Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.914
Filtrar
Más filtros

Intervalo de año de publicación
1.
Emerg Infect Dis ; 30(6): 1291-1293, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781985

RESUMEN

Food irradiation can reduce foodborne illnesses but is rarely used in the United States. We determined whether outbreaks related to Campylobacter, Salmonella, Escherichia coli, and Listeria monocytogenes were linked to irradiation-eligible foods. Of 482 outbreaks, 155 (32.2%) were linked to an irradiation-eligible food, none of which were known to be irradiated.


Asunto(s)
Brotes de Enfermedades , Irradiación de Alimentos , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos , Humanos , Estados Unidos/epidemiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/microbiología , Historia del Siglo XXI
2.
Food Microbiol ; 122: 104552, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839232

RESUMEN

In this study, we investigated the combined effect of 222 nm krypton-chlorine excilamp (EX) and 307 nm ultraviolet-B (UVB) light on the inactivation of Salmonella Typhimurium and Listeria monocytogenes on sliced cheese. The data confirmed that simultaneous exposure to EX and UVB irradiation for 80 s reduced S. Typhimurium and L. monocytogenes population by 3.50 and 3.20 log CFU/g, respectively, on sliced cheese. The synergistic cell count reductions in S. Typhimurium and L. monocytogenes in the combined treatment group were 0.88 and 0.59 log units, respectively. The inactivation mechanism underlying the EX and UVB combination treatment was evaluated using fluorescent staining. The combination of EX and UVB light induced the inactivation of reactive oxygen species (ROS) defense enzymes (superoxide dismutase) and synergistic ROS generation, resulting in synergistic lipid peroxidation and destruction of the cell membrane. There were no significant (P > 0.05) differences in the color, texture, or sensory attributes of sliced cheese between the combination treatment and control groups. These results demonstrate that combined treatment with EX and UVB light is a potential alternative strategy for inactivating foodborne pathogens in dairy products without affecting their quality.


Asunto(s)
Queso , Cloro , Listeria monocytogenes , Especies Reactivas de Oxígeno , Salmonella typhimurium , Rayos Ultravioleta , Queso/microbiología , Queso/análisis , Listeria monocytogenes/efectos de la radiación , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/efectos de los fármacos , Salmonella typhimurium/efectos de la radiación , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cloro/farmacología , Irradiación de Alimentos/métodos , Microbiología de Alimentos , Viabilidad Microbiana/efectos de la radiación , Recuento de Colonia Microbiana
3.
J Sci Food Agric ; 104(12): 7713-7721, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38591367

RESUMEN

BACKGROUND: Goat milk is considered a nutritionally superior resource, owing to its advantageous nutritional attributes. Nevertheless, it is susceptible to spoilage and the persistence of pathogens. Electron beam irradiation stands as a promising non-thermal processing technique capable of prolonging shelf life with minimal residue and a high degree of automation. RESULTS: The effects of electron beam irradiation (2, 3, 5, and 7 kGy) on microorganisms, physicochemical properties, and protein structure of goat milk compared with conventional pasteurized goat milk (PGM) was evaluated. It was found that a 2 kGy electron beam irradiation reduces the total microbial count of goat milk by 6-logs, and the irradiated goat milk protein secondary structure showed a significant decrease in ɑ-helix content. Low irradiation doses led to microaggregation and crosslinking. In contrast, high doses (≥ 5 kGy) slightly disrupted the aggregates and decreased the particle size, disrupting the microscopic surface structure of goat milk, verified by scanning electron microscopy and confocal laser scanning microscopy. CONCLUSION: The irradiation of goat milk with a 2 kGy electron beam may effectively inactivate harmful microorganisms in the milk and maintain/or improve the physicochemical quality and protein structure of goat milk compared to thermal pasteurization. © 2024 Society of Chemical Industry.


Asunto(s)
Electrones , Irradiación de Alimentos , Cabras , Leche , Animales , Leche/microbiología , Leche/química , Leche/efectos de la radiación , Irradiación de Alimentos/métodos , Proteínas de la Leche/química , Bacterias/efectos de la radiación , Pasteurización/métodos , Microbiología de Alimentos
4.
World J Microbiol Biotechnol ; 40(9): 258, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954148

RESUMEN

The aim of the present study is to develop a pH-sensing biopolymer film based on the immobilization of red cabbage extract (RCE) within bacterial cellulose (BC) to detect contamination and gamma radiation exposure in cucumbers. The results obtained show a sensitivity to pH changes for RCE in its aqueous form and that incorporated within BC films (RCE-BC), both showed color change correlated to bacterial growth (R2 = 0.91), this was supported with increase in pH values from 2 to 12 (R2 = 0.98). RCE and RCE-BC exposure to gamma radiation (0, 2.5, 5, 10, 15, 20, 25 kGy) resulted in gradual decrease in color that was more evident in RCE aqueous samples. To sense bacterial contamination of cucumbers, the total count was followed at 0, 5, 10 and 15 days in cold storage conditions and was found to reach 9.13 and 5.47 log cfu/mL for non-irradiated and 2 kGy irradiated samples, respectively. The main isolates detected throughout this storage period were identified as Pseudomonas fluorescens, Erwinia sp. Pantoea agglomerans using matrix assisted laser desorption ionization-time of flight-ms (MALDI-TOF-MS). Bacterial growth in stored irradiated cucumbers was detected by color change within 5 and 10 days of storage, after which there was no evident change. This is very useful since contamination within the early days of storage cannot be sensed with the naked eye. This study is the first to highlight utilizing RCE and RCE-BC as eco-friendly pH-sensing indicator films for intelligent food packaging to detect both food contamination and gamma preservation for refrigerator stored cucumbers.


Asunto(s)
Brassica , Celulosa , Cucumis sativus , Rayos gamma , Extractos Vegetales , Brassica/microbiología , Brassica/química , Celulosa/química , Cucumis sativus/microbiología , Cucumis sativus/química , Cucumis sativus/efectos de la radiación , Concentración de Iones de Hidrógeno , Extractos Vegetales/química , Microbiología de Alimentos , Bacterias/efectos de la radiación , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Embalaje de Alimentos/métodos , Contaminación de Alimentos/análisis , Almacenamiento de Alimentos , Irradiación de Alimentos/métodos , Recuento de Colonia Microbiana
5.
Appl Environ Microbiol ; 89(3): e0207522, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36847554

RESUMEN

The purpose of this study was to evaluate the mechanism of sterilization of Staphylococcus aureus by electron beam irradiation (0.5-, 1-, 2-, 4-, and 6-kGy treatments) and whether it reduces the toxicity of its fermentation supernatant. In this study, we investigated the mechanism of sterilization of S. aureus by electron beam irradiation using colony count, membrane potential, intracellular ATP, and UV absorbance measurements; we used hemolytic, cytotoxic, and suckling mouse wound models to verify that electron beam irradiation reduced the toxicity of the S. aureus fermentation supernatant. The results showed that 2 kGy of electron beam irradiation treatment completely inactivated S. aureus in suspension culture, and 4 kGy inactivated cells in S. aureus biofilms. This study suggests that the bactericidal effect of electron beam irradiation on S. aureus may be attributed to reversible damage to the cytoplasmic membrane, resulting in its leakage and the significant degradation of genomic DNA. The combined results of hemolytic, cytotoxic, and suckling mouse wound models demonstrated that the toxicity of S. aureus metabolites was significantly reduced when the electron beam irradiation dose was 4 kGy. In summary, electron beam irradiation has the potential to control S. aureus and reduce its toxic metabolites in food. IMPORTANCE Electron beam irradiation of >1 kGy damaged the cytoplasmic membrane, and reactive oxygen species (ROS) penetrated the cells. Electron beam irradiation of >4 kGy reduces the combined toxicity of virulent proteins produced by Staphylococcus aureus. Electron beam irradiation of >4 kGy can be used to inactivate Staphylococcus aureus and biofilms on milk.


Asunto(s)
Irradiación de Alimentos , Staphylococcus aureus , Animales , Ratones , Staphylococcus aureus/efectos de la radiación , Electrones , Antibacterianos , Irradiación de Alimentos/métodos
6.
Shokuhin Eiseigaku Zasshi ; 64(6): 206-213, 2023.
Artículo en Japonés | MEDLINE | ID: mdl-38171890

RESUMEN

Irradiation is widely used worldwide to sterilize and kill insects in food, and prevent the germination of agricultural products. However, in Japan, food irradiation is prohibited except to prevent potato sprouting. Herein, 5,6-dihydrothymidine (DHdThd) residue-a damaged nucleoside generated from the thymidine (dThd) residue in DNA contained in food upon irradiation-was used as a detection indicator. Eight dried plant-based food samples were gamma ray-irradiated in the range from 3.2 to 8.3 kGy. Subsequently, DNA was extracted from the irradiated sample and digested into nucleosides by the three enzymes, and the test solution was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Evidently, in all samples, the concentration ratio of DHdThd to dThd in the test solution (DHdThd/dThd) was dependent on the irradiation dose; moreover, during storage under frozen conditions for at least 890 d post-irradiation, this concentration ratio was equal to that immediately after irradiation. The irradiation histories of the eight types of dried plant-based food samples were correctly detected.


Asunto(s)
Irradiación de Alimentos , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , ADN , Timidina/análisis , Irradiación de Alimentos/métodos
7.
Crit Rev Food Sci Nutr ; 62(24): 6698-6713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33775183

RESUMEN

The increasing incidence of food allergy cases is a public health problem of global concern. Producing hypoallergenic foods with high quality, low cost, and eco-friendly is a new trend for the food industry in the coming decades. Food irradiation, a non-thermal food processing technology, is a powerful tool to reduce the allergenicity with the above advantages. This review presents a summary of recent studies about food irradiation to reduce the allergenicity of food, including shellfish, soy, peanut, milk, tree nut, egg, wheat and fish. Principles of food irradiation, including mechanisms of allergenicity-reduction, irradiation types and characteristics, are discussed. Specific effects of food irradiation are also evaluated, involving microbial decontamination, improvement or preservation of nutritional value, harmful substances reduction of food products. Furthermore, the advantages, disadvantages and limitations of food irradiation are analyzed. It is concluded that food irradiation is a safety tool to reduce the allergenicity of food effectively, with high nutritional value and long shelf-life, making it a competitive alternative technology to traditional techniques such as heating treatments. Of note, a combination of irradiation with additional processing may be a trend for food irradiation.


Asunto(s)
Hipersensibilidad a los Alimentos , Irradiación de Alimentos , Alérgenos , Animales , Hipersensibilidad a los Alimentos/prevención & control , Alimentos Marinos , Tecnología
8.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500295

RESUMEN

The present study was planned to determine the effect of kale leaf powder and gamma rays on variations in the pH, amino acid and fatty acid profiles of chicken meat at different storage intervals. Significant changes (p ≤ 0.05) in the pH, amino acid and fatty acid profiles of chicken meat following different treatments (KLP (1% and 2%) and gamma irradiation (3k Gy)) were reported at 0, 7 and 14 days of storage. The pH value of the chicken meat sample decreased with the addition of kale leaf powder, whereas the value increased following a gamma irradiation dose of 3 kGy and with the passage of time. During different storage intervals, the minimum reduction in the amino acid and fatty acid quantities in the chicken meat samples was reported after gamma irradiation treatment. However, with the addition of KLP, the amount of amino acids and fatty acids in the chicken meat samples increased. Conclusively, the pH was observed to be reduced in the meat following combined treatment (irradiation + KLP), whereas the 2% KLP treatment improved the amino acid and fatty acid profiles of the chicken samples.


Asunto(s)
Brassica , Irradiación de Alimentos , Animales , Ácidos Grasos/análisis , Pollos , Aminoácidos , Polvos , Carne/análisis , Hojas de la Planta/química
9.
Food Microbiol ; 98: 103782, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33875210

RESUMEN

Electrons with energies of 300 keV or lower have the potential to decontaminate the surfaces of various types of food products with minimal loss of quality. The aim of the present work was to determine the thickness of the layer inhabited by microorganisms. The food samples tested were black and white pepper irradiated with 200 keV, 230 keV, 300 keV and 9 MeV beams of electron energy. To determine the depth from the surface which can be inhabited by microorganisms two approaches were tested. The methods used were based on the application of different microbiological recovery techniques and the microbial effectiveness of the irradiation process depending on the energy of the electron beam. It was observed that the layer which microorganisms may contaminate differed for the tested samples it was estimated as being below 100 µm thick for white pepper and about 200 µm for black pepper. The penetration ability was significant in experiments performed, and as a result the electron beam at the lowest levels tested (200 and 230 keV) was found to be insufficient to effectively decontaminate the black pepper samples. The beam of energy 300 keV was found to have a similar microbial inactivation effect as the high energy electron beam (9 MeV).


Asunto(s)
Bacterias/efectos de la radiación , Contaminación de Alimentos/prevención & control , Irradiación de Alimentos/métodos , Piper nigrum/microbiología , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Electrones , Contaminación de Alimentos/análisis , Irradiación de Alimentos/instrumentación , Viabilidad Microbiana/efectos de la radiación , Piper nigrum/efectos de la radiación , Verduras/microbiología , Verduras/efectos de la radiación
10.
Food Microbiol ; 99: 103825, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119110

RESUMEN

This study aimed to investigate the effect of different growth temperatures on the resistance of Escherichia coli O157:H7 and Salmonella Typhimurium to low-energy X-ray irradiation. Irradiation of contaminated phosphate-buffered saline with 0.6 kGy X-ray decreased the counts of E. coli O157:H7 cultured at 37 °C to below the detection limit (<1.0 colony-forming unit (CFU)/mL) and those of E. coli O157:H7 cultured at 25 and 15 °C by 4.82 and 4.45 log CFU/mL, respectively. The viable counts of S. Typhimurium cultured at 37, 25, and 15 °C in phosphate-buffered saline decreased by 3.56, 3.08, and 2.75 log CFU/mL, respectively, after irradiation with 0.6 kGy X-ray. Irradiation of contaminated lettuce with 0.4 kGy decreased the counts of E. coli O157:H7 cultured at 37, 25, and 15 °C by 3.97, 3.45, and 3.10 log CFU/cm2, respectively, and those of S. Typhimurium by 4.41, 3.84, and 3.40 log CFU/cm2, respectively. Growth temperature influenced pathogen resistance to X-ray irradiation by modulating cellular membrane and DNA integrity, intracellular enzyme activity, and efflux pump function. The results of this study suggest that the stress resistance status of pathogenic bacteria cultured at different growth temperatures should be considered for the application of X-ray irradiation for fresh produce sterilization.


Asunto(s)
Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/efectos de la radiación , Lactuca/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/efectos de la radiación , Recuento de Colonia Microbiana , Contaminación de Alimentos/prevención & control , Irradiación de Alimentos , Hojas de la Planta/microbiología , Temperatura , Rayos X
11.
Food Microbiol ; 94: 103631, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33279063

RESUMEN

We aimed to study the efficacy of a water-assisted UVC light device (WUVC) as an innovative clean technology for the disinfection of fresh sound tomatoes and processing wash water and water turbidity was evaluated as a critical parameter. First, wash waters with different turbidities (from 0.4 to 828 NTU) were inoculated with Listeria innocua and treated in the WUVC device at different dosages. Secondly, fresh tomatoes, inoculated with L. innocua and non-inoculated ones, were treated using the WUVC device containing wash water of different turbidities for different times. The reduction of L. innocua populations on wash water and on the surface of tomato was influenced by turbidity; lower reduction values were observed at higher turbidities. Washing tomatoes with tap water with UVC lamps off (control treatment, TW) decreased L. innocua population on the surface of tomatoes but did not eliminate those bacteria that went into the water. Contrarily, when UVC lights were on, L. innocua population in wash water after treatment significantly decreased, those in clean water being the lowest populations. Reductions of native microbiota on the clean water treated with the highest UV-C radiation dose were lower than those obtained when tomatoes were artificially inoculated. We demonstrated that high reductions of L. innocua population on fresh tomatoes could be achieved using the WUVC system but some drawbacks related to the increase of turbidity should be solved for its implementation in real conditions.


Asunto(s)
Desinfección/métodos , Irradiación de Alimentos/métodos , Listeria/efectos de la radiación , Solanum lycopersicum/microbiología , Recuento de Colonia Microbiana , Desinfección/instrumentación , Frutas/microbiología , Listeria/crecimiento & desarrollo , Rayos Ultravioleta , Agua/química
12.
Radiat Environ Biophys ; 60(2): 359-364, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33813608

RESUMEN

In this study, the validity of using the optically stimulated luminescence (OSL) technique as a scanning method for the detection of irradiated foodstuffs was investigated. Gamma-irradiated thyme, mint and clove samples were stimulated with a continuous wave blue light (CW-OSL) and their OSL signal sensitivity and stability properties were measured. While no OSL signal was observed for all non-irradiated spices, a significant increase in the intensity of OSL signals was noted for all samples after irradiation with 5 kGy, 10 kGy and 20 kGy. It was also observed that the measured OSL signals were well above the background level even after one year of irradiation. It is therefore concluded that irradiated thyme, mint and clove samples can clearly be identified using the CW-OSL technique without any pre-treatment even one year after irradiation. This result indicates that, where spices contain sufficient silicate minerals, the CW-OSL technique could be used as a method for detecting irradiation.


Asunto(s)
Irradiación de Alimentos , Mentha , Dosimetría con Luminiscencia Ópticamente Estimulada , Especias/análisis , Syzygium , Thymus (Planta) , Luz
13.
Microb Pathog ; 143: 104118, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32147410

RESUMEN

Stored rice and rice products are prone to contamination by pathogenic fungi and bacteria such as Aspergillus niger, Bacillus cereus, and Paenibacillus amylolyticus. Treatment with antimicrobial essential oils (EOs) and irradiation are options to control spoilage organisms. Microbial samples with or without fumigation with an oregano/thyme EO mixture were irradiated at 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 kGy for calculation of a D10 value. The relative sensitivity was calculated as the ratio of D10 values for the irradiation plus oregano and thyme EO combination and irradiation alone treatments. In all cases, irradiation plus fumigation with the oregano and thyme EO mixture showed increased efficacy compared with irradiation alone. The relative sensitivity of γ-ray irradiation against A. niger was 1.22, 1.33, and 1.24 for radiation dose rates of 10.445, 4.558, and 0.085 kGy/h, respectively, however against B. cereus it was 1.28, 1.45, and 1.49, and against P. amylolyticus it was 1.35, 1.33, and 1.38, for respective γ-ray irradiation dose rates. The relative sensitivity of X-ray irradiation against A. niger, B. cereus, and P. amylolyticus was 1.63, 1.21, and 1.31, respectively, at the X-ray dose rate of 0.76 kGy/h. The results showed that the relative sensitivity of γ-ray irradiation was higher against the two bacteria than the fungus, whereas X-ray showed higher sensitivity against the fungus than the two bacteria. There was no consistent positive or negative relationship between dose rate and relative sensitivity. The results demonstrated the potential of an oregano and thyme EOs mixture as an antimicrobial agent and its efficacy to increase the radiosensitization of A. niger, B. cereus, and P. amylolyticus during γ-ray or X-ray irradiation treatments.


Asunto(s)
Irradiación de Alimentos/métodos , Conservación de Alimentos/métodos , Aceites Volátiles/uso terapéutico , Aspergillus niger/efectos de los fármacos , Aspergillus niger/efectos de la radiación , Bacillus cereus/efectos de los fármacos , Bacillus cereus/efectos de la radiación , Rayos gamma , Origanum , Oryza/microbiología , Paenibacillus/efectos de los fármacos , Paenibacillus/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/farmacología , Radiometría , Thymus (Planta) , Rayos X
14.
Crit Rev Food Sci Nutr ; 60(21): 3573-3588, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31830802

RESUMEN

With the launch of aerospace business, the national space agency has been working actively to improve the living environment of astronauts in outer space. Since 1980s, space food has been greatly enriched, except the differences in form, most of the foods on earth can be enjoyed in space. In this article, the space foods are classified, in general divided into five parts that include natural form food, intermediate moisture food, thermostabilized food, rehydrating food and irradiated food. New type of space food processing technology is also reviewed, including freeze-drying, irradiation sterilization, high pressure processing, microwave assisted thermal sterilization, food 3 D printing and the packaging of space food products, mainly including the packaging materials already used by the present space food system, and the feasibility analysis of some emerging high barrier packaging materials in the research stage. Finally, the review highlights the prospects of future space food system, including the development of in-orbit food preparation technology and the research of life support system.


Asunto(s)
Irradiación de Alimentos , Alimentos , Manipulación de Alimentos , Embalaje de Alimentos , Tecnología de Alimentos , Liofilización
15.
J Appl Microbiol ; 129(5): 1227-1237, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32418285

RESUMEN

AIMS: The objective of this study was to evaluate the antimicrobial effects of radio frequency (RF) heating and the combination treatment of RF heating with ultraviolet (UV) radiation against foodborne pathogens in roasted grain powder (RGP). METHODS AND RESULTS: Foodborne pathogens inoculated on RGP were subjected to RF heating or RF-UV combination treatments. After 120 s of RF heating, 4·68, 3·89 and 4·54 log reductions were observed for Escherichia coli, Salmonella Typhimurium and Bacillus cereus vegetative cells respectively. The combined RF-UV treatment showed synergistic effects of over 1 log unit compared to the sum of individual treatment for E. coli and S. Typhimurium, but not for B. cereus vegetative cells because of their high UV resistance. Germinated B. cereus cells were not significantly inactivated by RF heating (<1 log CFU per gram), and increased heat resistance compared to the vegetative cells was verified with mild heat treatment. The colour of RGP was not significantly affected by the RF or RF-UV treatments. CONCLUSIONS: Applying RF heating to grain-based food products has advantages for the inactivation of E. coli and S. Typhimurium in RGP. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of the present study could be used as a basis for determining the treatment conditions for inactivating E. coli and other foodborne pathogens such as S. Typhimurium and B. cereus in RGP.


Asunto(s)
Bacterias/efectos de la radiación , Grano Comestible/microbiología , Irradiación de Alimentos/métodos , Bacterias/crecimiento & desarrollo , Recuento de Colonia Microbiana , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Viabilidad Microbiana/efectos de la radiación , Ondas de Radio , Esporas Bacterianas/fisiología , Esporas Bacterianas/efectos de la radiación , Rayos Ultravioleta
16.
J Appl Microbiol ; 128(6): 1534-1546, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31991509

RESUMEN

AIMS: The objective was to evaluate the possible synergistic effect of cranberry juice (CJ) and commercial citrus extract (BS) against FCV-F9 viral titre in vitro in combination with γ-irradiation and to determinate the D10 values and radiosensitivity increase. METHODS AND RESULTS: Virus samples were treated with a formulation containing a mixture of BS or CJ. Results showed a D10 of 0·05, 0·42% and 1·34 kGy for the virus treated with the BS, the CJ and the irradiation alone respectively. Concentrations needed to reduce 6 log TCID50  ml-1 of viral titre were BS-0·3%, CJ-2·52% and 8·04 kGy. Irradiation combined with BS-0·01% and CJ-0·1% against FCV-F9 virus showed D10 values of 0·74 and 0·72 kGy, respectively, resulting in a viral radiosensitization of 1·28 and 1·50 for respective treatments. CONCLUSION: The higher viral radiosensitization observed after combining γ-irradiation with BS-0·01% and CJ-0·1% indicates that CJ and BS could be used as antiviral agents alone or in combination with γ-irradiation to prevent NoV outbreaks. SIGNIFICANCE AND IMPACT OF THE STUDY: Cranberry juice and BS could be used in hurdle approaches in combined treatment with γ-irradiation to assure food safety without a detrimental effect on nutritional value and maintain low processing cost.


Asunto(s)
Antivirales/farmacología , Calicivirus Felino/fisiología , Irradiación de Alimentos/métodos , Rayos gamma , Tolerancia a Radiación/efectos de los fármacos , Calicivirus Felino/efectos de los fármacos , Calicivirus Felino/efectos de la radiación , Citrus/química , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Inocuidad de los Alimentos , Vaccinium macrocarpon/química
17.
Food Microbiol ; 87: 103382, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31948623

RESUMEN

Although due to their acidity some fruit juices are considered safe, several outbreaks have been reported. For processing fruit juices, microwave heating offers advantages such as shorter come-up time, faster and uniform heating, and energy efficiency. Thus, it could be a beneficial alternative to conventional pasteurization. The objective of this study was to study the inactivation kinetics of Escherichia coli O157:H7 and Salmonella Typhimurium under microwave pasteurization at temperatures between 80 and 90 °C, i.e., at conditions that are employed in conventional pasteurization. Inoculated juices were treated at different power levels (600 W, 720 W) and treatment times (5s, 10s, 15s, 20s, 25s). Time-temperature profiles were obtained by fiber-optic sensors in contact with the samples allowing continuous data collection. The log-logistic and Arrhenius equations were used to account for the influence of the temperature history; thus, resulting in two different modeling approaches that were compared in terms of their prediction abilities. Survival kinetics including non-isothermal conditions were described by a non-linear ordinary differential equation that was numerically solved by the Runge-Kutta method (ode45 in MATLAB ®). The lsqcurvefit function (MATLAB®) was employed to estimate the corresponding survival parameters, which were obtained from freshly made apple juice, whereas the prediction ability of these parameters was evaluated on commercial apple juices. Results indicated that inactivation increased with power level, temperature, and treatment time reaching a microbial reduction up to 7 Log10 cycles. The study is relevant to the food industry because it provides a quantitative tool to predict survival characteristics of pathogens at other non-isothermal processing conditions.


Asunto(s)
Escherichia coli O157/efectos de la radiación , Irradiación de Alimentos/métodos , Jugos de Frutas y Vegetales/microbiología , Malus/microbiología , Salmonella typhimurium/efectos de la radiación , Recuento de Colonia Microbiana , Escherichia coli O157/crecimiento & desarrollo , Irradiación de Alimentos/instrumentación , Microondas , Salmonella typhimurium/crecimiento & desarrollo , Temperatura
18.
Food Microbiol ; 88: 103401, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31997758

RESUMEN

This study determined the efficacy of UV-C as a decontamination process against some foodborne bacteria in dried whole black peppercorns. Artificially-inoculated Salmonella enterica, Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus were subjected to UV-C with a surface irradiance of 0.43 mW/cm2 and were all found to exhibit a biphasic inactivation pattern with fast log-linear inactivation followed by a tail. Total log reductions (TLR) ranged from 1.92 (S. aureus) to 3.60 log CFU/g (E. coli O157:H7). Increasing the lamp number from 1 to 5 also linearly (R2 = 0.98) increased the surface irradiance from 0.43 to 1.70 and the TLR of the most resistant S. aureus from 1.92 to 2.62 log CFU/g. Quality evaluation showed very small, variable changes in color coordinates, which were not detected by a same/different test involving a 50-member sensory evaluation panel. Mercury deposition was not detected after a maximum exposure time of 90 min to 0.43 and 1.70 mW/cm2. Finally small, non-significant changes in the innate bacterial microflora of the black peppercorns were determined after 90 min-treatment using 1 lamp and 5 lamps, emphasizing the limitation of utility of UV-C as additional decontamination process for post-process-introduced microorganisms. Good Manufacturing Practices throughout the dried black peppercorn manufacturing process were recommended.


Asunto(s)
Bacterias/efectos de la radiación , Descontaminación/métodos , Irradiación de Alimentos/métodos , Viabilidad Microbiana/efectos de la radiación , Rayos Ultravioleta , Recuento de Colonia Microbiana , Colorimetría , Escherichia coli O157/efectos de la radiación , Microbiología de Alimentos/métodos , Listeria monocytogenes/efectos de la radiación , Staphylococcus aureus/efectos de la radiación
19.
Food Microbiol ; 91: 103543, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32539944

RESUMEN

In this study, we investigated the antimicrobial activity of the X-ray irradiation and citric acid (CA) combination against Escherichia coli O157:H7 and Listeria monocytogenes on the surface of spinach leaves and elucidated the mechanisms underlying their synergistic interaction. Upon treatment with 0.3 kGy X-ray irradiation and 1% CA combination, the cell counts of E. coli O157:H7 and L. monocytogenes reduced by 4.23 and 3.69 log CFU/mL on spinach leaves, respectively. The synergistic reduction in the cell counts of E. coli O157:H7 and L. monocytogenes by the combination treatment was 0.95 and 1.14 log units, respectively. The X-ray and CA combination exerts its antimicrobial effect by damaging the bacterial cell membrane and enhancing the generation of intracellular reactive oxygen species in the pathogens. The enhanced bactericidal effect of the combination treatment may not be due to the loss of intracellular enzyme activity. We also evaluated the effect of the combination treatment on the quality attributes of spinach leaves. The combination treatment did not result in adverse changes in color and texture of spinach leaves. These results demonstrate the potential of citric acid and X-ray irradiation combination for decontaminating foodborne pathogens on fresh produce.


Asunto(s)
Ácido Cítrico/farmacología , Desinfectantes/farmacología , Irradiación de Alimentos/métodos , Spinacia oleracea/microbiología , Membrana Celular/efectos de los fármacos , Membrana Celular/efectos de la radiación , Recuento de Colonia Microbiana , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/metabolismo , Escherichia coli O157/efectos de la radiación , Microbiología de Alimentos , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/metabolismo , Listeria monocytogenes/efectos de la radiación , Hojas de la Planta/microbiología , Especies Reactivas de Oxígeno/metabolismo , Rayos X
20.
Food Microbiol ; 92: 103584, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32950168

RESUMEN

The objectives of this study were to evaluate the bactericidal effects of X-ray irradiation and gallic acid (GA) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on lettuce leaves and in phosphate-buffered saline (PBS). Inoculated PBS and lettuce were exposed to X-rays (0.05, 0.1, and 0.15; 0.1, 0.2, and 0.3 kGy, respectively), and GA was applied to lettuce leaves as a solution and in PBS at concentrations of 0.5% (w/v). Combined treatment with 0.3 kGy and 0.5% GA reduced E. coli O157:H7, S. Typhimurium, and L. monocytogenes cell counts 5.41, 2.57, and 1.36 log CFU/cm2 on lettuce, respectively. Combined treatment with 0.15 kGy X-ray and 0.5% GA reduced counts for the same species by 6.54, 4.24, and 1.51 log CFU/mL in PBS. The combined treatments exerted a synergistic antibacterial effect against E. coli O157:H7 on lettuce, but not against S. Typhimurium or L. monocytogenes. In PBS, the synergistic effect was confirmed in both E. coli O157:H7 and S. Typhimurium cells. Mechanistic investigations indicated that the synergistic antibacterial effect was associated with intracellular reactive oxygen species (ROS) generation and bacterial cell membrane damage. Additionally, the X-ray and GA combination treatment did not adversely affect the color, total phenol content, and texture of lettuce. These findings demonstrate that treatment with X-ray radiation and GA can enhance the microbiological safety of fresh produce.


Asunto(s)
Antibacterianos/farmacología , Conservación de Alimentos/métodos , Ácido Gálico/farmacología , Lactuca/microbiología , Recuento de Colonia Microbiana , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/efectos de la radiación , Irradiación de Alimentos/métodos , Conservación de Alimentos/instrumentación , Conservantes de Alimentos/farmacología , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/efectos de la radiación , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/efectos de la radiación , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA