Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(27): 12281-12291, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38939969

RESUMEN

Significant progress has been made previously in the research and development of graphene oxide (GO) membranes for water purification, but their biofouling behavior remains poorly understood. In this study, we investigated the biofilm formation and biofouling of GO membranes with different surface microstructures in the context of filtering natural surface water and for an extended operation period (110 days). The results showed that the relatively hydrophilic and smooth Fe(OH)3/GO membrane shaped a thin and spatially heterogeneous biofilm with high stable flux. However, the ability to simultaneously mitigate biofilm formation and reduce biofouling was not observed in the weakly hydrophilic and wrinkled Fe/GO and H-Fe(OH)3/GO membranes. Microbial analyses revealed that the hydrophilicity and roughness distinguished the bacterial communities and metabolic functions. The organic matter-degrading and predatory bacteria were more adapted to hydrophilic and smooth GO surfaces. These functional taxa were involved in the degradation of extracellular polymeric substances (EPS), and improved biofilm heterogeneity. In contrast, the weakly hydrophilic and wrinkled GO surfaces had reduced biodiversity, while unexpectedly boosting the proliferation of EPS-secreting bacteria, resulting in increased biofilm formation and aggravated biofouling. Moreover, all GO membranes achieved sustainable water purification during the entire operating period.


Asunto(s)
Biopelículas , Incrustaciones Biológicas , Grafito , Purificación del Agua , Grafito/química , Membranas Artificiales , Óxidos/química
2.
Adv Exp Med Biol ; 1404: 17-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36792869

RESUMEN

With the discovery that 48% of cholera infections in rural Bangladesh villages could be prevented by simple filtration of unpurified waters and the detection of Vibrio cholerae aggregates in stools from cholera patients it was realized V. cholerae biofilms had a central function in cholera pathogenesis. We are currently in the seventh cholera pandemic, caused by O1 serotypes of the El Tor biotypes strains, which initiated in 1961. It is estimated that V. cholerae annually causes millions of infections and over 100,000 deaths. Given the continued emergence of cholera in areas that lack access to clean water, such as Haiti after the 2010 earthquake or the ongoing Yemen civil war, increasing our understanding of cholera disease remains a worldwide public health priority. The surveillance and treatment of cholera is also affected as the world is impacted by the COVID-19 pandemic, raising significant concerns in Africa. In addition to the importance of biofilm formation in its life cycle, V. cholerae has become a key model system for understanding bacterial signal transduction networks that regulate biofilm formation and discovering fundamental principles about bacterial surface attachment and biofilm maturation. This chapter will highlight recent insights into V. cholerae biofilms including their structure, ecological role in environmental survival and infection, regulatory systems that control them, and biomechanical insights into the nature of V. cholerae biofilms.


Asunto(s)
COVID-19 , Cólera , Vibrio cholerae , Humanos , Cólera/epidemiología , Cólera/microbiología , Pandemias , Biopelículas
3.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139071

RESUMEN

Credible assessment methods must be applied to evaluate antiseptics' in vitro activity reliably. Studies indicate that the medium for biofilm culturing should resemble the conditions present at the site of infection. We cultured S. aureus, S. epidermidis, P. aeruginosa, C. albicans, and E. coli biofilms in IVWM (In Vitro Wound Milieu)-the medium reflecting wound milieu-and were compared to the ones cultured in the laboratory microbiological Mueller-Hinton (MH) medium. We analyzed and compared crucial biofilm characteristics and treated microbes with polyhexamethylene biguanide hydrochloride (PHMB), povidone-iodine (PVP-I), and super-oxidized solution with hypochlorites (SOHs). Biofilm biomass of S. aureus and S. epidermidis was higher in IVWM than in MH medium. Microbes cultured in IVWM exhibited greater metabolic activity and thickness than in MH medium. Biofilm of the majority of microbial species was more resistant to PHMB and PVP-I in the IVWM than in the MH medium. P. aeruginosa displayed a two-fold lower MBEC value of PHMB in the IVWM than in the MH medium. PHMB was more effective in the IVWM than in the MH medium against S. aureus biofilm cultured on a biocellulose carrier (instead of polystyrene). The applied improvement of the standard in vitro methodology allows us to predict the effects of treatment of non-healing wounds with specific antiseptics.


Asunto(s)
Antiinfecciosos Locales , Antiinfecciosos Locales/farmacología , Povidona Yodada/farmacología , Staphylococcus aureus , Escherichia coli , Biopelículas , Pseudomonas aeruginosa
4.
Indian J Microbiol ; 63(3): 373-379, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37781014

RESUMEN

Extracellular DNA (eDNA) is a major component of bacterial biofilms. In this study, we performed a three-dimensional analysis of Leptospira biofilm using advanced imaging by confocal laser scanning microscopy (CLSM) and multi-parameter analysis by COMSTAT 2 software, with quantification of Leptospira and eDNA fluorescence. To investigate the role of eDNA in Leptospira biofilm, we treated Leptospira biflexa biofilms with DNase I enzyme (DNase), which digested eDNA, and compared DNase treated biofilms and controls. There was a significant reduction of the biomass of biofilms treated with DNase, by spectrophotometry and COMSTAT analysis. The multiparameter analysis evidenced for DNase-treated biofilms a significant decrease in the surface area and the average thickness; opposing to a significant augmentation of the surface/biovolume ratio and the roughness coefficient (Ra*), when compared to controls. We analyzed the parameters of DNase-treated biofilms by Pearson's correlation coefficient and found significant positive correlations between biomass and average thickness; biomass and surface area; surface area and average thickness. On the other hand, there were significant negative correlations between Ra* and biomass; Ra* and average thickness; Ra* and surface area. These findings suggest that eDNA digestion results in biofilm instability and alteration of the three-dimensional architecture, justifying the negative correlation between Ra* and the above-mentioned parameters. In conclusion, our study showed that eDNA digestion produced a massive structural loss, instability, and dramatic changes in the three-dimensional architecture of Leptospira biflexa biofilm. These findings contribute to a better understanding of the role of eDNA and highlight the importance of eDNA as a key component in Leptospira biofilms.

5.
Mol Microbiol ; 116(4): 1151-1172, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34455651

RESUMEN

Exopolysaccharide (EPS) layers on the bacterial cell surface are key determinants of biofilm establishment and maintenance, leading to the formation of higher-order 3D structures that confer numerous survival benefits to a cell community. In addition to a specific cell-associated EPS glycocalyx, we recently revealed that the social δ-proteobacterium Myxococcus xanthus secretes a novel biosurfactant polysaccharide (BPS) to the extracellular milieu. Together, secretion of the two polymers (EPS and BPS) is required for type IV pilus (T4P)-dependent swarm expansion via spatio-specific biofilm expression profiles. Thus the synergy between EPS and BPS secretion somehow modulates the multicellular lifecycle of M. xanthus. Herein, we demonstrate that BPS secretion functionally alters the EPS glycocalyx via destabilization of the latter, fundamentally changing the characteristics of the cell surface. This impacts motility behaviors at the single-cell level and the aggregative capacity of cells in groups via cell-surface EPS fibril formation as well as T4P production, stability, and positioning. These changes modulate the structure of swarm biofilms via cell layering, likely contributing to the formation of internal swarm polysaccharide architecture. Together, these data reveal the manner by which the combined secretion of two distinct polymers induces single-cell changes that modulate swarm biofilm communities.


Asunto(s)
Biopelículas , Fimbrias Bacterianas/metabolismo , Glicocálix/metabolismo , Myxococcus xanthus/metabolismo , Polisacáridos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Myxococcus xanthus/crecimiento & desarrollo
6.
Environ Sci Technol ; 56(12): 8908-8919, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35623093

RESUMEN

A biofilm has a significant effect on water treatment processes. Currently, there is a lack of knowledge about the effect of temperature on the biofilm structure in water treatment processes. In this study, a gravity-driven membrane ultrafiltration system was operated with river feedwater at two temperatures ("low", 4 °C; "high", 25 °C) to explore the biofilm structure and transformation mechanism. The results showed that the difference in dissolved oxygen concentration might be one of the main factors regulating the structural components of the biofilm. A denser biofilm formation and reduced flux were observed at the lower temperature. The linoleic acid metabolism was significantly inhibited at low temperature, resulting in enhanced pyrimidine metabolism by Na+ accumulation. In addition, the biofilm at low temperature had a higher proportion of the metabolites of lipids and lipid-like molecules (11.25%), organic acids and derivatives (10.83%), nucleosides, nucleotides, and analogues (7.083%), and organoheterocyclic compounds (6.66%). These small molecules secrete more polysaccharides having C═O and O═C-O functional groups, which intensified the resistance of the biofilm. Furthermore, the upregulation pathway of pyrimidine metabolism also increased the risk of urea accumulation at low temperature. Limnohabitans, Deinococcus, Diaphorobacter, Flavobacterium, and Pseudomonas were identified as the principal microorganisms involved in this metabolic transformation.


Asunto(s)
Membranas Artificiales , Microbiota , Biopelículas , Metabolómica , Pirimidinas , Temperatura
7.
Bioprocess Biosyst Eng ; 45(2): 269-277, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34689231

RESUMEN

External resistance is important for the anode and cell performance. However, little attentions were paid on the effect of external resistance on the variation of biofilm structure. Here, we used external resistance ranged from 4000 to 500 Ω for anodic acclimation to investigate the correlation between anode performance and biofilm structure. With the reduce of external resistance, the maximum current density of anode increased from 1.0 to 3.4 A/m2, which was resulted from a comprehensive effect of reduced charge transfer resistance and increased diffusion resistance. Biological analysis showed that with the reduce of external resistance, biomass and extracellular polymeric substances content increased by 109 and 286%, cell viability increased by 22.7%, which contributed to the reduced charge transfer resistance. But the porosity of anodic biofilm decreased by 27.8%, which led to an increased diffusion resistance of H+. This work provided a clear correlation between the electrochemical performance and biofilm structure.


Asunto(s)
Fuentes de Energía Bioeléctrica , Aclimatación , Biopelículas , Biomasa , Electrodos
8.
J Environ Manage ; 320: 115883, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35930881

RESUMEN

This study investigated biofilm establishment, biofilm structure, and microbial community composition of biofilms in three laboratory-scale moving bed biofilm reactors. These reactors were filled with three types of plastic carriers with varied depths of living space for microbial growth. The reactors were operated under the same influent and operational conditions. Along with the operation, the results showed that carriers with grids of 50 µm in height delayed the biofilm development and formed the thinnest biofilm and a carpet-like structure with the lowest α-diversity. In comparison, another two carriers with grids of 200 and 400 µm in height formed thick biofilms and large colonies with more voids and channels. Quantified properties of biofilm thickness, biomass, heterogeneity, portion of the biofilm exposed to the nutrient, and maximum diffusion distance were examined, and the results demonstrated that they almost (except for heterogeneity) strongly correlated to the α-diversity of microbial community. These illustrate that depth of living space, as an important parameter for carrier, could drive the formation of biofilm structure and community composition. It improves understanding of influencing factors on biofilm establishment, structure and its microbial community, and would be helpful for the design of biofilm processes.


Asunto(s)
Microbiota , Nitrificación , Biopelículas , Biomasa , Reactores Biológicos
9.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32661124

RESUMEN

Biofilm formation by Streptococcus pyogenes (group A streptococcus [GAS]) in model systems mimicking the respiratory tract is poorly documented. Most studies have been conducted on abiotic surfaces, which poorly represent human tissues. We have previously shown that GAS forms mature and antibiotic-resistant biofilms on physiologically relevant epithelial cells. However, the roles of the substratum, extracellular matrix (ECM) components, and GAS virulence factors in biofilm formation and structure are unclear. In this study, biofilm formation was measured on respiratory epithelial cells and keratinocytes by determining biomass and antibiotic resistance, and biofilm morphology was visualized using scanning electron microscopy. All GAS isolates tested formed biofilms that had similar, albeit not identical, biomass and antibiotic resistance for both cell types. Interestingly, functionally mature biofilms formed more rapidly on keratinocytes but were structurally denser and coated with more ECM on respiratory epithelial cells. The ECM was crucial for biofilm integrity, as protein- and DNA-degrading enzymes induced bacterial release from biofilms. Abiotic surfaces supported biofilm formation, but these biofilms were structurally less dense and organized. No major role for M protein, capsule, or streptolysin O was observed in biofilm formation on epithelial cells, although some morphological differences were detected. NAD-glycohydrolase was required for optimal biofilm formation, whereas streptolysin S and cysteine protease SpeB impaired this process. Finally, no correlation was found between cell adherence or autoaggregation and GAS biofilm formation. Combined, these results provide a better understanding of the role of biofilm formation in GAS pathogenesis and can potentially provide novel targets for future treatments against GAS infections.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Células Epiteliales/microbiología , Streptococcus pyogenes/patogenicidad , Factores de Virulencia/metabolismo , Antibacterianos/farmacología , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biopelículas/efectos de los fármacos , Biomasa , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Farmacorresistencia Bacteriana , Células Epiteliales/ultraestructura , Matriz Extracelular/microbiología , Matriz Extracelular/ultraestructura , Queratinocitos/microbiología , Queratinocitos/ultraestructura , Serogrupo , Factores de Virulencia/genética
10.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32801173

RESUMEN

The biofilm phenotype offers bacterial communities protection from environmental factors, as evidenced by its role in the viability, persistence, and virulence of cells under conditions in which flow is present, such as in riverbeds, industrial piping networks, and the human circulatory system. Here, we examined the hypothesis that temperature-an environmental factor that affects the growth of the Gram-positive bacterium Staphylococcus epidermidis-controls, through dual mechanisms, persistence of this bacterial strain in a shear environment characteristic of the human circulatory system. We demonstrated that temperature and antibiotics impact the surface-adhered biofilm and material disseminated downstream in different ways. Specifically, by means of three-dimensional (3D) confocal and scanning electron microscopy, an increase in surface-adhered biofilm heterogeneity was observed with increasing temperature. Additionally, we found a 4-log decrease in cell viability at the biofilm surface as the perfusate temperature was increased from 37°C to 50°C. Finally, the viability of cell-containing fragments that were disseminated from the substrate was assessed by downstream sampling, culture, and optical density measurement. We found that although temperature decreased the viability of the surface-adhered biofilm, the downstream material remained viable. And yet, in the presence of antibiotics, the growth of disseminated material was nearly completely inhibited, even though the addition of antibiotics had no significant impact on the viability of the surface-adhered biofilm. The mechanism involves both biofilm structural damage, as quantified by morphology of debrided material, and reduced cell viability, as quantified by assay of bacterial cells present in the surface-adherent biofilm and in the downstream effluent. The results potentially identify parameter ranges in which elevated temperature could augment current antibiotic treatment regimens.IMPORTANCE Bacterial biofilms are a leading cause of medical device infections. Staphylococcus epidermidis is commonly responsible for these types of infections. With increasing occurrences of antibacterial resistance, there has been a new push to explore treatment options that augment traditional antibiotic therapies. Here, we show how thermal treatment can be applied to both degrade bacterial biofilms on substrates and impede the proliferation of cells that detach from them. Understanding the response of both surface-adhered and dispersed bacterial cells under thermal stress conditions is a foundational step toward the development of an in situ treatment/remediation method for biofilm growth in medical devices; such an application could use oscillatory flow of heated fluid in a catheter as an adjuvant to antibiotic treatment. The work furthermore provides new insight into the viability of disseminated biofilm material.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana , Calor , Viabilidad Microbiana/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Antibacterianos/química , Medios de Cultivo/química , Pruebas de Sensibilidad Microbiana , Especificidad por Sustrato
11.
Cell Mol Biol (Noisy-le-grand) ; 66(2): 204-211, 2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32415949

RESUMEN

Different extracts have different effects on the biofilm structure of Staphylococcus aureus, and the biofilm structure of Staphylococcus aureus will produce different inhibition reactions. In this study, different experimental reagent extracts were used to analyze the inhibition characteristics of Staphylococcus aureus biofilm structure. The inhibition characteristics of bacterial biofilm structure were obtained by using the same bacteria species and the same experimental environment. The results showed that the chloroform extract had a good inhibitory effect on the biofilm structure, which could effectively inhibit the formation of biofilm; the acetic acid extract had an impact on the formation of biofilm, which was destructive to the biofilm; the petroleum ether extract had no effect on the formation of biofilm, that is, it had no inhibitory effect.


Asunto(s)
Biopelículas , Staphylococcus aureus/fisiología , Ácido Acético/química , Alcanos/química , Membrana Celular/metabolismo
12.
Biofouling ; 36(1): 14-31, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31928216

RESUMEN

The impact of feed water quality on biofilm formation during membrane distillation (MD) was investigated in this study, particularly emphasizing the interrelationship between organics, salts, and microbes. Two types of typical natural surface waters in Nanjing, China, were chosen as feed solutions for long-term MD operation, including the Qinhuai River and Xuanwu Lake. The biofilms that developed under different feed water qualities exhibited distinct Foulant compositions and structures, causing different flux decline trends for the MD system. Accordingly, two typical patterns of biofilm formation were suggested for the MD operation of the two different kinds of surface waters in this study. Organics from a primal feed solution and dead bacteria were the key to the establishment of a biofilm on the membrane, and this needs to be effectively removed from the MD system through pre-treatment and process control strategies. Finally, a feasible strategy for MD biofouling control was suggested.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Incrustaciones Biológicas/prevención & control , Destilación , Agua Dulce , Membranas Artificiales , Politetrafluoroetileno/química , Purificación del Agua/métodos , China , Agua Dulce/química , Agua Dulce/microbiología , Interacciones Hidrofóbicas e Hidrofílicas , Lagos/química , Lagos/microbiología , Ríos/química , Ríos/microbiología , Propiedades de Superficie , Purificación del Agua/instrumentación , Calidad del Agua
13.
Appl Microbiol Biotechnol ; 103(15): 6205-6215, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31139898

RESUMEN

Biofilms of Actinobacillus succinogenes have demonstrated exceptional capabilities as biocatalysts for high productivity, titre and yield production of succinic acid (SA). The paper presents a microscopic analysis of A. succinogenes biofilms developed under varied fermenter conditions. The concentration of excretion metabolites is controlled by operating the fermenter in a continuous mode where the liquid throughput is adjusted. It is clearly illustrated how the accumulation of excreted metabolites (concomitant with the sodium build-up due to base dosing) has a severe effect on the biofilm structure and physiology. Under high accumulation (HA) conditions, some cells exhibit severe elongation while maintaining a cross-sectional diameter like the rod/cocci-shaped cells predominantly found in low accumulation (LA) conditions. The elongated cells formed at high accumulation conditions were found to be more viable than the clusters of rod/cocci-shaped cells and appear to form connections between the clusters. The global microscopic structure of the HA biofilms also differed significantly from the LA biofilms. Although both exhibited shedding after 4 days of growth, the LA biofilms were more homogenous (less patchy), thicker and with high viability throughout the biofilm depth. The viability of the HA biofilms was threefold lower than the corresponding LA biofilms towards the end of the fermentation. Visual observations were supported by quantitative analysis of multiple biofilm samples and strengthened the main observations. The work presents valuable insights on the effect of metabolite accumulation on biofilm structure and growth.


Asunto(s)
Actinobacillus/crecimiento & desarrollo , Actinobacillus/metabolismo , Biopelículas/crecimiento & desarrollo , Ácido Succínico/metabolismo , Actinobacillus/citología , Reactores Biológicos/microbiología , Medios de Cultivo/química , Fermentación , Microscopía
14.
Biofouling ; 35(9): 959-974, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31687841

RESUMEN

The ubiquitous divalent cations magnesium and calcium are important nutrients required by bacteria for growth and cell maintenance. Multi-faceted roles are shown both in bacterial initial attachment and biofilm maturation. The effects of calcium and magnesium can be highlighted in physio-chemical interactions, gene regulation and bio-macromolecular structural modification, which lead to either promotion or inhibition of biofilms. This review outlines recent research addressing phenotypic changes and mechanisms undertaken by calcium and magnesium in affecting bacterial biofilm formation.


Asunto(s)
Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Calcio/farmacología , Magnesio/farmacología , Bacterias/genética , Bacterias/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de Unión al Calcio/metabolismo , Cationes Bivalentes , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
15.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28411222

RESUMEN

The prevalence and structure of Staphylococcus aureus and Staphylococcus epidermidis within multispecies biofilms were found to depend sensitively on physical environment and antibiotic dosage. Although these species commonly infect similar sites, such as orthopedic implants, little is known about their behavior in multispecies communities, particularly in response to treatment. This research establishes that S. aureus is much more prevalent than S. epidermidis when simultaneously seeded and grown under unstressed conditions (pH 7, 37°C) in both laboratory and clinical strains. In multispecies communities, S. epidermidis is capable of growing a more confluent biofilm when the addition of S. aureus is delayed 4 to 6 h during 18 h of growth. Different vancomycin dosages generate various behaviors: S. epidermidis is more prevalent at a dose of 1.0 µg/ml vancomycin, but reduced growth of both species occurs at 1.9 µg/ml vancomycin. This variability is consistent with the different MICs of S. aureus and S. epidermidis Growth at higher temperature (45°C) results in an environment where S. aureus forms porous biofilms. This porosity allows S. epidermidis to colonize more of the surface, resulting in detectable S. epidermidis biomass. Variations in pH result in increased prevalence of S. epidermidis at low pH (pH 5 and 6), while S. aureus remains dominant at high pH (pH 8 and 9). This work establishes the structural variability of multispecies staphylococcal biofilms as they undergo physical and antimicrobial treatments. It provides a basis for understanding the structure of these communities at infection sites and how treatments disrupt their multispecies behaviors.IMPORTANCEStaphylococcus aureus and Staphylococcus epidermidis are two species of bacteria that are commonly responsible for biofilm infections on medical devices. Biofilms are structured communities of bacteria surrounded by polysaccharides, proteins, and DNA; bacteria are more resistant to antimicrobials as part of a biofilm than as individual cells. This work investigates the structure and prevalence of these two organisms when grown together in multispecies biofilms and shows shifts in the behavior of the polymicrobial community when grown in various concentrations of vancomycin (an antibiotic commonly used to treat staphylococcal infections), in a high-temperature environment (a condition previously shown to lead to cell disruption and death), and at low and high pH (a change that has been previously shown to soften the mechanical properties of staphylococcal biofilms). These shifts in community structure demonstrate the effect such treatments may have on multispecies staphylococcal infections.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/fisiología , Staphylococcus epidermidis/crecimiento & desarrollo , Staphylococcus epidermidis/fisiología
16.
Nanotechnol Sci Appl ; 17: 107-125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645468

RESUMEN

Purpose: Biofilms, which are created by most microorganisms, are known for their widely developed drug resistance, even more than planktonic forms of microorganisms. The aim of the study was to assess the effectiveness of agents composed of farnesol and nanoparticles (silver, gold, copper, and zinc oxide) in the degradation of biofilms produced by pathogenic microorganisms. Methods: Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans were used to create the biofilm structure. Colloidal suspensions of silver, gold, copper, and zinc oxide (Ag, Au, Cu, ZnO) with the addition of farnesol (F) were used as the treatment factor. The size distribution of those composites was analyzed, their zeta potential was measured, and their structure was visualized by transmission electron microscopy. The viability of the microorganism strains was assessed by an XTT assay, the ability to form biofilms was analyzed by confocal microscopy, and the changes in biofilm structure were evaluated by scanning electron microscopy. The general toxicity toward the HFFF2 cell line was determined by a neutral red assay and a human inflammation antibody array. Results: The link between the two components (farnesol and nanoparticles) caused mutual stability of both components. Planktonic forms of the microorganisms were the most sensitive when exposed to AgF and CuF; however, the biofilm structure of all microorganism strains was the most disrupted (both inhibition of formation and changes within the structure) after AgF treatment. Composites were not toxic toward the HFFF2 cell line, although the expression of several cytokines was higher than in the not-treated group. Conclusion: The in vitro studies demonstrated antibiofilm properties of composites based on farnesol and nanoparticles. The greatest changes in biofilm structure were triggered by AgF, causing an alteration in the biofilm formation process as well as in the biofilm structure.

17.
Water Res ; 250: 120985, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38118257

RESUMEN

In industry, treatments against biofilms need to be optimized and, in the wastewater treatment field, biofilm composition needs to be controlled. Therefore, describing the biochemical and physical structures of biofilms is now required to better understand the influence of operating parameters and treatment on biofilms. The present study aims to investigate how growth conditions influence EPS composition, biofilm physical properties and volume detachment using a 1D biofilm model. Two types of EPS are considered in the present model, proteins and polysaccharides. The main hypotheses are that: (i) the production of polysaccharides occurs mainly under strong nutrient limitation(s) while the production of proteins is coupled to both the substrate uptake rate and the lysis process; (ii) the local biofilm porosity depends on the local biofilm composition. Both volume and surface detachment occur in biofilms and volume detachment extent depends on the biofilm local cohesion and thus on the local composition of biofilms for a given shear stress. The model is based on experimental trends and aims to represent these observations on the basis of biochemical and physical processes. Four case studies covering a wide range of contrasting growth conditions such as different COD/N ratios, applied SOLR and shear stresses are investigated. The model predicts how the biochemical and physical biofilm structures change as a result of contrasting growth conditions. More precisely simulation results are in good agreement with the main experimental observations reported in the literature, such as: (i) a strong nitrogen limitation of growth induces an important accumulation of polysaccharides leading to a more porous and homogenous biofilm, (ii) a high applied surface organic loading load allows to obtain a high biofilm thickness, (iii) a strong shear stress applied during the biofilm growth leads to a reduction of the biofilm thickness and to a consolidation of the biofilm structure. Overall, this model represents a relevant decision tool for the selection of appropriate enzymatic treatments in the context of negative biofilm control. From our results, it appears that protease based treatments should be more appropriate for biofilms developed under low COD/N ratios (about 20 gCOD/gN) whereas both glucosidases and proteases based treatments should be more appropriate for biofilms developed under high COD/N ratio (about 70 gCOD/gN). In addition, the model could be useful for other applications such as resource recovery in biofilms or granules, and help to better understand biological membrane fouling.


Asunto(s)
Biopelículas , Polisacáridos , Proteínas , Simulación por Computador , Estrés Mecánico
18.
Food Res Int ; 191: 114692, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059950

RESUMEN

Bacillus cereus and Bacillus thuringiensis, which belong to the B. cereus group, are widely distributed in nature and can cause food poisoning symptoms. In this study, we collected 131 isolates belonging to the B. cereus group, comprising 124B. cereus and seven B. thuringiensis isolates, from fresh-cut lettuce production chain and investigated their potential risk by analyzing genotypic (enterotoxin and emetic toxin gene profiles) and phenotypic (antibiotic susceptibility, sporulation, and biofilm formation) characteristics. Enterotoxin genes were present only in B. cereus, whereas the emetic toxin gene was not detected in any of the B. cereus isolates. All isolates were susceptible to vancomycin, which is a last resort for treating B. cereus group infection symptoms, but generally resistant to ß-lactam antimicrobials, and had the ability to form spores (at an average sporulation rate of 24.6 %) and biofilms at 30 °C. Isolates that formed strong biofilms at 30 °C had a superior possibility of forming a dense biofilm by proliferating at 10 °C compared to other isolates. Additionally, confocal laser scanning microscopy (CLSM) images revealed a notable presence of spores within the submerged biofilm formed at 10 °C, and the strengthened attachment of biofilm inner cells to the substrate was further revealed through biofilm structure parameters analysis. Collectively, our study revealed the prevalence and contamination levels of B. cereus and B. thuringiensis at fresh-cut lettuce production chain and investigated their genotypic and phenotypic characteristics, aiming to provide valuable insights for the development of potential risk management strategies to ensure food safety, especially along the cold chain.


Asunto(s)
Bacillus cereus , Biopelículas , Enterotoxinas , Microbiología de Alimentos , Lactuca , Lactuca/microbiología , Biopelículas/crecimiento & desarrollo , Bacillus cereus/genética , Bacillus cereus/metabolismo , Bacillus cereus/aislamiento & purificación , Bacillus cereus/fisiología , Enterotoxinas/genética , Enterotoxinas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/fisiología , Esporas Bacterianas/genética , Antibacterianos/farmacología , Contaminación de Alimentos/análisis , Pruebas de Sensibilidad Microbiana , Enfermedades Transmitidas por los Alimentos/microbiología , Genotipo
19.
Front Cell Infect Microbiol ; 14: 1374817, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779563

RESUMEN

Introduction: Periodontal diseases are known to be associated with polymicrobial biofilms and inflammasome activation. A deeper understanding of the subgingival cytological (micro) landscape, the role of extracellular DNA (eDNA) during periodontitis, and contribution of the host immune eDNA to inflammasome persistence, may improve our understanding of the mechanisms underlaying severe forms of periodontitis. Methods: In this work, subgingival biolfilms developing on biologically neutral polyethylene terephthalate films placed in gingival cavities of patients with chronic periodontitis were investigated by confocal laser scanning microscopy (CLSM). This allowed examination of realistic cytological landscapes and visualization of extracellular polymeric substances (EPS) including amyloids, total proteins, carbohydrates and eDNA, as well as comparison with several single-strain in vitro model biofilms produced by oral pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus gordonii, S. sanguinis and S. mitis. Fluorescence in situ hybridization (FISH) analysis was also used to identify eDNA derived from eubacteria, streptococci and members of the Bacteroides-Porphyromonas-Prevotella (BPP) group associated with periodontitis. Results: Analysis of subgingival biofilm EPS revealed low levels of amyloids and high levels of eDNA which appears to be the main matrix component. However, bacterial eDNA contributed less than a third of the total eDNA observed, suggesting that host-derived eDNA released in neutrophil extracellular traps may be of more importance in the development of biofilms causing periodontitis. Discussion: eDNA derived from host immunocompetent cells activated at the onset of periodontitis may therefore be a major driver of bacterial persistence and pathogenesis.


Asunto(s)
Biopelículas , Periodontitis , Biopelículas/crecimiento & desarrollo , Humanos , Periodontitis/microbiología , Microscopía Confocal , ADN , Hibridación Fluorescente in Situ , Bacterias/genética , ADN Bacteriano/genética , Inflamasomas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Encía/microbiología , Periodontitis Crónica/microbiología , Periodontitis Crónica/inmunología
20.
Sci Rep ; 14(1): 16781, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039267

RESUMEN

Biofilms are known to be critical for Legionella settlement in engineered water systems and are often associated with Legionnaire's Disease events. One of the key features of biofilms is their heterogeneous three-dimensional structure which supports the establishment of microbial interactions and confers protection to microorganisms. This work addresses the impact of Legionella pneumophila colonization of a Pseudomonas fluorescens biofilm, as information about the interactions between Legionella and biofilm structures is scarce. It combines a set of meso- and microscale biofilm analyses (Optical Coherence Tomography, Episcopic Differential Interference Contrast coupled with Epifluorescence Microscopy and Confocal Laser Scanning Microscopy) with PNA-FISH labelled L. pneumophila to tackle the following questions: (a) does the biofilm structure change upon L. pneumophila biofilm colonization?; (b) what happens to L. pneumophila within the biofilm over time and (c) where is L. pneumophila preferentially located within the biofilm? Results showed that P. fluorescens structure did not significantly change upon L. pneumophila colonization, indicating the competitive advantage of the first colonizer. Imaging of PNA-labelled L. pneumophila showed that compared to standard culture recovery it colonized to a greater extent the 3-day-old P. fluorescens biofilms, presumably entering in VBNC state by the end of the experiment. L. pneumophila was mostly located in the bottom regions of the biofilm, which is consistent with the physiological requirements of both bacteria and confers enhanced Legionella protection against external aggressions. The present study provides an expedited methodological approach to address specific systematic laboratory studies concerning the interactions between L. pneumophila and biofilm structure that can provide, in the future, insights for public health Legionella management of water systems.


Asunto(s)
Biopelículas , Legionella pneumophila , Pseudomonas fluorescens , Biopelículas/crecimiento & desarrollo , Legionella pneumophila/fisiología , Pseudomonas fluorescens/fisiología , Legionella/fisiología , Microscopía Confocal , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA