found two distinct modes of transposition: (1) crRNA-guided transposition and (2) CRISPR array-independent homing. We show distinct CAST systems utilize different molecular mechanisms to target their homing site. Type V-K CAST systems use a short, delocalized crRNA for RNA-guided homing, whereas type I-B CAST systems, which contain two distinct target selector proteins, use TniQ for RNA-guided DNA transposition and TnsD for homing to an attachment site. These observations illuminate a key step in the life cycle of CAST systems and highlight the diversity of molecular mechanisms mediating transposon homing.
Asunto(s)
Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Elementos Transponibles de ADN/fisiología , ADN Bacteriano/metabolismo , ARN Guía de Kinetoplastida , Transposasas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/genética , Edición Génica , Recombinación Genética , Transposasas/genéticaRESUMEN
Interferon (IFN)-Is are crucial mediators of antiviral immunity and homeostatic immune system regulation. However, the source of IFN-I signaling under homeostatic conditions is unclear. We discovered that commensal microbes regulate the IFN-I response through induction of IFN-ß by colonic DCs. Moreover, the mechanism by which a specific commensal microbe induces IFN-ß was identified. Outer membrane (OM)-associated glycolipids of gut commensal microbes belonging to the Bacteroidetes phylum induce expression of IFN-ß. Using Bacteroides fragilis and its OM-associated polysaccharide A, we determined that IFN-ß expression was induced via TLR4-TRIF signaling. Antiviral activity of this purified microbial molecule against infection with either vesicular stomatitis virus (VSV) or influenza was demonstrated to be dependent on the induction of IFN-ß. In a murine VSV infection model, commensal-induced IFN-ß regulated natural resistance to virus infection. Due to the physiological importance of IFN-Is, discovery of an IFN-ß-inducing microbial molecule represents a potential approach for the treatment of some human diseases.
Asunto(s)
Inmunidad Innata , Microbiota , Virosis/microbiología , Animales , Bacteroides fragilis/fisiología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colon/patología , Colon/virología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucolípidos/metabolismo , Inmunidad Innata/efectos de los fármacos , Interferón beta/sangre , Interferón beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Polisacáridos Bacterianos/farmacología , Receptor Toll-Like 4/metabolismo , Vesiculovirus/fisiología , Virosis/genéticaRESUMEN
Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.
Asunto(s)
Células Dendríticas/inmunología , Interferón Tipo I/inmunología , Microbiota/inmunología , Inmunidad Adaptativa/inmunología , Inmunidad Adaptativa/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/microbiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/fisiología , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/inmunologíaRESUMEN
A greater understanding of hematopoietic stem cell (HSC) regulation is required for dissecting protective versus detrimental immunity to pathogens that cause chronic infections such as Mycobacterium tuberculosis (Mtb). We have shown that systemic administration of Bacille Calmette-Guérin (BCG) or ß-glucan reprograms HSCs in the bone marrow (BM) via a type II interferon (IFN-II) or interleukin-1 (IL1) response, respectively, which confers protective trained immunity against Mtb. Here, we demonstrate that, unlike BCG or ß-glucan, Mtb reprograms HSCs via an IFN-I response that suppresses myelopoiesis and impairs development of protective trained immunity to Mtb. Mechanistically, IFN-I signaling dysregulates iron metabolism, depolarizes mitochondrial membrane potential, and induces cell death specifically in myeloid progenitors. Additionally, activation of the IFN-I/iron axis in HSCs impairs trained immunity to Mtb infection. These results identify an unanticipated immune evasion strategy of Mtb in the BM that controls the magnitude and intrinsic anti-microbial capacity of innate immunity to infection.
Asunto(s)
Células Madre Hematopoyéticas/microbiología , Inmunidad , Mycobacterium tuberculosis/fisiología , Mielopoyesis , Animales , Células de la Médula Ósea/metabolismo , Proliferación Celular , Susceptibilidad a Enfermedades , Homeostasis , Interferón Tipo I/metabolismo , Hierro/metabolismo , Cinética , Pulmón/microbiología , Pulmón/patología , Macrófagos/inmunología , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Necrosis , Transducción de Señal , Transcripción Genética , Tuberculosis/inmunología , Tuberculosis/microbiología , Tuberculosis/patologíaRESUMEN
Blood myeloid cells are known to be dysregulated in coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2. It is unknown whether the innate myeloid response differs with disease severity and whether markers of innate immunity discriminate high-risk patients. Thus, we performed high-dimensional flow cytometry and single-cell RNA sequencing of COVID-19 patient peripheral blood cells and detected disappearance of non-classical CD14LowCD16High monocytes, accumulation of HLA-DRLow classical monocytes (Human Leukocyte Antigen - DR isotype), and release of massive amounts of calprotectin (S100A8/S100A9) in severe cases. Immature CD10LowCD101-CXCR4+/- neutrophils with an immunosuppressive profile accumulated in the blood and lungs, suggesting emergency myelopoiesis. Finally, we show that calprotectin plasma level and a routine flow cytometry assay detecting decreased frequencies of non-classical monocytes could discriminate patients who develop a severe form of COVID-19, suggesting a predictive value that deserves prospective evaluation.
Asunto(s)
Infecciones por Coronavirus , Coronavirus , Pandemias , Neumonía Viral , Betacoronavirus , COVID-19 , Citometría de Flujo , Humanos , Complejo de Antígeno L1 de Leucocito , Monocitos , Células Mieloides , Estudios Prospectivos , SARS-CoV-2RESUMEN
Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-ß-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.