Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(9): 2893-2906, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38822747

RESUMEN

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin (l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin (d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.


Asunto(s)
Aminobutiratos , Caenorhabditis elegans , D-Aminoácido Oxidasa , Escherichia coli , Ingeniería de Proteínas , D-Aminoácido Oxidasa/metabolismo , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Ingeniería de Proteínas/métodos , Animales , Aminobutiratos/metabolismo , Aminobutiratos/química , Desaminación , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química
2.
Biotechnol Bioeng ; 120(12): 3557-3569, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37650151

RESUMEN

D-Amino acid oxidase (DAAO) selectively catalyzes the oxidative deamination of  D-amino acids, making it one of the most promising routes for synthesizing optically pure  L-amino acids, including  L-phosphinothricin ( L-PPT), a chiral herbicide with significant market potential. However, the native DAAOs that have been reported have low activity against unnatural acid substrate  D-PPT. Herein, we designed and screened a DAAO from Rhodotorula taiwanensis (RtwDAAO), and improved its catalytic potential toward  D-PPT through protein engineering. A semirational design approach was employed to create a mutation library based on the tunnel-pocket engineering. After three rounds of iterative saturation mutagenesis, the optimal variant M3rd -SHVG was obtained, exhibiting a >2000-fold increase in relative activity. The kinetic parameters showed that M3rd -SHVG improved the substrate binding affinity and turnover number. This is the optimal parameter reported so far. Further, molecular dynamics simulation revealed that the M3rd -SHVG reshapes the tunnel-pocket and corrects the direction of enzyme-substrate binding, allowing efficiently catalyze unnatural substrates. Our strategy demonstrates that the redesign of tunnel-pockets is effective in improving the activity and kinetic efficiency of DAAO, which provides a valuable reference for enzymatic catalysis. With the M3rd -SHVG as biocatalyst, 500 mM D, L-PPT was completely converted and the yield reached 98%. The results laid the foundation for further industrial production.


Asunto(s)
Aminoácidos , Ingeniería de Proteínas , Especificidad por Sustrato , Aminoácidos/metabolismo , Unión Proteica , Oxidorreductasas/metabolismo , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/metabolismo , Cinética
3.
Cell Mol Life Sci ; 78(7): 3607-3620, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33484270

RESUMEN

The flavoenzyme D-amino acid oxidase (DAAO) is deputed to the degradation of D-enantiomers of amino acids. DAAO plays various relevant physiological roles in different organisms and tissues. Thus, it has been recently suggested that the goblet cells of the mucosal epithelia secrete into the lumen of intestine, a processed and active form of DAAO that uses the intestinal D-amino acids to generate hydrogen peroxide (H2O2), an immune messenger that helps fighting gut pathogens, and by doing so controls the homeostasis of gut microbiota. Here, we show that the DAAO form lacking the 1-16 amino acid residues (the putative secretion signal) is unstable and inactive, and that DAAO is present in the epithelial layer and the mucosa of mouse gut, where it is largely proteolyzed. In silico predicted DAAO-derived antimicrobial peptides show activity against various Gram-positive and Gram-negative bacteria but not on Lactobacilli species, which represent the commensal microbiota. Peptidomic analysis reveals the presence of such peptides in the mucosal fraction. Collectively, we identify a novel mechanism for gut microbiota selection implying DAAO-derived antimicrobial peptides which are generated by intestinal proteases and that are secreted in the gut lumen. In conclusion, we herein report an additional, ancillary role for mammalian DAAO, unrelated to its enzymatic activity.


Asunto(s)
Antibacterianos/farmacología , D-Aminoácido Oxidasa/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Proteínas Citotóxicas Formadoras de Poros/farmacología , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animales , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/genética , Femenino , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Conformación Proteica , Ratas , Ratas Wistar , Homología de Secuencia
4.
Anal Bioanal Chem ; 413(27): 6793-6802, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33791826

RESUMEN

Challenges facing enzyme-based electrochemical sensors include substrate specificity, batch to batch reproducibility, and lack of quantitative metrics related to the effect of enzyme immobilization. We present a quick, simple, and general approach for measuring the effect of immobilization and cross-linking on enzyme activity and substrate specificity. The method can be generalized for electrochemical biosensors using an enzyme that releases hydrogen peroxide during its catalytic cycle. Using as proof of concept RgDAAO-based electrochemical biosensors, we found that the Michaelis-Menten constant (Km) decreases post immobilization, hinting at alterations in the enzyme kinetic properties and thus substrate specificity. We confirm the decrease in Km electrochemically by characterizing the substrate specificity of the immobilized RgDAAO using chronoamperometry. Our results demonstrate that enzyme immobilization affects enzyme substrate specificity and this must be carefully evaluated during biosensor development.


Asunto(s)
D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/metabolismo , Técnicas Electroquímicas/métodos , Alanina/metabolismo , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Catálisis , D-Aminoácido Oxidasa/genética , Técnicas Electroquímicas/instrumentación , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/metabolismo , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Cinética , Microelectrodos , Fenilendiaminas/química , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados , Serina/metabolismo , Especificidad por Sustrato
5.
Nanomedicine ; 36: 102424, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34174417

RESUMEN

In order to generate an antibody directed enzyme prodrug therapy, here we designed a chimeric protein by fusing the F8 antibody that recognizes the EDA of fibronectin (expressed on the tumor neovasculature) and an evolved variant of the ROS-generating enzyme D-amino acid oxidase (DAAO). The F8(scFv)-DAAO-Q144R recombinant protein is expressed by both CHO-S and E. coli cells. The F8(scFv)-DAAO-Q144R from E. coli cells is fully soluble, shows a high specific activity, is more thermostable in blood than the native DAAO, possesses a binding affinity for EDA well suited for efficient tumor accumulation, and localizes in tumor tissues. Notably, the F8(scFv)-DAAO-Q144R conjugate generates a stronger cytotoxicity to tumor cells than the native enzyme, especially when an inhibitor of heme oxygenase-1 (HO-1) is used, making it a promising candidate for a selective antitumor oxidative therapy controlled by the substrate addition, in the so called "activity on demand", thus sparing normal tissue from damage.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antineoplásicos , Citotoxinas , D-Aminoácido Oxidasa , Fibronectinas , Proteínas de Neoplasias , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes de Fusión , Anticuerpos de Cadena Única , Animales , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/genética , Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Citotoxinas/química , Citotoxinas/farmacología , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/farmacología , Fibronectinas/antagonistas & inhibidores , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/farmacología
6.
Nanomedicine ; 24: 102122, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31706037

RESUMEN

The flavoenzyme D-amino acid oxidase (DAAO) represents a potentially good option for cancer enzyme prodrug therapy as it produces H2O2 using D-amino acids as substrates, compounds present at low concentration in vivo and that can be safely administered to regulate H2O2 production. We optimized the cytotoxicity of the treatment by: i) using an efficient enzyme variant active at low O2 and D-alanine concentrations (mDAAO); ii) improving the stability and half-life of mDAAO and the enhanced permeability and retention effect by PEGylation; and iii) inhibiting the antioxidant cellular system by a heme oxygenase-1 inhibitor (ZnPP). A very low amount of PEG-mDAAO (10 mU, 50 ng of enzyme) induces cytotoxicity on various tumor cell lines. Notably, PEG-mDAAO seems well suited for in vivo evaluation as it shows the same cytotoxicity at air saturation (21%) and 2.5% O2, a condition resembling the microenvironment found in the central part of tumors.


Asunto(s)
Basidiomycota/enzimología , D-Aminoácido Oxidasa , Proteínas Fúngicas , Polietilenglicoles , Ingeniería de Proteínas , Animales , Basidiomycota/genética , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacología , Neoplasias/metabolismo , Neoplasias/patología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología
7.
Org Biomol Chem ; 17(34): 7973-7984, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31407761

RESUMEN

d-Amino acid oxidase (DAAO) is a flavoenzyme whose inhibition is expected to have therapeutic potential in schizophrenia. DAAO catalyses hydride transfer from the substrate to the flavin in the reductive half-reaction, and the flavin is reoxidized by O2 in the oxidative half-reaction. Quantum mechanical/molecular mechanical calculations were performed and their results together with available experimental information were used to elucidate the detailed mechanism of the oxidative half-reaction. The reaction starts with a single electron transfer from FAD to O2, followed by triplet-singlet transition. FAD oxidation is completed by a proton coupled electron transfer to the oxygen species and the reaction terminates with H2O2 formation by proton transfer from the oxidized substrate to the oxygen species via a chain of water molecules. The substrate plays a double role by facilitating the first electron transfer and by providing a proton in the last step. The mechanism differs from the oxidative half-reaction of other oxidases.


Asunto(s)
D-Aminoácido Oxidasa/química , Flavina-Adenina Dinucleótido/química , Basidiomycota/enzimología , Teoría Funcional de la Densidad , Humanos , Modelos Químicos , Oxidación-Reducción , Oxígeno/química
8.
Int J Mol Sci ; 20(18)2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31500317

RESUMEN

d-amino acid oxidase (DAAO, EC 1.4.3.3) is used in many biotechnological processes. The main industrial application of DAAO is biocatalytic production of 7-aminocephalosporanic acid from cephalosporin C with a two enzymes system. DAAO from the yeast Trigonopsis variabilis (TvDAAO) shows the best catalytic parameters with cephalosporin C among all known DAAOs. We prepared and characterized multipoint TvDAAO mutants to improve their activity towards cephalosporin C and increase stability. All TvDAAO mutants showed better properties in comparison with the wild-type enzyme. The best mutant was TvDAAO with amino acid changes E32R/F33D/F54S/C108F/M156L/C298N. Compared to wild-type TvDAAO, the mutant enzyme exhibits a 4 times higher catalytic constant for cephalosporin C oxidation and 8- and 20-fold better stability against hydrogen peroxide inactivation and thermal denaturation, respectively. This makes this mutant promising for use in biotechnology. The paper also presents the comparison of TvDAAO catalytic properties with cephalosporin C reported by others.


Asunto(s)
Sustitución de Aminoácidos , Cefalosporinas/metabolismo , D-Aminoácido Oxidasa/genética , Saccharomycetales/enzimología , Biocatálisis , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/metabolismo , Estabilidad de Enzimas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrógeno/farmacología , Mutación Puntual , Saccharomycetales/genética , Termodinámica
9.
Molecules ; 24(2)2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646619

RESUMEN

Most of the known inhibitors of D-amino acid oxidase (DAAO) are small polar molecules recognized by the active site of the enzyme. More recently a new class of DAAO inhibitors has been disclosed that interacts with loop 218-224 at the top of the binding pocket. These compounds have a significantly larger size and more beneficial physicochemical properties than most reported DAAO inhibitors, however, their structure-activity relationship is poorly explored. Here we report the synthesis and evaluation of this type of DAAO inhibitors that open the lid over the active site of DAAO. In order to collect relevant SAR data we varied two distinct parts of the inhibitors. A systematic variation of the pendant aromatic substituents according to the Topliss scheme resulted in DAAO inhibitors with low nanomolar activity. The activity showed low sensitivity to the substituents investigated. The variation of the linker connecting the pendant aromatic moiety and the acidic headgroup revealed that the interactions of the linker with the enzyme were crucial for achieving significant inhibitory activity. Structures and activities were analyzed based on available X-ray structures of the complexes. Our findings might support the design of drug-like DAAO inhibitors with advantageous physicochemical properties and ADME profile.


Asunto(s)
D-Aminoácido Oxidasa/antagonistas & inhibidores , D-Aminoácido Oxidasa/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Dominio Catalítico , Activación Enzimática , Concentración 50 Inhibidora , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Conformación Proteica , Relación Estructura-Actividad
10.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 822-830, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29274788

RESUMEN

In the brain, the enzyme d-amino acid oxidase (DAAO) catalyzes the oxidative deamination of d-serine, a main positive modulator of the N-methyl-d-aspartate subtype of glutamate receptors (NMDAR). Dysregulation in d-serine signaling is implicated in the NMDAR dysfunctions observed in various brain diseases, such as amyotrophic lateral sclerosis, Alzheimer's disease, schizophrenia. A strain of ddY mice lacking DAAO activity due to the G181R substitution (DAAOG181R mice) and exhibiting increased d-serine concentration as compared to wild-type mice shows altered pain response, improved adaptative learning and cognitive functions, and larger hippocampal long-term potentiation. In past years, this mice line has been used to shed light on physiological and pathological brain functions related to NMDAR. Here, we decided to introduce the corresponding substitution in human DAAO (hDAAO). The recombinant G183R hDAAO is produced as an inactive apoprotein: the substitution alters the protein conformation that negatively affects the ability to bind the flavin cofactor in the orientation required for hydride-transfer during catalysis. At the cellular level, the overexpressed G183R hDAAO is not fully targeted to peroxisomes, forms protein aggregates showing a strong colocalization with ubiquitin, and significantly (7-fold) increases both the d-serine cellular concentration and the D/(D+L)-serine ratio. Taken together, our investigation warrants caution in using DAAOG181R mice: the abolition of enzymatic activity is coupled to DAAO aggregation, a central process in different pathological conditions. The effect due to G181R substitution in DAAO could be misleading: the effects due to impairment of d-serine degradation overlap with those related to aggregates accumulation.


Asunto(s)
D-Aminoácido Oxidasa/química , Animales , D-Aminoácido Oxidasa/fisiología , Escherichia coli/genética , Humanos , Ratones , Agregado de Proteínas , Conformación Proteica , Serina/metabolismo
11.
J Chem Inf Model ; 58(11): 2255-2265, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30339750

RESUMEN

Traditionally, a drug potency is expressed in terms of thermodynamic quantities, mostly Kd, and empirical IC50 values. Although binding affinity as an estimate of drug activity remains relevant, it is increasingly clear that it is also important to include (un)binding kinetic parameters in the characterization of potential drug-like molecules. Herein, we used standard in silico screening to identify a series of structurally related inhibitors of hDAAO, a flavoprotein involved in schizophrenia and neuropathic pain. We applied a novel methodology, based on scaled molecular dynamics, to rank them according to their residence times. Notably, we challenged the application in a prospective fashion for the first time. The good agreement between experimental residence times and the predicted residence times highlighted the procedure's reliability in both predictive and refinement scenarios. Additionally, through further inspection of the performed simulations, we substantiated a previous hypothesis on the involvement of a protein loop during ligand unbinding.


Asunto(s)
D-Aminoácido Oxidasa/antagonistas & inhibidores , D-Aminoácido Oxidasa/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , D-Aminoácido Oxidasa/química , Humanos , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Termodinámica
12.
Biotechnol Lett ; 40(1): 181-187, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29209893

RESUMEN

OBJECTIVE: To design a fusion polypeptide combining functions of self-assembly and purification for immobilizing enzymes. RESULTS: A collagen-like polypeptide (CLP) was fused to an elastin-like polypeptide (ELP) through genetic engineering. CLP-ELP was separately fused to superoxide dismutase (SOD) and D-amino acid oxidase (DAAO). The recombinant enzymes were purified with using reversible phase transition. The interfering effect of H2O2 on the secondary structures of the recombinant enzymes was significantly reduced. The stability of the recombinant enzymes against denaturing by urea was improved. SOD-CLP-ELP exhibited a proteinaceous microporous network, and DAAO-CLP-ELP exhibited micro-clusters. The superoxide anion (•O2-) scavenging ability of SOD-CLP-ELP was 1.5 times that of SOD, and the catalytic efficiency of DAAO-CLP-ELP was 1.7 times that of DAAO. CONCLUSIONS: The advantages of the CLP-ELP-fused enzymes have been demonstrated and CLP-ELP can be used to immobilize other enzymes/proteins.


Asunto(s)
D-Aminoácido Oxidasa/metabolismo , Enzimas Inmovilizadas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Superóxido Dismutasa/metabolismo , Colágeno/genética , Colágeno/metabolismo , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/genética , Elastina/genética , Elastina/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Peróxido de Hidrógeno/metabolismo , Unión Proteica , Desnaturalización Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Superóxido Dismutasa/química , Superóxido Dismutasa/genética , Urea/metabolismo
13.
Biochemistry ; 56(14): 2024-2030, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28355481

RESUMEN

The flavoprotein d-amino acid oxidase has long served as a paradigm for understanding the mechanism of oxidation of amino acids by flavoproteins. Recently, a mutant d-amino acid oxidase (Y228L/R283G) that catalyzed the oxidation of amines rather than amino acids was described [Yasukawa, K., et al. (2014) Angew. Chem., Int. Ed. 53, 4428-4431]. We describe here the use of pH and kinetic isotope effects with (R)-α-methylbenzylamine as a substrate to determine whether the mutant enzyme utilizes the same catalytic mechanism as the wild-type enzyme. The effects of pH on the steady-state and rapid-reaction kinetics establish that the neutral amine is the substrate, while an active-site residue, likely Tyr224, must be uncharged for productive binding. There is no solvent isotope effect on the kcat/Km value for the amine, consistent with the neutral amine being the substrate. The deuterium isotope effect on the kcat/Km value is pH-independent, with an average value of 5.3, similar to values found with amino acids as substrates for the wild-type enzyme and establishing that there is no commitment to catalysis with this substrate. The kcat/KO2 value is similar to that seen with amino acids as the substrate, consistent with the oxidative half-reaction being unperturbed by the mutation and with flavin oxidation preceding product release. All of the data are consistent with the mutant enzyme utilizing the same mechanism as the wild-type enzyme, transfer of hydride from the neutral amine to the flavin.


Asunto(s)
D-Aminoácido Oxidasa/química , Proteínas Fúngicas/química , Glucosa Oxidasa/química , Monoaminooxidasa/química , Fenetilaminas/química , Animales , Aspergillus niger/química , Aspergillus niger/enzimología , Biocatálisis , Dominio Catalítico , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/metabolismo , Medición de Intercambio de Deuterio , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Glucosa Oxidasa/genética , Glucosa Oxidasa/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Fenetilaminas/metabolismo , Relación Estructura-Actividad , Porcinos , Termodinámica
14.
Proteins ; 85(8): 1422-1434, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28383162

RESUMEN

It is known that over half of the proteins encoded by most organisms function as oligomeric complexes. Oligomerization confers structural stability and dynamics changes in proteins. We investigate the effects of oligomerization on protein dynamics and its functional significance for a set of 145 multimeric proteins. Using coarse-grained elastic network models, we inspect the changes in residue fluctuations upon oligomerization and then compare with residue conservation scores to identify the functional significance of these changes. Our study reveals conservation of about ½ of the fluctuations, with » of the residues increasing in their mobilities and » having reduced fluctuations. The residues with dampened fluctuations are evolutionarily more conserved and can serve as orthosteric binding sites, indicating their importance. We also use triosephosphate isomerase as a test case to understand why certain enzymes function only in their oligomeric forms despite the monomer including all required catalytic residues. To this end, we compare the residue communities (groups of residues which are highly correlated in their fluctuations) in the monomeric and dimeric forms of the enzyme. We observe significant changes to the dynamical community architecture of the catalytic core of this enzyme. This relates to its functional mechanism and is seen only in the oligomeric form of the protein, answering why proteins are oligomeric structures. Proteins 2017; 85:1422-1434. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Arginasa/química , D-Aminoácido Oxidasa/química , Glutamato Deshidrogenasa/química , Glicina N-Metiltransferasa/química , Multimerización de Proteína , Triosa-Fosfato Isomerasa/química , Secuencias de Aminoácidos , Animales , Sitios de Unión , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Especificidad por Sustrato , Termodinámica
15.
Amino Acids ; 49(9): 1521-1533, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28681245

RESUMEN

More than half a century ago researchers thought that D-amino acids had a minor function compared to L-enantiomers in biological processes. Many evidences have shown that D-amino acids are present in high concentration in microorganisms, plants, mammals and humans and fulfil specific biological functions. In the brain of mammals, D-serine (D-Ser) acts as a co-agonist of the N-methyl-D-aspartate (NMDA)-type glutamate receptors, responsible for learning, memory and behaviour. D-Ser metabolism is relevant for disorders associated with an altered function of the NMDA receptor, such as schizophrenia, ischemia, epilepsy and neurodegenerative disorders. On the other hand, D-aspartate (D-Asp) is one of the major regulators of adult neurogenesis and plays an important role in the development of endocrine function. D-Asp is present in the neuroendocrine and endocrine tissues and testes, and regulates the synthesis and secretion of hormones and spermatogenesis. Also food proteins contain D-amino acids that are naturally originated or processing-induced under conditions such as high temperatures, acid and alkali treatments and fermentation processes. The presence of D-amino acids in dairy products denotes thermal and alkaline treatments and microbial contamination. Two enzymes are involved in the metabolism of D-amino acids: amino acid racemase in the synthesis and D-amino acid oxidase in the degradation.


Asunto(s)
Isomerasas de Aminoácido/química , D-Aminoácido Oxidasa/química , Ácido D-Aspártico/química , Serina/química , Isomerasas de Aminoácido/metabolismo , Venenos de Anfibios/química , Animales , Péptidos Catiónicos Antimicrobianos/biosíntesis , Péptidos Catiónicos Antimicrobianos/química , Bacterias/química , Bacterias/metabolismo , D-Aminoácido Oxidasa/metabolismo , Ácido D-Aspártico/metabolismo , Dieta , Gliceraldehído/química , Gliceraldehído/metabolismo , Humanos , Plantas/química , Plantas/metabolismo , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Bases de Schiff/química , Bases de Schiff/metabolismo , Serina/metabolismo , Estereoisomerismo
16.
Org Biomol Chem ; 15(25): 5289-5297, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28509930

RESUMEN

Because of the relevance of d-serine (d-Ser) to schizophrenia, inhibitors of d-amino acid oxidase (DAO), which catalyzes degradation of d-Ser in the presence of flavin adenine dinucleotide (FAD), are expected to be anti-schizophrenia therapeutics. In this study, binding pockets of DAO to its inhibitor 4-bromo-3-nitrobenzoic acid were searched by combining in silico docking simulation and labeling experiments employing an N-sulfanylethylanilide-based labeling technology that we have developed. The results clearly demonstrated that there are two binding pockets: one is shared with d-Ser and FAD, and the other is an unexpected cleft between the subunits of a DAO dimer. These findings will provide insight to aid the development of new DAO inhibitors. In addition, it was also proved that our labeling technology could be applicable to elucidate the binding pockets of proteins.


Asunto(s)
D-Aminoácido Oxidasa/antagonistas & inhibidores , D-Aminoácido Oxidasa/química , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Coloración y Etiquetado , Compuestos de Azufre/química , Sitios de Unión/efectos de los fármacos , D-Aminoácido Oxidasa/metabolismo , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular
17.
Arch Toxicol ; 91(1): 427-437, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26961980

RESUMEN

Chronic exposure to propiverine, a frequently prescribed pharmaceutical for treatment of overactive bladder and incontinence, provokes massive protein accumulation in the cytosol and nucleus of renal proximal tubule epithelial cells in rats. Previously, the accumulating protein was identified as D-amino acid oxidase (DAAO), a peroxisomal flavoenzyme expressed in kidney, liver and brain. The cellular mechanism of propiverine-induced DAAO accumulation, however, remains unexplained and poorly characterized. Therefore, to further increase the understanding of DAAO accumulation in rat kidney, this study aimed to characterize DAAO accumulations using differential immunofluorescent staining of rat kidney sections as well as in vitro binding analyses and proteasomal activity studies. We demonstrated that propiverine is neither a ligand of DAAO nor an inhibitor of the proteasome in vitro. However, propiverine treatment resulted in a significant decrease of peroxisomal size in rat proximal tubule epithelial cells. Moreover, peroxisomal catalase also accumulated in the cytosol and nuclei of propiverine-treated rats concurrently with DAAO. Taken together, our study indicates that propiverine treatment affects the trafficking and/or degradation of peroxisomal proteins such as DAAO and catalase by a so far unique and unknown mechanism.


Asunto(s)
Bencilatos/efectos adversos , Antagonistas Colinérgicos/efectos adversos , D-Aminoácido Oxidasa/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Peroxisomas/efectos de los fármacos , Agentes Urológicos/efectos adversos , Animales , Bencilatos/administración & dosificación , Catalasa/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Antagonistas Colinérgicos/administración & dosificación , Citosol/efectos de los fármacos , Citosol/enzimología , Citosol/metabolismo , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/genética , Relación Dosis-Respuesta a Droga , Estabilidad de Enzimas/efectos de los fármacos , Femenino , Humanos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/enzimología , Masculino , Ratones , Tamaño de los Orgánulos/efectos de los fármacos , Peroxisomas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Endogámicas F344 , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Pruebas de Toxicidad Crónica , Agentes Urológicos/administración & dosificación
18.
J Nanosci Nanotechnol ; 17(2): 947-53, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29671483

RESUMEN

Hybrid mesoporous materials as carriers for immobilization of D-amino acid oxidase (DAAO) were prepared via three steps: (i) hydrothermal synthesis of nanoporous MCF, SBA-15 and MCM-41 powders, (ii) functionalization with 3-aminopropyltriethoxysilane (APTES) by post-synthesis grafting; and (iii) activation with glutardialdehyde. The resulting mesostructured solids were characterized by various techniques: XRD, IR, TGA-DTA and N2 adsorption­desorption (BET). The characterization results indicated that these materials still maintained their structure after functionalization. IR data and TGA-DTA analysis demonstrated the existence of amine functional groups on the surface of APTES-functionalized samples. The DAAO immobilized on these materials exhibited higher catalytic activity and stability of enzyme for conversion of cephalosporin C (CPC) as compared to those of the non-functionalized ones. The catalytic activity and stability of enzyme decreased in the order MCF > SBA-15 > MCM-41.


Asunto(s)
D-Aminoácido Oxidasa , Enzimas Inmovilizadas , Nanoestructuras/química , Compuestos de Silicona/química , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/metabolismo , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Porosidad , Dióxido de Silicio/química
19.
Biochim Biophys Acta ; 1854(9): 1150-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25701391

RESUMEN

In the brain, d-amino acid oxidase plays a key role in modulating the N-methyl-d-aspartate receptor (NMDAR) activation state, catalyzing the stereospecific degradation of the coagonist d-serine. A relationship between d-serine signaling deregulation, NMDAR dysfunction, and CNS diseases is presumed. Notably, the R199W substitution in human DAAO (hDAAO) was associated with familial amyotrophic lateral sclerosis (ALS), and further coding substitutions, i.e., R199Q and W209R, were also deposited in the single nucleotide polymorphism database. Here, we investigated the biochemical properties of these different hDAAO variants. The W209R hDAAO variant shows an improved d-serine degradation ability (higher activity and affinity for the cofactor FAD) and produces a greater decrease in cellular d/(d+l) serine ratio than the wild-type counterpart when expressed in U87 cells. The production of H2O2 as result of excessive d-serine degradation by this hDAAO variant may represent the factor affecting cell viability after stable transfection. The R199W/Q substitution in hDAAO altered the protein conformation and enzymatic activity was lost under conditions resembling the cellular ones: this resulted in an abnormal increase in cellular d-serine levels. Altogether, these results indicate that substitutions that affect hDAAO functionality directly impact on d-serine cellular levels (at least in the model cell system used). The pathological effect of the expression of the R199W hDAAO, as observed in familial ALS, originates from both protein instability and a decrease in kinetic efficiency: the increase in synaptic d-serine may be mainly responsible for the neurotoxic effect. This information is expected to drive future targeted treatments.


Asunto(s)
D-Aminoácido Oxidasa/química , Polimorfismo de Nucleótido Simple , Línea Celular Tumoral , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/metabolismo , Escherichia coli/genética , Flavina-Adenina Dinucleótido/metabolismo , Humanos , Cinética , Ligandos , Conformación Proteica , Relación Estructura-Actividad , Transfección
20.
Biotechnol Bioeng ; 113(11): 2342-9, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27216813

RESUMEN

Exploiting enzymes for chemical synthesis in flow microreactors necessitates their reuse for multiple rounds of conversion. To achieve this goal, immobilizing the enzymes on microchannel walls is a promising approach, but practical methods for it are lacking. Using fusion to a silica-binding module to engineer enzyme adsorption to glass surfaces, we show convenient immobilization of d-amino acid oxidase on borosilicate microchannel plates. In confocal laser scanning microscopy, channel walls appeared uniformly coated with target protein. The immobilized enzyme activity was in the range expected for monolayer coverage of the plain surface with oxidase (2.37 × 10(-5) nmol/mm(2) ). Surface attachment of the enzyme was completely stable under flow. The operational half-life of the immobilized oxidase (25°C, pH 8.0; soluble catalase added) was 40 h. Enzymatic oxidation of d-Met into α-keto-γ-(methylthio)butyric acid was characterized in single-pass and recycle reactor configurations, employing in-line measurement of dissolved O2 , and off-line determination of the keto-acid product. Reaction-diffusion time-scale analysis for different flow conditions showed that the heterogeneously catalyzed reaction was always slower than diffusion of O2 to the solid surface (DaII ≤ 0.3). Potential of the microreactor for intensifying O2 -dependent biotransformations restricted by mass transfer in conventional reactors is thus revealed. Biotechnol. Bioeng. 2016;113: 2342-2349. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Reactores Biológicos , D-Aminoácido Oxidasa/química , Enzimas Inmovilizadas/química , Vidrio/química , Microfluídica/instrumentación , Oxígeno/química , Adsorción , Catálisis , Activación Enzimática , Diseño de Equipo , Análisis de Falla de Equipo , Dióxido de Silicio/química , Especificidad por Sustrato , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA