Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.592
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 34: 121-49, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26735698

RESUMEN

Genomic DNA sequencing technologies have been one of the great advances of the 21st century, having decreased in cost by seven orders of magnitude and opening up new fields of investigation throughout research and clinical medicine. Genomics coupled with biochemical investigation has allowed the molecular definition of a growing number of new genetic diseases that reveal new concepts of immune regulation. Also, defining the genetic pathogenesis of these diseases has led to improved diagnosis, prognosis, genetic counseling, and, most importantly, new therapies. We highlight the investigational journey from patient phenotype to treatment using the newly defined XMEN disease, caused by the genetic loss of the MAGT1 magnesium transporter, as an example. This disease illustrates how genomics yields new fundamental immunoregulatory insights as well as how research genomics is integrated into clinical immunology. At the end, we discuss two other recently described diseases, CHAI/LATAIE (CTLA-4 deficiency) and PASLI (PI3K dysregulation), as additional examples of the journey from unknown immunological diseases to new precision medicine treatments using genomics.


Asunto(s)
Antígeno CTLA-4/genética , Proteínas de Transporte de Catión/genética , Genómica , Enfermedades del Sistema Inmune/genética , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades del Sistema Inmune/terapia , Masculino , Terapia Molecular Dirigida , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/terapia
2.
Cell ; 186(13): 2929-2949.e20, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37269831

RESUMEN

Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.


Asunto(s)
Longevidad , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Longevidad/genética , Fosfatidilinositol 3-Quinasas/genética , Envejecimiento/genética , Mamíferos/genética , Perfilación de la Expresión Génica
3.
Annu Rev Biochem ; 89: 103-133, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32176524

RESUMEN

Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Reparación del ADN por Unión de Extremidades , ADN/genética , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Humanos , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625050

RESUMEN

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Asunto(s)
Bases de Datos Genéticas , Neoplasias/patología , Transducción de Señal/genética , Genes Relacionados con las Neoplasias , Humanos , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
5.
Cell ; 167(2): 553-565.e12, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693354

RESUMEN

Genome-metabolism interactions enable cell growth. To probe the extent of these interactions and delineate their functional contributions, we quantified the Saccharomyces amino acid metabolome and its response to systematic gene deletion. Over one-third of coding genes, in particular those important for chromatin dynamics, translation, and transport, contribute to biosynthetic metabolism. Specific amino acid signatures characterize genes of similar function. This enabled us to exploit functional metabolomics to connect metabolic regulators to their effectors, as exemplified by TORC1, whose inhibition in exponentially growing cells is shown to match an interruption in endomembrane transport. Providing orthogonal information compared to physical and genetic interaction networks, metabolomic signatures cluster more than half of the so far uncharacterized yeast genes and provide functional annotation for them. A major part of coding genes is therefore participating in gene-metabolism interactions that expose the metabolism regulatory network and enable access to an underexplored space in gene function.


Asunto(s)
Aminoácidos/biosíntesis , Metaboloma , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Aminoácidos/genética , Cromatina/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Metaboloma/genética , Metabolómica/métodos , Familia de Multigenes , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética
6.
Mol Cell ; 83(16): 2991-3009.e13, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37567175

RESUMEN

The PIP3/PI3K network is a central regulator of metabolism and is frequently activated in cancer, commonly by loss of the PIP3/PI(3,4)P2 phosphatase, PTEN. Despite huge research investment, the drivers of the PI3K network in normal tissues and how they adapt to overactivation are unclear. We find that in healthy mouse prostate PI3K activity is driven by RTK/IRS signaling and constrained by pathway feedback. In the absence of PTEN, the network is dramatically remodeled. A poorly understood YXXM- and PIP3/PI(3,4)P2-binding PH domain-containing adaptor, PLEKHS1, became the dominant activator and was required to sustain PIP3, AKT phosphorylation, and growth in PTEN-null prostate. This was because PLEKHS1 evaded pathway-feedback and experienced enhanced PI3K- and Src-family kinase-dependent phosphorylation of Y258XXM, eliciting PI3K activation. hPLEKHS1 mRNA and activating Y419 phosphorylation of hSrc correlated with PI3K pathway activity in human prostate cancers. We propose that in PTEN-null cells receptor-independent, Src-dependent tyrosine phosphorylation of PLEKHS1 creates positive feedback that escapes homeostasis, drives PIP3 signaling, and supports tumor progression.


Asunto(s)
Fosfohidrolasa PTEN , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Homeostasis , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
7.
Nat Immunol ; 19(9): 986-1000, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127432

RESUMEN

Gain-of-function mutations in the gene encoding the phosphatidylinositol-3-OH kinase catalytic subunit p110δ (PI3Kδ) result in a human primary immunodeficiency characterized by lymphoproliferation, respiratory infections and inefficient responses to vaccines. However, what promotes these immunological disturbances at the cellular and molecular level remains unknown. We generated a mouse model that recapitulated major features of this disease and used this model and patient samples to probe how hyperactive PI3Kδ fosters aberrant humoral immunity. We found that mutant PI3Kδ led to co-stimulatory receptor ICOS-independent increases in the abundance of follicular helper T cells (TFH cells) and germinal-center (GC) B cells, disorganized GCs and poor class-switched antigen-specific responses to immunization, associated with altered regulation of the transcription factor FOXO1 and pro-apoptotic and anti-apoptotic members of the BCL-2 family. Notably, aberrant responses were accompanied by increased reactivity to gut bacteria and a broad increase in autoantibodies that were dependent on stimulation by commensal microbes. Our findings suggest that proper regulation of PI3Kδ is critical for ensuring optimal host-protective humoral immunity despite tonic stimulation from the commensal microbiome.


Asunto(s)
Linfocitos B/fisiología , Microbioma Gastrointestinal/inmunología , Centro Germinal/fisiología , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Linfocitos T Colaboradores-Inductores/fisiología , Animales , Autoanticuerpos/sangre , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I/genética , Modelos Animales de Enfermedad , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Inmunidad Humoral/genética , Cambio de Clase de Inmunoglobulina/genética , Síndromes de Inmunodeficiencia/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
8.
Mol Cell ; 82(7): 1244-1245, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395197

RESUMEN

Ge et al. (2022) describes an inhibitory, post-translational modification of PTEN at C211 by fumarate, which offers new insight into the integration of PI3K signaling and metabolism via a potential feedforward regulatory mechanism involving a PI3K-glucose-fumarate-PTEN axis.


Asunto(s)
Fumaratos , Fosfatidilinositol 3-Quinasas , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
9.
Mol Cell ; 82(7): 1249-1260.e7, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35216667

RESUMEN

Fumarate is an oncometabolite. However, the mechanism underlying fumarate-exerted tumorigenesis remains unclear. Here, utilizing human type2 papillary renal cell carcinoma (PRCC2) as a model, we show that fumarate accumulates in cells deficient in fumarate hydratase (FH) and inhibits PTEN to activate PI3K/AKT signaling. Mechanistically, fumarate directly reacts with PTEN at cysteine 211 (C211) to form S-(2-succino)-cysteine. Succinated C211 occludes tethering of PTEN with the cellular membrane, thereby diminishing its inhibitory effect on the PI3K/AKT pathway. Functionally, re-expressing wild-type FH or PTEN C211S phenocopies an AKT inhibitor in suppressing tumor growth and sensitizing PRCC2 to sunitinib. Analysis of clinical specimens indicates that PTEN C211 succination levels are positively correlated with AKT activation in PRCC2. Collectively, these findings elucidate a non-metabolic, oncogenic role of fumarate in PRCC2 via direct post-translational modification of PTEN and further reveal potential stratification strategies for patients with FH loss by combinatorial AKTi and sunitinib therapy.


Asunto(s)
Carcinoma Papilar , Carcinoma de Células Renales , Fumaratos , Neoplasias Renales , Fosfohidrolasa PTEN , Carcinogénesis , Carcinoma Papilar/tratamiento farmacológico , Carcinoma Papilar/enzimología , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/enzimología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Cisteína/metabolismo , Resistencia a Antineoplásicos , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/farmacología , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/enzimología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Sunitinib/farmacología
10.
Genes Dev ; 35(23-24): 1657-1677, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34819350

RESUMEN

Senescence shapes embryonic development, plays a key role in aging, and is a critical barrier to cancer initiation, yet how senescence is regulated remains incompletely understood. TBX2 is an antisenescence T-box family transcription repressor implicated in embryonic development and cancer. However, the repertoire of TBX2 target genes, its cooperating partners, and how TBX2 promotes proliferation and senescence bypass are poorly understood. Here, using melanoma as a model, we show that TBX2 lies downstream from PI3K signaling and that TBX2 binds and is required for expression of E2F1, a key antisenescence cell cycle regulator. Remarkably, TBX2 binding in vivo is associated with CACGTG E-boxes, present in genes down-regulated by TBX2 depletion, more frequently than the consensus T-element DNA binding motif that is restricted to Tbx2 repressed genes. TBX2 is revealed to interact with a wide range of transcription factors and cofactors, including key components of the BCOR/PRC1.1 complex that are recruited by TBX2 to the E2F1 locus. Our results provide key insights into how PI3K signaling modulates TBX2 function in cancer to drive proliferation.


Asunto(s)
Melanoma , Proteínas de Dominio T Box , Expresión Génica , Humanos , Melanoma/genética , Melanoma/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
11.
Nat Immunol ; 17(8): 922-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27270400

RESUMEN

Deficiency in mevalonate kinase (MVK) causes systemic inflammation. However, the molecular mechanisms linking the mevalonate pathway to inflammation remain obscure. Geranylgeranyl pyrophosphate, a non-sterol intermediate of the mevalonate pathway, is the substrate for protein geranylgeranylation, a protein post-translational modification that is catalyzed by protein geranylgeranyl transferase I (GGTase I). Pyrin is an innate immune sensor that forms an active inflammasome in response to bacterial toxins. Mutations in MEFV (encoding human PYRIN) result in autoinflammatory familial Mediterranean fever syndrome. We found that protein geranylgeranylation enabled Toll-like receptor (TLR)-induced activation of phosphatidylinositol-3-OH kinase (PI(3)K) by promoting the interaction between the small GTPase Kras and the PI(3)K catalytic subunit p110δ. Macrophages that were deficient in GGTase I or p110δ exhibited constitutive release of interleukin 1ß that was dependent on MEFV but independent of the NLRP3, AIM2 and NLRC4 inflammasomes. In the absence of protein geranylgeranylation, compromised PI(3)K activity allows an unchecked TLR-induced inflammatory responses and constitutive activation of the Pyrin inflammasome.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Fiebre Mediterránea Familiar/metabolismo , Inflamasomas/metabolismo , Macrófagos/fisiología , Mutación/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Pirina/genética , Transferasas Alquil y Aril/genética , Animales , Células Cultivadas , Fiebre Mediterránea Familiar/genética , Humanos , Inmunidad Innata , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfatos de Poliisoprenilo/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Receptores Toll-Like/metabolismo
12.
Mol Cell ; 80(2): 279-295.e8, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33065020

RESUMEN

The PTEN tumor suppressor controls cell death and survival by regulating functions of various molecular targets. While the role of PTEN lipid-phosphatase activity on PtdIns(3,4,5)P3 and inhibition of PI3K pathway is well characterized, the biological relevance of PTEN protein-phosphatase activity remains undefined. Here, using knockin (KI) mice harboring cancer-associated and functionally relevant missense mutations, we show that although loss of PTEN lipid-phosphatase function cooperates with oncogenic PI3K to promote rapid mammary tumorigenesis, the additional loss of PTEN protein-phosphatase activity triggered an extensive cell death response evident in early and advanced mammary tumors. Omics and drug-targeting studies revealed that PI3Ks act to reduce glucocorticoid receptor (GR) levels, which are rescued by loss of PTEN protein-phosphatase activity to restrain cell survival. Thus, we find that the dual regulation of GR by PI3K and PTEN functions as a rheostat that can be exploited for the treatment of PTEN loss-driven cancers.


Asunto(s)
Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Fosfohidrolasa PTEN/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Carcinogénesis , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Dexametasona/farmacología , Femenino , Humanos , Isoenzimas/metabolismo , Ratones , Modelos Biológicos , Mutación/genética , Organoides/patología , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Estabilidad Proteica , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
Mol Cell ; 80(4): 736-743.e4, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33098764

RESUMEN

The phosphoinositide PI(3,5)P2, generated exclusively by the PIKfyve lipid kinase complex, is key for lysosomal biology. Here, we explore how PI(3,5)P2 levels within cells are regulated. We find the PIKfyve complex comprises five copies of the scaffolding protein Vac14 and one copy each of the lipid kinase PIKfyve, generating PI(3,5)P2 from PI3P and the lipid phosphatase Fig4, reversing the reaction. Fig4 is active as a lipid phosphatase in the ternary complex, whereas PIKfyve within the complex cannot access membrane-incorporated phosphoinositides due to steric constraints. We find further that the phosphoinositide-directed activities of both PIKfyve and Fig4 are regulated by protein-directed activities within the complex. PIKfyve autophosphorylation represses its lipid kinase activity and stimulates Fig4 lipid phosphatase activity. Further, Fig4 is also a protein phosphatase acting on PIKfyve to stimulate its lipid kinase activity, explaining why catalytically active Fig4 is required for maximal PI(3,5)P2 production by PIKfyve in vivo.


Asunto(s)
Membrana Celular/metabolismo , Flavoproteínas/metabolismo , Homeostasis , Lisosomas/metabolismo , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Flavoproteínas/química , Flavoproteínas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Fosforilación , Unión Proteica , Conformación Proteica , Transporte de Proteínas
14.
EMBO J ; 42(10): e111273, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37021425

RESUMEN

Plant organogenesis requires matching the available metabolic resources to developmental programs. In Arabidopsis, the root system is determined by primary root-derived lateral roots (LRs), and adventitious roots (ARs) formed from non-root organs. Lateral root formation entails the auxin-dependent activation of transcription factors ARF7, ARF19, and LBD16. Adventitious root formation relies on LBD16 activation by auxin and WOX11. The allocation of shoot-derived sugar to the roots influences branching, but how its availability is sensed for LRs formation remains unknown. We combine metabolic profiling with cell-specific interference to show that LRs switch to glycolysis and consume carbohydrates. The target-of-rapamycin (TOR) kinase is activated in the lateral root domain. Interfering with TOR kinase blocks LR initiation while promoting AR formation. The target-of-rapamycin inhibition marginally affects the auxin-induced transcriptional response of the pericycle but attenuates the translation of ARF19, ARF7, and LBD16. TOR inhibition induces WOX11 transcription in these cells, yet no root branching occurs as TOR controls LBD16 translation. TOR is a central gatekeeper for root branching that integrates local auxin-dependent pathways with systemic metabolic signals, modulating the translation of auxin-induced genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatidilinositol 3-Quinasas/genética
15.
EMBO J ; 42(2): e110833, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36354735

RESUMEN

The AKT-mTOR pathway is a central regulator of cell growth and metabolism. Upon sustained mTOR activity, AKT activity is attenuated by a feedback loop that restrains upstream signaling. However, how cells control the signals that limit AKT activity is not fully understood. Here, we show that MASTL/Greatwall, a cell cycle kinase that supports mitosis by phosphorylating the PP2A/B55 inhibitors ENSA/ARPP19, inhibits PI3K-AKT activity by sustaining mTORC1- and S6K1-dependent phosphorylation of IRS1 and GRB10. Genetic depletion of MASTL results in an inefficient feedback loop and AKT hyperactivity. These defects are rescued by the expression of phosphomimetic ENSA/ARPP19 or inhibition of PP2A/B55 phosphatases. MASTL is directly phosphorylated by mTORC1, thereby limiting the PP2A/B55-dependent dephosphorylation of IRS1 and GRB10 downstream of mTORC1. Downregulation of MASTL results in increased glucose uptake in vitro and increased glucose tolerance in adult mice, suggesting the relevance of the MASTL-PP2A/B55 kinase-phosphatase module in controlling AKT and maintaining metabolic homeostasis.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína Fosfatasa 2 , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Ciclo Celular/genética , Glucosa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitosis , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
16.
Nat Immunol ; 16(2): 188-96, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25559257

RESUMEN

Foxp3(+) regulatory T cells (Treg cells) are required for immunological homeostasis. One notable distinction between conventional T cells (Tconv cells) and Treg cells is differences in the activity of phosphatidylinositol-3-OH kinase (PI(3)K); only Tconv cells downregulate PTEN, the main negative regulator of PI(3)K, upon activation. Here we found that control of PI(3)K in Treg cells was essential for lineage homeostasis and stability. Mice lacking Pten in Treg cells developed an autoimmune-lymphoproliferative disease characterized by excessive T helper type 1 (TH1) responses and B cell activation. Diminished control of PI(3)K activity in Treg cells led to reduced expression of the interleukin-2 (IL-2) receptor α subunit CD25, accumulation of Foxp3(+)CD25(-) cells and, ultimately, loss of expression of the transcription factor Foxp3 in these cells. Collectively, our data demonstrate that control of PI(3)K signaling by PTEN in Treg cells is critical for maintaining their homeostasis, function and stability.


Asunto(s)
Homeostasis/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Linfocitos T Reguladores/enzimología , Linfocitos T Reguladores/inmunología , Animales , Linaje de la Célula , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Eliminación de Gen , Ratones , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal
17.
Proc Natl Acad Sci U S A ; 121(17): e2321898121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625939

RESUMEN

High-grade neuroendocrine cervical cancers (NETc) are exceedingly rare, highly aggressive tumors. We analyzed 64 NETc tumor samples by whole-exome sequencing (WES). Human papillomavirus DNA was detected in 65.6% (42/64) of the tumors. Recurrent mutations were identified in PIK3CA, KMT2D/MLL2, K-RAS, ARID1A, NOTCH2, and RPL10. The top mutated genes included RB1, ARID1A, PTEN, KMT2D/MLL2, and WDFY3, a gene not yet implicated in NETc. Somatic CNV analysis identified two copy number gains (3q27.1 and 19q13.12) and five copy number losses (1p36.21/5q31.3/6p22.2/9q21.11/11p15.5). Also, gene fusions affecting the ACLY-CRHR1 and PVT1-MYC genes were identified in one of the eight samples subjected to RNA sequencing. To resolve evolutionary history, multiregion WES in NETc admixed with adenocarcinoma cells was performed (i.e., mixed-NETc). Phylogenetic analysis of mixed-NETc demonstrated that adenocarcinoma and neuroendocrine elements derive from a common precursor with mutations typical of adenocarcinomas. Over one-third (22/64) of NETc demonstrated a mutator phenotype of C > T at CpG consistent with deficiencies in MBD4, a member of the base excision repair (BER) pathway. Mutations in the PI3K/AMPK pathways were identified in 49/64 samples. We used two patient-derived-xenografts (PDX) (i.e., NET19 and NET21) to evaluate the activity of pan-HER (afatinib), PIK3CA (copanlisib), and ATR (elimusertib) inhibitors, alone and in combination. PDXs harboring alterations in the ERBB2/PI3K/AKT/mTOR/ATR pathway were sensitive to afatinib, copanlisib, and elimusertib (P < 0.001 vs. controls). However, combinations of copanlisib/afatinib and copanlisib/elimusertib were significantly more effective in controlling NETc tumor growth. These findings define the genetic landscape of NETc and suggest that a large subset of these highly lethal malignancies might benefit from existing targeted therapies.


Asunto(s)
Adenocarcinoma , Carcinoma Neuroendocrino , Tumores Neuroendocrinos , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Afatinib , Filogenia , Fosfatidilinositol 3-Quinasas/genética , Mutación , Fosfatidilinositol 3-Quinasa Clase I/genética , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Análisis Mutacional de ADN
18.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743625

RESUMEN

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Fosfatidilinositol 3-Quinasas , Proteínas Serina-Treonina Quinasas , Esferoides Celulares , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Esferoides Celulares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proliferación Celular , Línea Celular Tumoral , Sistemas CRISPR-Cas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
19.
Nat Immunol ; 15(1): 88-97, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24165795

RESUMEN

The p110δ subunit of phosphatidylinositol-3-OH kinase (PI(3)K) is selectively expressed in leukocytes and is critical for lymphocyte biology. Here we report fourteen patients from seven families who were heterozygous for three different germline, gain-of-function mutations in PIK3CD (which encodes p110δ). These patients presented with sinopulmonary infections, lymphadenopathy, nodular lymphoid hyperplasia and viremia due to cytomegalovirus (CMV) and/or Epstein-Barr virus (EBV). Strikingly, they had a substantial deficiency in naive T cells but an over-representation of senescent effector T cells. In vitro, T cells from patients exhibited increased phosphorylation of the kinase Akt and hyperactivation of the metabolic checkpoint kinase mTOR, enhanced glucose uptake and terminal effector differentiation. Notably, treatment with rapamycin to inhibit mTOR activity in vivo partially restored the abundance of naive T cells, largely 'rescued' the in vitro T cell defects and improved the clinical course.


Asunto(s)
Senescencia Celular/genética , Mutación de Línea Germinal , Síndromes de Inmunodeficiencia/genética , Fosfatidilinositol 3-Quinasas/genética , Linfocitos T/metabolismo , Antibióticos Antineoplásicos/uso terapéutico , Diferenciación Celular/genética , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I , Infecciones por Citomegalovirus/sangre , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Infecciones por Virus de Epstein-Barr/sangre , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/virología , Femenino , Genes Dominantes , Humanos , Immunoblotting , Síndromes de Inmunodeficiencia/tratamiento farmacológico , Masculino , Linaje , Fosfatidilinositol 3-Quinasas/química , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Viremia/tratamiento farmacológico , Viremia/genética , Viremia/virología
20.
Immunity ; 47(6): 1067-1082.e12, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29246441

RESUMEN

Roquin proteins preclude spontaneous T cell activation and aberrant differentiation of T follicular helper (Tfh) or T helper 17 (Th17) cells. Here we showed that deletion of Roquin-encoding alleles specifically in regulatory T (Treg) cells also caused the activation of conventional T cells. Roquin-deficient Treg cells downregulated CD25, acquired a follicular Treg (Tfr) cell phenotype, and suppressed germinal center reactions but could not protect from colitis. Roquin inhibited the PI3K-mTOR signaling pathway by upregulation of Pten through interfering with miR-17∼92 binding to an overlapping cis-element in the Pten 3' UTR, and downregulated the Foxo1-specific E3 ubiquitin ligase Itch. Loss of Roquin enhanced Akt-mTOR signaling and protein synthesis, whereas inhibition of PI3K or mTOR in Roquin-deficient T cells corrected enhanced Tfh and Th17 or reduced iTreg cell differentiation. Thereby, Roquin-mediated control of PI3K-mTOR signaling prevents autoimmunity by restraining activation and differentiation of conventional T cells and specialization of Treg cells.


Asunto(s)
Colitis/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Proteínas Represoras/inmunología , Serina-Treonina Quinasas TOR/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Diferenciación Celular , Colitis/genética , Colitis/patología , Modelos Animales de Enfermedad , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/inmunología , Regulación de la Expresión Génica , Centro Germinal/inmunología , Centro Germinal/patología , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , MicroARNs/inmunología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/inmunología , Fosfatidilinositol 3-Quinasas/genética , Cultivo Primario de Células , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Bazo/inmunología , Bazo/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Serina-Treonina Quinasas TOR/genética , Células Th17/inmunología , Células Th17/patología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA