Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Genet Epidemiol ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644517

RESUMEN

The genome-wide association studies (GWAS) typically use linear or logistic regression models to identify associations between phenotypes (traits) and genotypes (genetic variants) of interest. However, the use of regression with the additive assumption has potential limitations. First, the normality assumption of residuals is the one that is rarely seen in practice, and deviation from normality increases the Type-I error rate. Second, building a model based on such an assumption ignores genetic structures, like, dominant, recessive, and protective-risk cases. Ignoring genetic variants may result in spurious conclusions about the associations between a variant and a trait. We propose an assumption-free model built upon data-consistent inversion (DCI), which is a recently developed measure-theoretic framework utilized for uncertainty quantification. This proposed DCI-derived model builds a nonparametric distribution on model inputs that propagates to the distribution of observed data without the required normality assumption of residuals in the regression model. This characteristic enables the proposed DCI-derived model to cover all genetic variants without emphasizing on additivity of the classic-GWAS model. Simulations and a replication GWAS with data from the COPDGene demonstrate the ability of this model to control the Type-I error rate at least as well as the classic-GWAS (additive linear model) approach while having similar or greater power to discover variants in different genetic modes of transmission.

2.
Proc Natl Acad Sci U S A ; 119(13): e2117203119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35312366

RESUMEN

SignificancePublic databases are an important resource for machine learning research, but their growing availability sometimes leads to "off-label" usage, where data published for one task are used for another. This work reveals that such off-label usage could lead to biased, overly optimistic results of machine-learning algorithms. The underlying cause is that public data are processed with hidden processing pipelines that alter the data features. Here we study three well-known algorithms developed for image reconstruction from magnetic resonance imaging measurements and show they could produce biased results with up to 48% artificial improvement when applied to public databases. We relate to the publication of such results as implicit "data crimes" to raise community awareness of this growing big data problem.


Asunto(s)
Algoritmos , Aprendizaje Automático , Sesgo , Crimen , Procesamiento de Imagen Asistido por Computador
3.
Neuroimage ; 285: 120490, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103624

RESUMEN

Identifying the location, the spatial extent and the electrical activity of distributed brain sources in the context of epilepsy through ElectroEncephaloGraphy (EEG) recordings is a challenging task because of the highly ill-posed nature of the underlying Electrophysiological Source Imaging (ESI) problem. To guarantee a unique solution, most existing ESI methods pay more attention to solve this inverse problem by imposing physiological constraints. This paper proposes an efficient ESI approach based on simulation-driven deep learning. Epileptic High-resolution 256-channels scalp EEG (Hr-EEG) signals are simulated in a realistic manner to train the proposed patient-specific model. More particularly, a computational neural mass model developed in our team is used to generate the temporal dynamics of the activity of each dipole while the forward problem is solved using a patient-specific three-shell realistic head model and the boundary element method. A Temporal Convolutional Network (TCN) is considered in the proposed model to capture local spatial patterns. To enable the model to observe the EEG signals from different scale levels, the multi-scale strategy is leveraged to capture the overall features and fine-grain features by adjusting the convolutional kernel size. Then, the Long Short-Term Memory (LSTM) is used to extract temporal dependencies among the computed spatial features. The performance of the proposed method is evaluated through three different scenarios of realistic synthetic interictal Hr-EEG data as well as on real interictal Hr-EEG data acquired in three patients with drug-resistant partial epilepsy, during their presurgical evaluation. A performance comparison study is also conducted with two other deep learning-based methods and four classical ESI techniques. The proposed model achieved a Dipole Localization Error (DLE) of 1.39 and Normalized Hamming Distance (NHD) of 0.28 in the case of one patch with SNR of 10 dB. In the case of two uncorrelated patches with an SNR of 10 dB, obtained DLE and NHD were respectively 1.50 and 0.28. Even in the more challenging scenario of two correlated patches with an SNR of 10 dB, the proposed approach still achieved a DLE of 3.74 and an NHD of 0.43. The results obtained on simulated data demonstrate that the proposed method outperforms the existing methods for different signal-to-noise and source configurations. The good behavior of the proposed method is also confirmed on real interictal EEG data. The robustness with respect to noise makes it a promising and alternative tool to localize epileptic brain areas and to reconstruct their electrical activities from EEG signals.


Asunto(s)
Aprendizaje Profundo , Epilepsia Refractaria , Epilepsia , Humanos , Encéfalo/diagnóstico por imagen , Epilepsia/diagnóstico por imagen , Electroencefalografía/métodos , Epilepsia Refractaria/diagnóstico por imagen , Mapeo Encefálico/métodos
4.
Brain ; 146(9): 3898-3912, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37018068

RESUMEN

Neurosurgical intervention is the best available treatment for selected patients with drug resistant epilepsy. For these patients, surgical planning requires biomarkers that delineate the epileptogenic zone, the brain area that is indispensable for the generation of seizures. Interictal spikes recorded with electrophysiological techniques are considered key biomarkers of epilepsy. Yet, they lack specificity, mostly because they propagate across brain areas forming networks. Understanding the relationship between interictal spike propagation and functional connections among the involved brain areas may help develop novel biomarkers that can delineate the epileptogenic zone with high precision. Here, we reveal the relationship between spike propagation and effective connectivity among onset and areas of spread and assess the prognostic value of resecting these areas. We analysed intracranial EEG data from 43 children with drug resistant epilepsy who underwent invasive monitoring for neurosurgical planning. Using electric source imaging, we mapped spike propagation in the source domain and identified three zones: onset, early-spread and late-spread. For each zone, we calculated the overlap and distance from surgical resection. We then estimated a virtual sensor for each zone and the direction of information flow among them via Granger causality. Finally, we compared the prognostic value of resecting these zones, the clinically-defined seizure onset zone and the spike onset on intracranial EEG channels by estimating their overlap with resection. We observed a spike propagation in source space for 37 patients with a median duration of 95 ms (interquartile range: 34-206), a spatial displacement of 14 cm (7.5-22 cm) and a velocity of 0.5 m/s (0.3-0.8 m/s). In patients with good surgical outcome (25 patients, Engel I), the onset had higher overlap with resection [96% (40-100%)] than early-spread [86% (34-100%), P = 0.01] and late-spread [59% (12-100%), P = 0.002], and it was also closer to resection than late-spread [5 mm versus 9 mm, P = 0.007]. We found an information flow from onset to early-spread in 66% of patients with good outcomes, and from early-spread to onset in 50% of patients with poor outcome. Finally, resection of spike onset, but not area of spike spread or the seizure onset zone, predicted outcome with positive predictive value of 79% and negative predictive value of 56% (P = 0.04). Spatiotemporal mapping of spike propagation reveals information flow from onset to areas of spread in epilepsy brain. Surgical resection of the spike onset disrupts the epileptogenic network and may render patients with drug resistant epilepsy seizure-free without having to wait for a seizure to occur during intracranial monitoring.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Niño , Humanos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electroencefalografía/métodos , Epilepsia/cirugía , Convulsiones , Resultado del Tratamiento
5.
Philos Trans A Math Phys Eng Sci ; 382(2277): 20230295, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39005012

RESUMEN

This study examines a class of time-dependent constitutive equations used to describe viscoelastic materials under creep in solid mechanics. In nonlinear elasticity, the strain response to the applied stress is expressed via an implicit graph allowing multi-valued functions. For coercive and maximal monotone graphs, the existence of a solution to the quasi-static viscoelastic problem is proven by applying the Browder-Minty fixed point theorem. Moreover, for quasi-linear viscoelastic problems, the solution is constructed as a semi-analytic formula. The inverse viscoelastic problem is represented by identification of a design variable from non-smooth measurements. A non-empty set of optimal variables is obtained based on the compactness argument by applying Tikhonov regularization in the space of bounded measures and deformations. Furthermore, an illustrative example is given for the inverse problem of isotropic kernel identification. This article is part of the theme issue 'Non-smooth variational problems with applications in mechanics'.

6.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33837150

RESUMEN

Parameter estimation for nonlinear dynamic system models, represented by ordinary differential equations (ODEs), using noisy and sparse data, is a vital task in many fields. We propose a fast and accurate method, manifold-constrained Gaussian process inference (MAGI), for this task. MAGI uses a Gaussian process model over time series data, explicitly conditioned on the manifold constraint that derivatives of the Gaussian process must satisfy the ODE system. By doing so, we completely bypass the need for numerical integration and achieve substantial savings in computational time. MAGI is also suitable for inference with unobserved system components, which often occur in real experiments. MAGI is distinct from existing approaches as we provide a principled statistical construction under a Bayesian framework, which incorporates the ODE system through the manifold constraint. We demonstrate the accuracy and speed of MAGI using realistic examples based on physical experiments.

7.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33402531

RESUMEN

In this paper, we present a refinement method for cryo-electron microscopy (cryo-EM) single-particle reconstruction, termed as OPUS-SSRI (Sparseness and Smoothness Regularized Imaging). In OPUS-SSRI, spatially varying sparseness and smoothness priors are incorporated to improve the regularity of electron density map, and a type of real space penalty function is designed. Moreover, we define the back-projection step as a local kernel regression and propose a first-order method to solve the resulting optimization problem. On the seven cryo-EM datasets that we tested, the average improvement in resolution by OPUS-SSRI over that from RELION 3.0, the commonly used image-processing software for single-particle cryo-EM, was 0.64 Å, with the largest improvement being 1.25 Å. We expect OPUS-SSRI to be an invaluable tool to the broad field of cryo-EM single-particle analysis. The implementation of OPUS-SSRI can be found at https://github.com/alncat/cryoem.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Individual de Molécula/métodos , Algoritmos , Biología Computacional/métodos , Relación Señal-Ruido , Programas Informáticos
8.
Sensors (Basel) ; 24(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065856

RESUMEN

Contactless inductive flow tomography (CIFT) is a flow measurement technique allowing for visualization of the global flow in electrically conducting fluids. The method is based on the principle of induction by motion: very weak induced magnetic fields arise from the fluid motion under the influence of a primary excitation magnetic field and can be measured precisely outside of the fluid volume. The structure of the causative flow field can be reconstructed from the induced magnetic field values by solving the according linear inverse problem using appropriate regularization methods. The concurrent use of more than one excitation magnetic field is necessary to fully reconstruct three-dimensional liquid metal flows. In our laboratory demonstrator experiment, we impose two excitation magnetic fields perpendicular to each other to a mechanically driven flow of the liquid metal alloy GaInSn. In the first approach, the excitation fields are multiplexed. Here, the temporal resolution of the measurement needs to be kept as high as possible. Consecutive application by multiplexing enables determining the flow structure in the liquid with a temporal resolution down to 3 s with the existing equipment. In another approach, we concurrently apply two sinusoidal excitation fields with different frequencies. The signals are disentangled on the basis of the lock-in principle, enabling a successful reconstruction of the liquid metal flow.

9.
Sensors (Basel) ; 24(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38894316

RESUMEN

We present a goniometer designed for capturing spectral and angular-resolved data from scattering and absorbing media. The experimental apparatus is complemented by a comprehensive Monte Carlo simulation, meticulously replicating the radiative transport processes within the instrument's optical components and simulating scattering and absorption across arbitrary volumes. Consequently, we were able to construct a precise digital replica, or "twin", of the experimental setup. This digital counterpart enabled us to tackle the inverse problem of deducing optical parameters such as absorption and scattering coefficients, along with the scattering anisotropy factor from measurements. We achieved this by fitting Monte Carlo simulations to our goniometric measurements using a Levenberg-Marquardt algorithm. Validation of our approach was performed using polystyrene particles, characterized by Mie scattering, supplemented by a theoretical analysis of algorithmic convergence. Ultimately, we demonstrate strong agreement between optical parameters derived using our novel methodology and those obtained via established measurement protocols.

10.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732809

RESUMEN

MIT (magnetic induction tomography) image reconstruction from data acquired with a single, small inductive sensor has unique requirements not found in other imaging modalities. During the course of scanning over a target, measured inductive loss decreases rapidly with distance from the target boundary. Since inductive loss exists even at infinite separation due to losses internal to the sensor, all other measurements made in the vicinity of the target require subtraction of the infinite-separation loss. This is accomplished naturally by treating infinite-separation loss as an unknown. Furthermore, since contributions to inductive loss decline with greater depth into a conductive target, regularization penalties must be decreased with depth. A pair of squared L2 penalty norms are combined to form a 2-term Sobolev norm, including a zero-order penalty that penalizes solution departures from a default solution and a first-order penalty that promotes smoothness. While constraining the solution to be non-negative and bounded from above, the algorithm is used to perform image reconstruction on scan data obtained over a 4.3 cm thick phantom consisting of bone-like features embedded in agarose gel, with the latter having a nominal conductivity of 1.4 S/m.

11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(1): 184-190, 2024 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-38403620

RESUMEN

Cardiac three-dimensional electrophysiological labeling technology is the prerequisite and foundation of atrial fibrillation (AF) ablation surgery, and invasive labeling is the current clinical method, but there are many shortcomings such as large trauma, long procedure duration, and low success rate. In recent years, because of its non-invasive and convenient characteristics, ex vivo labeling has become a new direction for the development of electrophysiological labeling technology. With the rapid development of computer hardware and software as well as the accumulation of clinical database, the application of deep learning technology in electrocardiogram (ECG) data is becoming more extensive and has made great progress, which provides new ideas for the research of ex vivo cardiac mapping and intelligent labeling of AF substrates. This paper reviewed the research progress in the fields of ECG forward problem, ECG inverse problem, and the application of deep learning in AF labeling, discussed the problems of ex vivo intelligent labeling of AF substrates and the possible approaches to solve them, prospected the challenges and future directions for ex vivo cardiac electrophysiology labeling.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Humanos , Fibrilación Atrial/diagnóstico , Ablación por Catéter/métodos , Electrocardiografía/métodos
12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 262-271, 2024 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-38686406

RESUMEN

Accurate reconstruction of tissue elasticity modulus distribution has always been an important challenge in ultrasound elastography. Considering that existing deep learning-based supervised reconstruction methods only use simulated displacement data with random noise in training, which cannot fully provide the complexity and diversity brought by in-vivo ultrasound data, this study introduces the use of displacement data obtained by tracking in-vivo ultrasound radio frequency signals (i.e., real displacement data) during training, employing a semi-supervised approach to enhance the prediction accuracy of the model. Experimental results indicate that in phantom experiments, the semi-supervised model augmented with real displacement data provides more accurate predictions, with mean absolute errors and mean relative errors both around 3%, while the corresponding data for the fully supervised model are around 5%. When processing real displacement data, the area of prediction error of semi-supervised model was less than that of fully supervised model. The findings of this study confirm the effectiveness and practicality of the proposed approach, providing new insights for the application of deep learning methods in the reconstruction of elastic distribution from in-vivo ultrasound data.


Asunto(s)
Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Fantasmas de Imagen , Diagnóstico por Imagen de Elasticidad/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Algoritmos , Aprendizaje Profundo
13.
Neuroimage ; 269: 119905, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36720438

RESUMEN

Stereo-electroencephalography (SEEG) is the surgical implantation of electrodes in the brain to better localize the epileptic network in pharmaco-resistant epileptic patients. This technique has exquisite spatial and temporal resolution. Still, the number and the position of the electrodes in the brain is limited and determined by the semiology and/or preliminary non-invasive examinations, leading to a large number of unexplored brain structures in each patient. Here, we propose a new approach to reconstruct the activity of non-sampled structures in SEEG, based on independent component analysis (ICA) and dipole source localization. We have tested this approach with an auditory stimulation dataset in ten patients. The activity directly recorded from the auditory cortex served as ground truth and was compared to the ICA applied on all non-auditory electrodes. Our results show that the activity from the auditory cortex can be reconstructed at the single trial level from contacts as far as ∼40 mm from the source. Importantly, this reconstructed activity is localized via dipole fitting in the proximity of the original source. In addition, we show that the size of the confidence interval of the dipole fitting is a good indicator of the reliability of the result, which depends on the geometry of the SEEG implantation. Overall, our approach allows reconstructing the activity of structures far from the electrode locations, partially overcoming the spatial sampling limitation of intracerebral recordings.


Asunto(s)
Mapeo Encefálico , Epilepsia , Humanos , Mapeo Encefálico/métodos , Reproducibilidad de los Resultados , Electroencefalografía/métodos , Encéfalo
14.
Magn Reson Med ; 89(4): 1617-1633, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36468624

RESUMEN

PURPOSE: To implement physics-based regularization as a stopping condition in tuning an untrained deep neural network for reconstructing MR images from accelerated data. METHODS: The ConvDecoder (CD) neural network was trained with a physics-based regularization term incorporating the spoiled gradient echo equation that describes variable-flip angle data. Fully-sampled variable-flip angle k-space data were retrospectively accelerated by factors of R = {8, 12, 18, 36} and reconstructed with CD, CD with the proposed regularization (CD + r), locally low-rank (LR) reconstruction, and compressed sensing with L1-wavelet regularization (L1). Final images from CD + r training were evaluated at the "argmin" of the regularization loss; whereas the CD, LR, and L1 reconstructions were chosen optimally based on ground truth data. The performance measures used were the normalized RMS error, the concordance correlation coefficient, and the structural similarity index. RESULTS: The CD + r reconstructions, chosen using the stopping condition, yielded structural similarity indexs that were similar to the CD (p = 0.47) and LR structural similarity indexs (p = 0.95) across R and that were significantly higher than the L1 structural similarity indexs (p = 0.04). The concordance correlation coefficient values for the CD + r T1 maps across all R and subjects were greater than those corresponding to the L1 (p = 0.15) and LR (p = 0.13) T1 maps, respectively. For R ≥ 12 (≤4.2 min scan time), L1 and LR T1 maps exhibit a loss of spatially refined details compared to CD + r. CONCLUSION: The use of an untrained neural network together with a physics-based regularization loss shows promise as a measure for determining the optimal stopping point in training without relying on fully-sampled ground truth data.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación
15.
Magn Reson Med ; 90(1): 353-362, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36999746

RESUMEN

PURPOSE: Estimating magnetic susceptibility using MRI depends on inverting a forward relationship between the susceptibility and measured Larmor frequency. However, an often-overlooked constraint in susceptibility fitting is that the Larmor frequency is only measured inside the sample, and after successful background field removal, susceptibility sources should only reside inside the same sample. Here, we test the impact of accounting for these constraints in susceptibility fitting. THEORY AND METHODS: Two different digital brain phantoms with scalar susceptibility were examined. We used the MEDI phantom, a simple phantom with no background fields, to examine the effect of the imposed constraints for various levels of SNR. Next, we considered the QSM reconstruction challenge 2.0 phantom with and without background fields. We estimated the parameter accuracy of openly-available QSM algorithms by comparing fitting results to the ground truth. Next, we implemented the mentioned constraints and compared to the standard approach. RESULTS: Including the spatial distribution of frequencies and susceptibility sources decreased the RMS-error compared to standard QSM on both brain phantoms when background fields were absent. When background field removal was unsuccessful, as is presumably the case in most in vivo conditions, it is better to allow sources outside the brain. CONCLUSION: Informing QSM algorithms about the location of susceptibility sources and where Larmor frequency was measured improves susceptibility fitting for realistic SNR levels and efficient background field removal. However, the latter remains the bottleneck of the algorithm. Allowing for external sources regularizes unsuccessful background field removal and is currently the best strategy in vivo.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Algoritmos
16.
Magn Reson Med ; 89(1): 454-468, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36093998

RESUMEN

PURPOSE: The purpose is to develop a model-based image-reconstruction method using wavelet sparsity regularization for maintaining restoration of through-plane resolution but with improved retention of SNR versus linear reconstruction using Tikhonov (TK) regularization in high through-plane resolution (1 mm) T2 -weighted spin-echo (T2SE) images of the prostate. METHODS: A wavelet sparsity (WS)-regularized image reconstruction was developed that takes as input a set of ≈80 overlapped 3-mm-thick slices acquired using a T2SE multislice scan and typically 30 coil elements. After testing in contrast and resolution phantoms and calibration in 6 subjects, the WS reconstruction was evaluated in 16 consecutive prostate T2SE MRI exams. Results reconstructed with nominal 1-mm thickness were compared with those from the TK reconstruction with the same raw data. Results were evaluated radiologically. The ratio of magnitude of prostate signal to periprostatic muscle signal was used to assess the presence of noise reduction. Technical performance was also compared with a commercial 3D-T2SE sequence. RESULTS: The new WS reconstruction was assessed as superior statistically to TK for overall SNR, contrast, and multiple evaluation criteria related to sharpness while retaining the high (1 mm) through-plane resolution. Wavelet sparsity tended to provide improved overall diagnostic quality versus TK, but not significantly so. In all 16 studies, the prostate-to-muscle signal ratio increased. CONCLUSIONS: Model-based WS-regularized reconstruction consistently provides improved SNR in high (1 mm) through-plane resolution images of prostate T2SE MRI versus linear reconstruction using TK regularization.


Asunto(s)
Imagen por Resonancia Magnética , Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Pelvis , Procesamiento de Imagen Asistido por Computador/métodos
17.
Cytometry A ; 103(9): 736-743, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37306103

RESUMEN

Ultraviolet lasers are commonly used in flow cytometry to excite fluorochrome molecules with subsequent measurement of the specific fluorescence of individual cells. In this study, the performance of the ultraviolet light scattering (UVLS) in the analysis of individual particles with flow cytometry has been demonstrated for the first time. The main advantage of the UVLS relates to the improvement of the analysis of submicron particles due to the strong dependence of the scattering efficiency on the wavelength of the incident light. In this work, submicron particles were analyzed using a scanning flow cytometer (SFC) that allows measurements of light scattering in an angle-resolved regime. The measured light-scattering profiles of individual particles were utilized in solution of the inverse light-scattering problem to retrieve the particle characteristics using a global optimization. The standard polystyrene microspheres were successfully characterized from the analysis of UVLS which provided the size and refractive index (RI) of individual beads. We believe that the main application of UVLS relates to the analysis of microparticles in a serum, in particular in the analysis of chylomicrons (CMs). We have demonstrated the performance of the UVLS SFC in the analysis of CMs of a donor. The RI versus size scatterplot of CMs was successfully retrieved from the analysis. The current set-up of the SFC has allowed us to characterize individual CMs starting from the size of 160 nm that provides determination of the CM concentration in a serum with flow cytometry. This feature of the UVLS should help with the analysis of lipid metabolism measuring RI and size map evolution after lipase action.


Asunto(s)
Micropartículas Derivadas de Células , Rayos Ultravioleta , Citometría de Flujo , Dispersión de Radiación , Metabolismo de los Lípidos , Tamaño de la Partícula
18.
Cytometry A ; 103(1): 39-53, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35349217

RESUMEN

Molecular/cell level of gas exchange function assumes the accurate measurement of erythrocyte characteristics and rate constants concerning to molecules involved into the CO2 /O2 transport. Unfortunately, common hematology analyzers provide the measurement of eight indices of erythrocytes only and say little about erythrocyte morphology and nothing about rate constants of cellular function. The aim of this study is to demonstrate the ability of the Scanning Flow Cytometer (SFC) in the complete morphological analysis of mature erythrocytes and characterization of erythrocyte function via measurement of lysing kinetics. With this study we are introducing 48 erythrocyte indices. To provide the usability of application of the SFC in clinical diagnosis, we formed four categories of indices which are as follows: content/concentration (9 indices), morphology (26 indices), age (5 indices), and function (8 indices). The erythrocytes of 39 healthy volunteers were analyzed with the SFC to fix the first-ever reference intervals for the new indices introduced. The essential measurable reliability of the presented method is expressed in terms of errors of characteristics of single erythrocytes retrieved from the solution of the inverse light-scattering problem and errors of parameters retrieved from the fitting of the experimental kinetics by molecular-kinetics model of erythrocyte lysis.


Asunto(s)
Índices de Eritrocitos , Eritrocitos , Humanos , Citometría de Flujo/métodos , Reproducibilidad de los Resultados , Muerte Celular
19.
Brain Topogr ; 36(6): 835-853, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37642729

RESUMEN

Stereoelectroencephalography (SEEG) records electrical brain activity with intracerebral electrodes. However, it has an inherently limited spatial coverage. Electrical source imaging (ESI) infers the position of the neural generators from the recorded electric potentials, and thus, could overcome this spatial undersampling problem. Here, we aimed to quantify the accuracy of SEEG ESI under clinical conditions. We measured the somatosensory evoked potential (SEP) in SEEG and in high-density EEG (HD-EEG) in 20 epilepsy surgery patients. To localize the source of the SEP, we employed standardized low resolution brain electromagnetic tomography (sLORETA) and equivalent current dipole (ECD) algorithms. Both sLORETA and ECD converged to similar solutions. Reflecting the large differences in the SEEG implantations, the localization error also varied in a wide range from 0.4 to 10 cm. The SEEG ESI localization error was linearly correlated with the distance from the putative neural source to the most activated contact. We show that it is possible to obtain reliable source reconstructions from SEEG under realistic clinical conditions, provided that the high signal fidelity recording contacts are sufficiently close to the source of the brain activity.


Asunto(s)
Electrocorticografía , Epilepsia , Humanos , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/cirugía , Neuroimagen , Potenciales Evocados Somatosensoriales , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética
20.
Bull Math Biol ; 85(7): 64, 2023 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-37270711

RESUMEN

In this work, we describe mostly analytical work related to a novel approach to parameter identification for a two-variable Lotka-Volterra (LV) system. Specifically, this approach is qualitative, in that we aim not to determine precise values of model parameters but rather to establish relationships among these parameter values and properties of the trajectories that they generate, based on a small number of available data points. In this vein, we prove a variety of results about the existence, uniqueness, and signs of model parameters for which the trajectory of the system passes exactly through a set of three given data points, representing the smallest possible data set needed for identification of model parameter values. We find that in most situations such a data set determines these values uniquely; we also thoroughly investigate the alternative cases, which result in nonuniqueness or even nonexistence of model parameter values that fit the data. In addition to results about identifiability, our analysis provides information about the long-term dynamics of solutions of the LV system directly from the data without the necessity of estimating specific parameter values.


Asunto(s)
Conceptos Matemáticos , Modelos Biológicos , Animales , Dinámica Poblacional , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA