Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chemistry ; 30(40): e202400797, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38751354

RESUMEN

Tunable photoluminescence (PL) is one of the hot topics in current materials science, and research performed on the molecular phases is at the forefront of this field. We present the new (Et4N)2[PtII(bph)(CN)2]⋅rez3⋅1/3H2O (Pt2rez3) (bph=biphenyl-2,2'-diyl; rez3=3,3",5,5"-tetrahydroxy-1,1':4',1"-terphenyl, phenylene-1,4-diresorcinol coformer, a linear quaternary hydrogen bond donor) co-crystal salt based on the recently appointed promising [PtII(bph)(CN)2]2- luminophore. Within the extended hydrogen-bonded subnetwork [PtII(bph)(CN)2]2- complexes and rez3 coformer molecules form two types of contacts: the rez3O-H⋅⋅⋅Ncomplex ones in the equatorial plane of the complex and non-typical rez3O-H⋅⋅⋅Pt ones along its axial direction. The combined structural, PL, and DFT approach identified the rez3O-H⋅⋅⋅Pt synthons to be crucial in promoting the noticeable uniform redshift of bph ligand centered (LC) emission compared to the LC emission of the (Et4N)2[PtII(bph)(CN)2]⋅H2O (Pt2) precursor, owing to the direct interference of the phenol group with the PtII-bph orbital system via altering the CT processes within. The high-resolution emission spectra for Pt2 and Pt2rez3 were successfully reproduced at 77 K by using the Franck-Cordon expressions. The possibility to tune PL properties along the plausible continuum of rez3O-H⋅⋅⋅Pt synthons is indicated, considering various scenarios of molecular occupation of the space above and below the complex plane.

2.
Chemistry ; 30(35): e202400911, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38651349

RESUMEN

In this work, we developed two kinds of co-crystal assemblies systems, consisting of discrete mononuclear Yb3+ and Er3+ and mononuclear Yb3+ and Pr3+, which can achieve Er3+ and Pr3+ upconversion luminescence, respectively, by Yb3+ sensitization under 980 nm excitation. The structure and composition of two co-crystal assemblies were determined by single crystal X-ray diffraction. By investigation of the series of two assemblies, respectively, it is found that the strongest upconversion luminescence is both obtained when the molar ratio of Yb3+ and Ln3+ (Ln=Er or Pr) is 1 : 1. The energy transfer mechanism of Er3+ assemblies is determined as energy transfer upconversion, while that of Pr3+ assemblies is determined as energy transfer upconversion and cooperative sensitization upconversion. This is the first example of Pr3+ upconversion luminescence at the molecular dimension at room temperature, which enriches the research in the field of upconversion luminescence with lanthanide complexes.

3.
Mol Pharm ; 21(1): 358-369, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38099729

RESUMEN

Quabodepistat (code name OPC-167832) is a novel antituberculosis drug candidate. This study aimed to discover cocrystals that improve oral bioavailability and to elucidate the mechanistic differences underlying the bioavailability of different cocrystals. Screening yielded two cocrystals containing 2,5-dihydroxybenzoic acid (2,5DHBA) or 2-hydroxybenzoic acid (2HBA). In bioavailability studies in beagle dogs, both cocrystals exhibited better bioavailability than the free form; however, the extent of bioavailability of cocrystals with 2HBA (quabodepistat-2HBA) was 1.4-fold greater than that of cocrystals with 2,5DHBA (quabodepistat-2,5DHBA). Dissolution studies at pH 1.2 yielded similar profiles for both cocrystals, although the percent dissolution differed: quabodepistat-2HBA dissolved more slowly than quabodepistat-2,5DHBA. The poor solubility of quabodepistat-2HBA is likely the primary factor limiting dissolution at pH 1.2. To identify a dissolution method that maintains the bioavailability in beagle dogs, we performed pH-shift dissolution studies that mimic the dynamic pH change from the stomach to the small intestine. Quabodepistat-2HBA demonstrated supersaturation after the pH was increased to 6.8, while quabodepistat-2,5DHBA did not demonstrate supersaturation. This result was consistent with the results of bioavailability studies in beagle dogs. We conclude that a larger quantity of orally administered quabodepistat-2HBA remained in its cocrystal form while being transferred to the small intestine compared with quabodepistat-2,5DHBA.


Asunto(s)
Antituberculosos , Animales , Perros , Disponibilidad Biológica , Difracción de Rayos X , Cristalización/métodos , Solubilidad
4.
Mol Pharm ; 21(7): 3661-3673, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38858241

RESUMEN

Dacarbazine (DTIC) is a widely prescribed oncolytic agent to treat advanced malignant melanomas. Nevertheless, the drug is known for exhibiting low and pH-dependent solubility, in addition to being photosensitive. These features imply the formation of the inactive photodegradation product 2-azahypoxanthine (2-AZA) during pharmaceutical manufacturing and even drug administration. We have focused on developing novel DTIC salt/cocrystal forms with enhanced solubility and dissolution behaviors to overcome or minimize this undesirable biopharmaceutical profile. By cocrystallization techniques, two salts, two cocrystals, and one salt-cocrystal have been successfully prepared through reactions with aliphatic carboxylic acids. A detailed structural study of these new multicomponent crystals was conducted using X-ray diffraction (SCXRD, PXRD), spectroscopic (FT-IR and 1H NMR), and thermal (TG and DSC) analyses. Most DTIC crystal forms reported display substantial enhancements in solubility (up to 19-fold), with faster intrinsic dissolution rates (from 1.3 to 22-fold), contributing positively to reducing the photodegradation of DTIC in solution. These findings reinforce the potential of these new solid forms to enhance the limited DTIC biopharmaceutical profile.


Asunto(s)
Cristalización , Dacarbazina , Fotólisis , Solubilidad , Difracción de Rayos X , Dacarbazina/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectroscopía de Resonancia Magnética , Rastreo Diferencial de Calorimetría
5.
Mol Pharm ; 21(7): 3591-3602, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38818946

RESUMEN

Coamorphous and cocrystal drug delivery systems provide attractive crystal engineering strategies for improving the solubilities, dissolution rates, and oral bioavailabilities of poorly water-soluble drugs. Polymeric additives have often been used to inhibit the unwanted crystallization of amorphous drugs. However, the transformation of a coamorphous phase to a cocrystal phase in the presence of polymers has not been fully elucidated. Herein, we investigated the effects of low concentrations of the polymeric excipients poly(ethylene oxide) (PEO) and poly(vinylpyrrolidone) (PVP) on the growth of carbamazepine-celecoxib (CBZ-CEL) cocrystals from the corresponding coamorphous phase. PEO accelerated the growth rate of the cocrystals by increasing the molecular mobility of the coamorphous system, while PVP had the opposite effect. The coamorphous CBZ-CEL system exhibited two anomalously fast crystal growth modes: glass-to-crystal (GC) growth in the bulk and accelerated crystal growth at the free surface. These two fast growth modes both disappeared after doping with PEO (1-3% w/w) but were retained in the presence of PVP, indicating a potential correlation between the two fast crystal growth modes. We propose that the different effects of PEO and PVP on the crystal growth modes arose from weaker effects of the polymers on cocrystallization at the surface than in the bulk. This work provides a deep understanding of the mechanisms by which polymers influence the cocrystallization kinetics of a multicomponent amorphous phase and highlights the importance of polymer selection in stabilizing coamorphous systems or preparing cocrystals via solid-based methods.


Asunto(s)
Carbamazepina , Cristalización , Polietilenglicoles , Polímeros , Povidona , Solubilidad , Polímeros/química , Polietilenglicoles/química , Carbamazepina/química , Povidona/química , Excipientes/química , Vidrio/química
6.
Mol Pharm ; 21(6): 2894-2907, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38688017

RESUMEN

The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydrate─the salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of "new conformational isomers" for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.


Asunto(s)
Clorpropamida , Cristalización , Enlace de Hidrógeno , Sales (Química) , Solubilidad , Cristalización/métodos , Sales (Química)/química , Clorpropamida/química , Química Farmacéutica/métodos , Excipientes/química , Composición de Medicamentos/métodos , Animales , Ratas , Disponibilidad Biológica
7.
Mol Pharm ; 21(3): 1479-1489, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38373877

RESUMEN

In a competitive coformer exchange reaction, a recent topic of interest in pharmaceutical research, the coformer in a pharmaceutical cocrystal is exchanged with another coformer that is expected to form a cocrystal that is more stable. There will be a competition between coformers to form the most stable product through the formation of hydrogen bonds. This will cause destabilization of the pharmaceutical products during processing or storage. Therefore, it is important to develop a mechanistic understanding of this transformation by monitoring each and every step of the reaction, employing a technique such as 1H nuclear magnetic resonance (NMR). In this study, an in situ monitoring of a coformer exchange reaction is carried out by 1H magic angle spinning (MAS) solid-state NMR (SSNMR) at a spinning frequency of 60 kHz. The changes in caffeine maleic acid cocrystals on addition of glutaric acid and caffeine glutaric cocrystals on addition of maleic acid were monitored. In all of the reactions, it has been observed that caffeine glutaric acid Form I is formed. When glutaric acid was added to 2:1 caffeine maleic acid, the formation of metastable 1:1 caffeine glutaric acid Form I was observed at the start of the experiment, indicating that the centrifugal pressure is enough for the formation. The difference in the end product of the reactions with a similar reaction pathway of 1:1 and 2:1 reactant stoichiometry indicates that a complete replacement of maleic acid has occurred only in the 1:1 stoichiometry of the reactants. The polymorphic transition of caffeine glutaric acid Form II to Form I at higher temperatures was a crucial reason that triggered the exchange of glutaric acid with maleic acid in the reaction of caffeine glutaric acid and maleic acid. Our results are novel since the new reaction pathways in competitive coformer exchange reactions enabled understanding the remarkable role of stoichiometry, polymorphism, temperature, and centrifugal pressure.


Asunto(s)
Cafeína , Glutaratos , Maleatos , Cafeína/química , Espectroscopía de Resonancia Magnética
8.
Mol Pharm ; 21(7): 3233-3239, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38804156

RESUMEN

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic imaging is a powerful tool to visualize the distribution of components, and it has been used to analyze drug release from tablets. In this work, ATR-FTIR spectroscopic imaging was applied for observing the dissolution of molecular crystals from tablet compacts. The IR spectra provided chemically specific information about the transformation of crystal structures during the dissolution experiments. Theophylline (TPL) anhydrate and its cocrystals were used as model systems of molecular crystals. The IR spectra during the dissolution of TPL revealed information about the crystal structure of TPL, which transformed from anhydrate to monohydrate in water. During a dissolution test of a model cocrystal system, it was suggested that an active pharmaceutical ingredient (API) and a coformer were dissolved in water simultaneously. The IR spectra that were acquired during the dissolution of a cocrystal tablet showed new spectral bands attributed to the API after 5 min. This suggested that the precipitation of API was observed during the dissolution experiment. Measurements from ATR-FTIR spectroscopic imaging can visualize the drug release from the tablet and determine the transformation of molecular crystals during their dissolution. These results will have an impact on clarifying the dissolution mechanism of molecular crystals.


Asunto(s)
Cristalización , Solubilidad , Comprimidos , Teofilina , Teofilina/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Comprimidos/química , Cristalización/métodos , Liberación de Fármacos , Química Farmacéutica/métodos
9.
Pharm Res ; 41(3): 577-593, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291166

RESUMEN

PURPOSE: Tegafur (TF) is one of the most important clinical antitumor drugs with poor water solubility, severely reducing its bioavailability. This work develops new cocrystals to improve the solubility of TF and systematically investigates the intermolecular interactions to provide new insights into the formation of cocrystal and changes in physicochemical properties. METHOD: In this paper, two new 1:1 cocrystals of TF with 2,4 dihydroxybenzoic acid (2,4HBA) and p-nitrophenol (PNP) were synthesized. The cocrystal products were identified and characterized by various solid state analysis techniques. And the high performance liquid chromatography (HPLC) was conducted to determine the solubility and dissolution rate of TF and cocrystals. Moreover, the quantum chemistry calculations of crystal structure provided theoretical support for the results. RESULT: Compared with pure TF, the solubility and dissolution rate of TF-2,4HBA is significantly increased in a pH 6.8 buffer at 37°C. Under accelerated storage conditions (40°C, 75% RH), all cocrystal exhibits excellent stability over 8 weeks. Hirshfeld surface (HS) analysis, atoms in molecules (AIM) analysis, interaction region indicator (IRI) analysis, molecular electrostatic potential surface (MEPS) analysis and frontier molecular orbital (HOMO-LUMO) analysis were integrated to understand the hydrogen bonding interaction more comprehensively. The simulation results are in good agreement with the experimental data. The results show that the analysis of physical and chemical properties of TF-PNP cocrystal and TF crystal by quantum chemistry method is reliable at molecular level. CONCLUSION: These results are helpful to provide guiding methods in the cocrystal development and theoretical study of tegafur.


Asunto(s)
Modelos Teóricos , Tegafur , Cristalización , Solubilidad , Preparaciones Farmacéuticas
10.
Pharm Res ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112777

RESUMEN

OBJECTIVE: Resveratrol-piperazine cocrystals have been obtained by ultrasound (US) and microwave-assisted (MW) techniques, using the solution and slurry-based methods, to study the influence of the synthesis method on the resulting cocrystal properties, and scalability of the processes. The potential of these cocrystals is represented by the unique properties of their components, resveratrol, and piperazine, which could be also used in veterinary practice. Resveratrol has antimicrobial, antiviral and anticarcinogenic properties, while piperazine can be used in the treatment of parasitic infections. METHODS: The influence of ultrasound and microwave-assisted treatment was studied by varying synthesis parameters such as reaction time, temperature, and US or MW power. The main advantage of using these methods is represented by shorter synthesis time compared to conventional methods, resulting in the direct formation of the cocrystals. RESULTS: All samples were obtained in high purity, above 97%. Cocrystal yield correlated positively with ultrasound reaction time, while temperature was not found to influence the microwave synthesis yield up to 50°C, in the case of solution-based methods. MW and US-assisted solution-based methods lead to yields between 52.9 and 68.1%. In the case of the slurry-based method, a minimum reaction time of 5 min leads to the formation of cocrystals with high purity. The resveratrol-piperazine cocrystal's solubility and in vitro antibacterial activity were also evaluated, showing promising results. CONCLUSIONS: Ultrasound and microwave-assisted techniques offer a viable alternative for synthesizing resveratrol-piperazine cocrystals with short reaction times, high yield, and purity, suitable for scalable resveratrol-piperazine cocrystals.

11.
Bioorg Med Chem ; 101: 117638, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38394996

RESUMEN

As a result of our continued efforts to pursue Gal-3 inhibitors that could be used to fully evaluate the potential of Gal-3 as a therapeutic target, two novel series of benzothiazole derived monosaccharides as potent (against both human and mouse Gal-3) and orally bioavailable Gal-3 inhibitors, represented by 4 and 5, respectively, were identified. These discoveries were made based on proposals that the benzothiazole sulfur atom could interact with the carbonyl oxygen of G182/G196 in h/mGal-3, and that the anomeric triazole moiety could be modified into an N-methyl carboxamide functionality. The interaction between the benzothiazole sulfur and the carbonyl oxygen of G196 in mGal-3 was confirmed by an X-ray co-crystal structure of early lead 9, providing a rare example of using a S···O binding interaction for drug design. It was found that for both the series, methylation of 3-OH in the monosaccharides caused no loss in h & mGal-3 potencies but significantly improved permeability of the molecules.


Asunto(s)
Galectina 3 , Monosacáridos , Animales , Humanos , Ratones , Benzotiazoles/química , Benzotiazoles/farmacología , Diseño de Fármacos , Galectina 3/antagonistas & inhibidores , Galectinas/antagonistas & inhibidores , Monosacáridos/química , Monosacáridos/farmacología , Oxígeno , Azufre
12.
Bioorg Chem ; 151: 107672, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39068718

RESUMEN

Bilastine (BIL) is a novel 2nd generation antihistamine medication is used to treat symptoms of chronic urticaria and allergic rhinitis. However, its poor solubility limits its therapeutic efficacy. In order to enhance the physicochemical characteristics of BIL, various molecular adducts of BIL (Salt, hydrate and co-crystal) were discovered in this study using two distinct salt-formers: Terephthalic acid (TA), 2,4-Dihydroxybenzoic acid (2,4-DHBA), and three nutraceuticals (Vanillic Acid (VA), Hydroquinone (HQN) and Hippuric acid (HA)). Various analytical methods were used to examine the synthesised adducts, including Powder X-Ray Diffraction (PXRD), Single Crystal X-ray Diffraction (SCXRD), and thermal analysis (Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC)). Single-crystal X-ray diffraction (SCXRD) studies avowed that the architectures of the molecular adducts are maintained in the solid state by an array of strong (N+H⋯O-, NH⋯O, OH⋯O) and weak (CH⋯O) hydrogen bonds. Additionally, a solubility test was performed to establish the in vitro release characteristics of newly synthesised BIL adducts and it observed that most of the molecular adducts exhibit higher rates of dissolution in comparison to pure BIL; in particular, BIL.TA.HYD showed the highest solubility and the fastest rate of dissolution. Moreover, experiments on flux permeability and diffusion demonstrated that the BIL.TA.HYD and BIL.VA salts had strong permeability and a high diffusion rate. In addition, the synthesized adduct's stability was assessed at 25 °C and 90 % ± 5 % relative humidity, and it was found that all the molecular salts were stable and did not undergo any phase changes or dissociation. The foregoing result leads us to believe that the newly synthesized molecular adducts' increased permeability and solubility will be advantageous for the creation of novel BIL formulations.

13.
Mol Divers ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652366

RESUMEN

Plinabulin, a 2, 5-diketopiperazine-type tubulin inhibitor derived from marine natural products, is currently undergoing Phase III clinical trials for the treatment of non-small cell lung cancer (NSCLC) and chemotherapy-induced neutropenia (CIN). To obtain novel 2, 5-diketopiperazine derivatives with higher biological activity, we designed and synthesized two series of 37 plinabulin derivatives at the C-ring, based on the co-crystal structure of compound 1 and tubulin. Their structures were characterized using NMR and HRMS. All compounds were screened in vitro using the lung cancer cell line NCI-H460 using the MTT method, and the compounds with better activity were further screened in BxPC-3 and HT-29 cells. The compounds 16c (IC50 = 2.0, NCI-H460; IC50 = 1.2 nM, BxPC-3; IC50 = 1.97 nM, HT-29) and 26r (IC50 = 0.96, NCI-H460; IC50 = 0.66 nM, BxPC-3; IC50 = 0.61 nM, HT-29) had the best activity. The cytotoxic activity of compound 26r against various tumor cell lines occurred at less than 1 nM.

14.
Chirality ; 36(3): e23653, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38403899

RESUMEN

Ferrocene derivatives show a wide range of pharmacological activities in the medical field, especially in the anti-tumor field, and can be used as candidate drugs or lead compounds for the treatment of tumors and other diseases. And α-phenethylamine is an important intermediate for the preparation of fine chemical products. (R)-(+)-1-Phenethylamine ferrocenecarboxylic acid/(S)-(-)-1-phenethylamine ferrocenecarboxylic acid were prepared, named compounds 1 and 2, respectively. Single crystal X-ray diffraction showed that compounds 1 and 2 crystallized in the orthorhombic system space group P21 21 21 , and the crystal structures of compounds 1 and 2 exhibited mirror symmetry. The inhibitory effect of two compounds on SW480, MDA-MB-231, and H1299 cells was tested by MTT colorimetry. The IC50 values of the compounds against cancer cells were also calculated. The anti-cancer effect was more pronounced for compounds in the S-configuration. Compound 2 made the wild-type cancer cells undergo apoptosis, thus preventing cancer; it also had the function of helping the cell gene repair defects.


Asunto(s)
Antineoplásicos , Compuestos Ferrosos , Fenetilaminas , Metalocenos/farmacología , Metalocenos/química , Línea Celular Tumoral , Estereoisomerismo , Antineoplásicos/farmacología , Antineoplásicos/química
15.
J Nanobiotechnology ; 22(1): 119, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494523

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a fatal respiratory disease caused by overreactive immune reactions (e.g., SARS-CoV-2 infection), with a high mortality rate. Its treatment is often compromised by inefficient drug delivery barriers and insufficient potency of the currently used drugs. Therefore, developing a highly effective lung-targeted drug delivery strategy is a pressing clinical need. RESULTS: In this study, the micro-sized inclusion cocrystal of asiatic acid/γ-cyclodextrin (AA/γCD, with a stoichiometry molar ratio of 2:3 and a mean size of 1.8 µm) was prepared for ALI treatment. The dissolution behavior of the AA/γCD inclusion cocrystals followed a "spring-and-hover" model, which meaned that AA/γCD could dissolve from the cocrystal in an inclusion complex form, thereby promoting a significantly improved water solubility (nine times higher than free AA). This made the cyclodextrin-based inclusion cocrystals an effective solid form for enhanced drug absorption and delivery efficiency. The biodistribution experiments demonstrated AA/γCD accumulated predominantly in the lung (Cmax = 50 µg/g) after systemic administration due to the micron size-mediated passive targeting effect. The AA/γCD group showed an enhanced anti-inflammatory therapeutic effect, as evidenced by reduced levels of pro-inflammatory cytokines in the lung and bronchoalveolar lavage fluids (BALF). Histological examination confirmed that AA/γCD effectively inhibited inflammation reactions. CONCLUSION: The micro-sized inclusion cocrystals AA/γCD were successfully delivered into the lungs by pulmonary administration and had a significant therapeutic effect on ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ciclodextrinas , Triterpenos Pentacíclicos , Humanos , Ciclodextrinas/química , Distribución Tisular , Sistemas de Liberación de Medicamentos , Lesión Pulmonar Aguda/tratamiento farmacológico , Solubilidad
16.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792070

RESUMEN

Ligustrazine (TMP) is the main active ingredient extracted from Rhizoma Chuanxiong, which is used in the treatment of cardiovascular and cerebrovascular diseases, with the drawback of being unstable and readily sublimated. Cocrystal technology is an effective method to improve the stability of TMP. Three benzoic acid compounds including P-aminobenzoic acid (PABA), 3-Aminobenzoic acid (MABA), and 3,5-Dinitrobenzoic acid (DNBA) were chosen for co-crystallization with TMP. Three novel cocrystals were obtained, including TMP-PABA (1:2), TMP-MABA (1.5:1), and TMP-DNBA (0.5:1). Hygroscopicity was characterized by the dynamic vapor sorption (DVS) method. Three cocrystals significantly improved the hygroscopicity stability, and the mass change in TMP decreased from 25% to 1.64% (TMP-PABA), 0.12% (TMP-MABA), and 0.03% (TMP-DNBA) at 90% relative humidity. The melting points of the three cocrystals were all higher than TMP, among which the TMP-DNBA cocrystal had the highest melting point and showed the best stability in reducing hygroscopicity. Crystal structure analysis shows that the mesh-like structure formed by the O-H⋯N hydrogen bond in the TMP-DNBA cocrystal was the reason for improving the stability of TMP.


Asunto(s)
Cristalización , Pirazinas , Humectabilidad , Pirazinas/química , Estabilidad de Medicamentos , Enlace de Hidrógeno , Cristalografía por Rayos X , Estructura Molecular , Difracción de Rayos X
17.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675529

RESUMEN

It is well known that daidzein has various significant medicinal values and health benefits, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, cholesterol lowering, neuroprotective, cardioprotective and so on. To our disappointment, poor solubility, low permeability and inferior bioavailability seriously limit its clinical application and market development. To optimize the solubility, permeability and bioavailability of daidzein, the cocrystal of daidzein and piperazine was prepared through a scientific and reasonable design, which was thoroughly characterized by single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Combining single-crystal X-ray diffraction analysis with theoretical calculation, detailed structural information on the cocrystal was clarified and validated. In addition, a series of evaluations on the pharmacogenetic properties of the cocrystal were investigated. The results indicated that the cocrystal of daidzein and piperazine possessed the favorable stability, increased solubility, improved permeability and optimized bioavailability of daidzein. Compared with the parent drug, the formation of cocrystal, respectively, resulted in 3.9-, 3.1-, 4.9- and 60.8-fold enhancement in the solubility in four different media, 4.8-fold elevation in the permeability and 3.2-fold in the bioavailability of daidzein. Targeting the pharmaceutical defects of daidzein, the surprising elevation in the solubility, permeability and bioavailability of daidzein was realized by a clever cocrystal strategy, which not only devoted assistance to the market development and clinical application of daidzein but also paved a new path to address the drug-forming defects of insoluble drugs.


Asunto(s)
Disponibilidad Biológica , Isoflavonas , Permeabilidad , Piperazina , Solubilidad , Isoflavonas/química , Isoflavonas/farmacocinética , Piperazina/química , Cristalización , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Animales , Cristalografía por Rayos X , Rastreo Diferencial de Calorimetría , Humanos
18.
AAPS PharmSciTech ; 25(4): 84, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605282

RESUMEN

The present work aims to explore the new solid forms of telmisartan (TEL) with alpha-ketoglutaric acid (KGA) and glutamic acid (GA) as potential coformers using mechanochemical approach and their role in augmentation in physicochemical parameters over pure crystalline TEL. Mechanochemical synthesis was performed using 1:1 stoichiometric ratio of TEL and the selected coformers in the presence of catalytic amount of ethanol for 1 h. The ground product was characterized by PXRD, DSC, and FTIR. The new solid forms were evaluated for apparent solubility, intrinsic dissolution, and physical stability. Preliminary characterization revealed the amorphization of the mechanochemical product as an alternate outcome of cocrystallization screening. Mechanistic understanding of the amorphous phase highlights the formation of amorphous-mediated cocrystallization that involves three steps, viz., molecular recognition, intermediate amorphous phase, and product nucleation. The solubility curves of both multicomponent amorphous solid forms (TEL-KGA and TEL-GA) showed the spring-parachute effect and revealed significant augmentation in apparent solubility (8-10-folds), and intrinsic dissolution release (6-9-folds) as compared to the pure drug. Besides, surface anisotropy and differential elemental distributions in intrinsic dissolution compacts of both solid forms were confirmed by FESEM and EDX mapping. Therefore, amorphous phases prepared from mechanochemical synthesis can serve as a potential solid form for the investigation of a cocrystal through amorphous-mediated cocrystallization. This has greater implications in solubility kinetics wherein the rapid precipitation of the amorphous phase can be prevented by the metastable cocrystal phase and contribute to the significant augmentation in the physicochemical parameters.


Asunto(s)
Telmisartán , Cristalización , Solubilidad , Estabilidad de Medicamentos
19.
AAPS PharmSciTech ; 25(5): 133, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862767

RESUMEN

Nifedipine (NIF) is a dihydropyridine calcium channel blocker primarily used to treat conditions such as hypertension and angina. However, its low solubility and low bioavailability limit its effectiveness in clinical practice. Here, we developed a cocrystal prediction model based on Graph Neural Networks (CocrystalGNN) for the screening of cocrystals with NIF. And scoring 50 coformers using CocrystalGNN. To validate the reliability of the model, we used another prediction method, Molecular Electrostatic Potential Surface (MEPS), to verify the prediction results. Subsequently, we performed a second validation using experiments. The results indicate that our model achieved high performance. Ultimately, cocrystals of NIF were successfully obtained and all cocrystals exhibited better solubility and dissolution characteristics compared to the parent drug. This study lays a solid foundation for combining virtual prediction with experimental screening to discover novel water-insoluble drug cocrystals.


Asunto(s)
Bloqueadores de los Canales de Calcio , Cristalización , Redes Neurales de la Computación , Nifedipino , Solubilidad , Electricidad Estática , Nifedipino/química , Cristalización/métodos , Bloqueadores de los Canales de Calcio/química
20.
Pain Pract ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956758

RESUMEN

BACKGROUND: In the randomized, phase 3, SUSA-301 trial, celecoxib-tramadol co-crystal (CTC) provided significantly greater analgesia compared with celecoxib, tramadol, or placebo in adults with acute, moderate-to-severe, postoperative pain. This post hoc, secondary analysis further evaluated the use of rescue medication and the incidence of treatment-emergent adverse events (TEAEs). METHODS: Patients (N = 637) were randomized 2:2:2:1 to receive oral CTC 200 mg twice daily (BID; n = 184), tramadol 50 mg four times daily (QID; n = 183), celecoxib 100 mg BID (n = 181), or placebo QID (n = 89). Post hoc analyses were conducted on the use of rescue medications up to 4 and 48 h post-study drug dose, stratified by baseline pain intensity (moderate/severe), and on the incidence of TEAEs, stratified by rescue medication use. RESULTS: A significantly lower proportion of patients received any rescue medication within 4 h post-study dose with CTC (49.5%) versus tramadol (61.7%, p = 0.0178), celecoxib (65.2%, p = 0.0024), and placebo (75.3%, p = 0.0001); this was also seen for oxycodone use. Fewer patients in the CTC group received ≥3 doses of rescue medication compared with the other groups, irrespective of baseline pain intensity. In patients who did not receive opioid rescue medication, CTC was associated with a lower incidence of nausea and vomiting TEAEs versus tramadol alone. In patients who received rescue oxycodone, the incidence of nausea was similar in the CTC and tramadol groups, and higher versus celecoxib and placebo. CONCLUSION: Celecoxib-tramadol co-crystal was associated with reduced rescue medication use and an acceptable tolerability profile compared with tramadol or celecoxib alone in adults with acute, moderate-to-severe, postoperative pain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA