Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36772365

RESUMEN

The undeniable computational power of artificial neural networks has granted the scientific community the ability to exploit the available data in ways previously inconceivable. However, deep neural networks require an overwhelming quantity of data in order to interpret the underlying connections between them, and therefore, be able to complete the specific task that they have been assigned to. Feeding a deep neural network with vast amounts of data usually ensures efficiency, but may, however, harm the network's ability to generalize. To tackle this, numerous regularization techniques have been proposed, with dropout being one of the most dominant. This paper proposes a selective gradient dropout method, which, instead of relying on dropping random weights, learns to freeze the training process of specific connections, thereby increasing the overall network's sparsity in an adaptive manner, by driving it to utilize more salient weights. The experimental results show that the produced sparse network outperforms the baseline on numerous image classification datasets, and additionally, the yielded results occurred after significantly less training epochs.

2.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842440

RESUMEN

: For a diesel engine, operating conditions have extreme importance in fault detection and diagnosis. Limited to various special circumstances, the multi-factor operating conditions of a diesel engine are difficult to measure, and the demand of automatic condition recognition based on vibration signals is urgent. In this paper, multi-factor operating condition recognition using a one-dimensional (1D) convolutional long short-term network (1D-CLSTM) is proposed. Firstly, a deep neural network framework is proposed based on a 1D convolutional neural network (CNN) and long short-Term network (LSTM). According to the characteristics of vibration signals of a diesel engine, batch normalization is introduced to regulate the input of each convolutional layer by fixing the mean value and variance. Subsequently, adaptive dropout is proposed to improve the model sparsity and prevent overfitting in model training. Moreover, the vibration signals measured under 12 operating conditions were used to verify the performance of the trained 1D-CLSTM classifier. Lastly, the vibration signals measured from another kind of diesel engine were applied to verify the generalizability of the proposed approach. Experimental results show that the proposed method is an effective approach for multi-factor operating condition recognition. In addition, the adaptive dropout can achieve better training performance than the constant dropout ratio. Compared with some state-of-the-art methods, the trained 1D-CLSTM classifier can predict new data with higher generalization accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA