Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 236(2): 1345-1361, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32657446

RESUMEN

Fibroblast growth factor 21 (FGF21) as a metabolic stress hormone, is mainly secreted by the liver. In addition to its well-defined roles in energy homeostasis, FGF21 has been shown to promote remyelination after injury in the central nervous system. In the current study, we sought to examine the potential roles of FGF21 in the peripheral nervous system (PNS) myelination. In the PNS myelin development, Fgf21 expression was reversely correlated with myelin gene expression. In cultured primary Schwann cells (SCs), the application of recombinant FGF21 greatly attenuates myelination-associated gene expression, including Oct6, Krox20, Mbp, Mpz, and Pmp22. Accordingly, the injection of FGF21 into neonatal rats markedly mitigates the myelination in sciatic nerves. On the contrary, the infusion of the anti-FGF21 antibody accelerates the myelination. Mechanistically, both extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) were stimulated by FGF21 in SCs and sciatic nerves. Following experiments including pharmaceutical intervention and gene manipulation revealed that the p38 MAPK/c-Jun axis, rather than ERK, is targeted by FGF21 for mediating its repression on myelination in SCs. Taken together, our data provide a new aspect of FGF21 by acting as a negative regulator for the myelin development process in the PNS via activation of p38 MAPK/c-Jun.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Vaina de Mielina/genética , Traumatismos de los Nervios Periféricos/terapia , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Animales Recién Nacidos , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Metabolismo Energético/genética , Regulación de la Expresión Génica/genética , Humanos , Hígado/metabolismo , Proteína P0 de la Mielina/genética , Proteínas de la Mielina/genética , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/patología , Sistema Nervioso Periférico/crecimiento & desarrollo , Sistema Nervioso Periférico/patología , Cultivo Primario de Células , Ratas , Células de Schwann/metabolismo , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo , Transducción de Señal/genética
2.
Phytother Res ; 35(8): 4592-4604, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34089208

RESUMEN

Oxidative stress plays the main role in the pathogenesis of diabetes mellitus and peripheral neuropathy. Polydatin (PD) has been shown to exhibit strong antioxidative and antiinflammatory effects. At present, no research has focused on the possible effects of PD on Schwann cells and impaired peripheral nerves in diabetic models. Here, we used an in vitro Schwann cell damage model induced by methylglyoxal and an in vivo diabetic sciatic nerve crush model to study problems in such an area. In our experiment, we demonstrated that PD potently alleviated the decrease of cellular viability, prevented reactive oxygen species generation, and suppressed mitochondrial depolarization as well as cellular apoptosis in damaged Schwann cells. Moreover, we found that PD could upregulate Nrf2 and Glyoxalase 1 (GLO1) expression and inhibit Keap1 and receptor of AGEs (RAGE) expression of damaged Schwann cells. Finally, our in vivo experiment showed that PD could promote sciatic nerves repair of diabetic rats. Our results revealed that PD exhibited prominent neuroprotective effects on Schwann cells and sciatic nerves in diabetic models. The molecular mechanisms were associated with activating Nfr2 and GLO1 and inhibiting Keap1 and RAGE.


Asunto(s)
Diabetes Mellitus Experimental , Glucósidos/farmacología , Factor 2 Relacionado con NF-E2 , Células de Schwann/efectos de los fármacos , Nervio Ciático/crecimiento & desarrollo , Estilbenos/farmacología , Animales , Células Cultivadas , Diabetes Mellitus Experimental/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2/metabolismo , Compresión Nerviosa , Piruvaldehído/toxicidad , Ratas , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones
3.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430035

RESUMEN

Traumatic peripheral nerve lesions affect hundreds of thousands of patients every year; their consequences are life-altering and often devastating and cause alterations in movement and sensitivity. Spontaneous peripheral nerve recovery is often inadequate. In this context, nowadays, cell therapy represents one of the most innovative approaches in the field of nerve repair therapies. The purpose of this systematic review is to discuss the features of different types of mesenchymal stem cells (MSCs) relevant for peripheral nerve regeneration after nerve injury. The published literature was reviewed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A combination of the keywords "nerve regeneration", "stem cells", "peripheral nerve injury", "rat", and "human" were used. Additionally, a "MeSH" research was performed in PubMed using the terms "stem cells" and "nerve regeneration". The characteristics of the most widely used MSCs, their paracrine potential, targeted stimulation, and differentiation potentials into Schwann-like and neuronal-like cells are described in this paper. Considering their ability to support and stimulate axonal growth, their remarkable paracrine activity, their presumed differentiation potential, their extremely low immunogenicity, and their high survival rate after transplantation, ADSCs appear to be the most suitable and promising MSCs for the recovery of peripheral nerve lesion. Clinical considerations are finally reported.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Regeneración Nerviosa/fisiología , Nervios Periféricos/fisiología , Animales , Diferenciación Celular , Humanos , Regeneración Nerviosa/genética , Ratas , Células de Schwann/fisiología , Nervio Ciático/crecimiento & desarrollo
4.
J Nanobiotechnology ; 18(1): 46, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32169062

RESUMEN

BACKGROUND: Peripheral nerve injury is one common clinical disease worldwide, in which sciatic nerve is anatomically the most challenging to regenerate given its length and large cross-sectional area. For the present, autologous nerve grafting remains to be the most ideal strategy when treating with sciatic nerve injury. However, this method sacrifices healthy nerves and requires highly intensive surgery, still calling for other advanced alternatives for nerve grafting. RESULTS: In this study, we utilized previously well-established gene delivery system to dually deliver plasmid DNA (pDNA) encoding vascular endothelial growth factor (VEGF) and nerve growth factor (NGF), exploring therapeutics for sciatic nerve injury. Low-molecular-weight branched polyethylenimine (bPEI) was constructed as the backbone structure of gene vectors, and it was further crosslinked to synthesize degradable polycations via the conjugation of dialdehydes. Potential synergistic effect between VEGF and NGF proteins were observed on rat sciatic nerve crush injury model in this study. CONCLUSIONS: We concluded that dual delivery of plasmid VEGF and NGF as gene therapy could enhance sciatic nerve regeneration.


Asunto(s)
Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa/fisiología , Nervio Ciático/crecimiento & desarrollo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Anoplura/química , Autoinjertos , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos , Nanopartículas/química , Tamaño de la Partícula , Polietileneimina , Piridinas , Ratas , Nervio Ciático/lesiones , Nervio Ciático/patología , Neuropatía Ciática
5.
J Cell Physiol ; 234(12): 23097-23110, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31124125

RESUMEN

Human adipose-derived stem cells (ASCs) have a potential for the treatment of peripheral nerve injury. Recent studies demonstrated that stem cells can mediate therapeutic effect by secreting exosomes. We aimed to investigate the effect of human ASCs derived exosomes (ASC-Exos) on peripheral nerve regeneration in vitro and in vivo. Our results showed after being internalized by Schwann cells (SCs), ASC-Exos significantly promoted SC proliferation, migration, myelination, and secretion of neurotrophic factors by upregulating corresponding genes in vitro. We next evaluated the efficacy of ASC-Exo therapy in a rat sciatic nerve transection model with a 10-mm gap. Axon regeneration, myelination, and restoration of denervation muscle atrophy in ASC-Exos treated group was significantly improved compared to vehicle control. This study demonstrates that ASC-Exos effectively promote peripheral nerve regeneration via optimizing SC function and thereby represent a novel therapeutic strategy for regenerative medicine and nerve tissue engineering.


Asunto(s)
Exosomas/genética , Trasplante de Células Madre Mesenquimatosas , Atrofia Muscular/terapia , Regeneración Nerviosa/genética , Traumatismos de los Nervios Periféricos/terapia , Animales , Axones/metabolismo , Axones/patología , Diferenciación Celular/genética , Movimiento Celular/genética , Proliferación Celular/genética , Exosomas/trasplante , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patología , Fibras Nerviosas Mielínicas/metabolismo , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/patología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/genética , Células de Schwann/trasplante , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/patología
6.
J Cell Biochem ; 120(9): 14971-14985, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31062403

RESUMEN

The pluripotency of adipose-derived stem cells (ADSCs) makes them appropriate for tissue repair and wound healing. Owing to the repair properties of autologous platelet-rich gel (APG), which is based on easily accessible blood platelets, its clinical use has been increasingly recognized by physicians. The aim of this study was to investigate the effect of combined treatment with ADSCs and APG on sciatic nerve regeneration after electrical injury. To facilitate the differentiation of ADSCs, glial cell line-derived neurotrophic factor (GDNF) was overexpressed in ADSCs by lentivirus transfection. GDNF-ADSCs were mingled with APG gradient concentrations, and in vitro, cell proliferation and differentiation were examined with 5-ethynyl-2'-deoxyuridine staining and immunofluorescence. A rat model was established by exposing the sciatic nerve to an electrical current of 220 V for 3 seconds. Rat hind-limb motor function and sciatic nerve regeneration were subsequently evaluated. Rat ADSCs were characterized by high expression of CD90 and CD105, with scant expression of CD34 and CD45. We found that GDNF protein expression in ADSCs was elevated after Lenti-GDNF transfection. In GDNF-ADSCs-APG cultures, GDNF was increasingly produced while tissue growth factor-ß was reduced as incubation time was increased. ADSC proliferation was augmented and neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) expression were upregulated in GDNF-ADSCs-APG. In addition, limb motor function and nerve axon growth were improved after GDNF-ADSCs-APG treatment. In conclusion, our study demonstrates the combined effect of ADSCs and APG in peripheral nerve regeneration and may lead to treatments that benefit patients with electrical injuries.


Asunto(s)
Traumatismos por Electricidad/terapia , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Regeneración Nerviosa/fisiología , Plasma Rico en Plaquetas/metabolismo , Células Madre Pluripotentes/citología , Nervio Ciático/crecimiento & desarrollo , Tejido Adiposo/citología , Animales , Antígenos CD34/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Electricidad/efectos adversos , Endoglina/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Masculino , Modelos Animales , Ratas , Ratas Endogámicas F344 , Antígenos Thy-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
7.
Cell Tissue Bank ; 20(2): 307-319, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31030290

RESUMEN

There have been various studies about the acellular nerve allograft (ANA) as the alternative of autologous nerve graft in the treatment of peripheral nerve defects. As well as the decellularization process methods of ANA, the various enhancement methods of regeneration of the grafted ANA were investigated. The chondroitin sulfate proteoglycans (CSPGs) inhibit the action of laminin which is important for nerve regeneration in the extracellular matrix of nerve. Chondroitinase ABC (ChABC) has been reported that it enhances the nerve regeneration by degradation of CSPGs. The present study compared the regeneration of ANA between the processed without ChABC group and the processed with ChABC group in a rat sciatic nerve 15 mm gap model. At 12 weeks postoperatively, there was not a significant difference in the histomorphometric analysis. In the functional analysis, there were no significant differences in maximum isometric tetanic force, wet muscle weight of tibialis anterior. The processed without ChABC group had better result in ankle contracture angle significantly. In conclusion, there were no significant differences in the regeneration of ANA between the processed without ChABC group and the processed with ChABC group.


Asunto(s)
Condroitina ABC Liasa/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Laminina/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Nervio Ciático/trasplante , Animales , Masculino , Ratas , Ratas Endogámicas Lew , Ratas Sprague-Dawley , Nervio Ciático/crecimiento & desarrollo , Trasplante Homólogo
8.
J Neurosci ; 37(49): 11818-11834, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29089441

RESUMEN

Schwann cells (SCs) are myelinating cells of the PNS. Although SCs are known to express different channels and receptors on their surface, little is known about the activation and function of these proteins. Ionotropic glutamate receptors are thought to play an essential role during development of SC lineage and during peripheral nerve injury, so we sought to study their functional properties. We established a novel preparation of living peripheral nerve slices with preserved cellular architecture and used a patch-clamp technique to study AMPA-receptor (AMPAR)-mediated currents in SCs for the first time. We found that the majority of SCs in the nerves dissected from embryonic and neonatal mice of both sexes respond to the application of glutamate with inward current mediated by Ca2+-permeable AMPARs. Using stationary fluctuation analysis (SFA), we demonstrate that single-channel conductance of AMPARs in SCs is 8-11 pS, which is comparable to that in neurons. We further show that, when SCs become myelinating, they downregulate functional AMPARs. This study is the first to demonstrate AMPAR-mediated conductance in SCs of vertebrates, to investigate elementary properties of AMPARs in these cells, and to provide detailed electrophysiological and morphological characterization of SCs at different stages of development.SIGNIFICANCE STATEMENT We provide several important conceptual and technical advances in research on the PNS. We pioneer the first description of AMPA receptor (AMPAR)-mediated currents in the PNS glia of vertebrates and provide new insights into the properties of AMPAR channels in peripheral glia; for example, their Ca2+ permeability and single-channel conductance. We describe for the first time the electrophysiological and morphological properties of Schwann cells (SCs) at different stages of development and show that functional AMPARs are expressed only in developing, not mature, SCs. Finally, we introduce a preparation of peripheral nerve slices for patch-clamp recordings. This preparation opens new possibilities for studying the physiology of SCs in animal models and in surgical human samples.


Asunto(s)
Ácido Glutámico/farmacología , Conducción Nerviosa/fisiología , Nervios Periféricos/crecimiento & desarrollo , Receptores AMPA/metabolismo , Células de Schwann/fisiología , Nervio Ciático/crecimiento & desarrollo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Conducción Nerviosa/efectos de los fármacos , Técnicas de Cultivo de Órganos , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/embriología , Embarazo , Receptores AMPA/agonistas , Células de Schwann/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Nervio Ciático/embriología
9.
Glia ; 66(4): 801-812, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29282769

RESUMEN

Glycoprotein M6B and the closely related proteolipid protein regulate oligodendrocyte myelination in the central nervous system, but their role in the peripheral nervous system is less clear. Here we report that M6B is located at nodes of Ranvier in peripheral nerves where it stabilizes the nodal axolemma. We show that M6B is co-localized and associates with gliomedin at Schwann cell microvilli that are attached to the nodes. Developmental analysis of sciatic nerves, as well as of myelinating Schwann cells/dorsal root ganglion neurons cultures, revealed that M6B is already present at heminodes, which are considered the precursors of mature nodes of Ranvier. However, in contrast to gliomedin, which accumulates at heminodes with or prior to Na+ channels, we often detected Na+ channel clusters at heminodes without any associated M6B, indicating that it is not required for initial channel clustering. Consistently, nodal cell adhesion molecules (NF186, NrCAM), ion channels (Nav1.2 and Kv7.2), cytoskeletal proteins (AnkG and ßIV spectrin), and microvilli components (pERM, syndecan3, gliomedin), are all present at both heminodes and mature nodes of Ranvier in Gpm6b null mice. Using transmission electron microscopy, we show that the absence of M6B results in progressive appearance of nodal protrusions of the nodal axolemma, that are often accompanied by the presence of enlarged mitochondria. Our results reveal that M6B is a Schwann cell microvilli component that preserves the structural integrity of peripheral nodes of Ranvier.


Asunto(s)
Axones/metabolismo , Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Nódulos de Ranvier/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Glicoproteínas de Membrana/genética , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Ratas , Nervio Ciático/citología , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo , Canales de Sodio/metabolismo , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo
10.
Glia ; 66(3): 670-687, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29222871

RESUMEN

To compact the extracellular sides of myelin, an important transition must take place: from membrane sliding, while building the wraps, to membrane adhesion and water exclusion. Removal of the negatively charged glycocalyx becomes the limiting factor in such transition. What is required to initiate this membrane-zipping process? Knocking-out the Lipocalin Apolipoprotein D (ApoD), essential for lysosomal functional integrity in glial cells, results in a specific defect in myelin extracellular leaflet compaction in peripheral and central nervous system, which results in reduced conduction velocity and suboptimal behavioral outputs: motor learning is compromised. Myelination initiation, growth, intracellular leaflet compaction, myelin thickness or internodal length remain unaltered. Lack of ApoD specifically modifies Plp and P0 protein expression, but not Mbp or Mag. Late in myelin maturation period, ApoD affects lipogenic and growth-related, but not stress-responsive, signaling pathways. Without ApoD, the sialylated glycocalyx is maintained and ganglioside content remains high. In peripheral nervous system, Neu3 membrane sialidase and lysosomal Neu1 are coordinately expressed with ApoD in subsets of Schwann cells. ApoD-KO myelin becomes depleted of Neu3 and enriched in Fyn, a kinase with pivotal roles in transducing axon-derived signals into myelin properties. In the absence of ApoD, partial permeabilization of lysosomes alters Neu1 location as well. Exogenous ApoD rescues ApoD-KO hypersialylated glycocalyx in astrocytes, demonstrating that ApoD is necessary and sufficient to control glycocalyx composition in glial cells. By ensuring lysosomal functional integrity and adequate subcellular location of effector and regulatory proteins, ApoD guarantees the glycolipid recycling and glycocalyx removal required to complete myelin compaction.


Asunto(s)
Apolipoproteínas D/metabolismo , Glicocálix/metabolismo , Lisosomas/metabolismo , Vaina de Mielina/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Apolipoproteínas D/administración & dosificación , Apolipoproteínas D/genética , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Escherichia coli , Espacio Extracelular/metabolismo , Discapacidades para el Aprendizaje/metabolismo , Discapacidades para el Aprendizaje/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Mucolipidosis/metabolismo , Neuraminidasa/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo , Nervio Ciático/citología , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo
11.
Glia ; 66(9): 1947-1959, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29722913

RESUMEN

Proper peripheral myelination depends upon the balance between Schwann cell proliferation and differentiation programs. The serine/threonine kinase mTOR integrates various environmental cues to serve as a central regulator of cell growth, metabolism, and function. We report here that tuberous sclerosis complex 1 (TSC1), a negative regulator of mTOR activity, establishes a stage-dependent program for Schwann cell lineage progression and myelination by controlling cell proliferation and myelin homeostasis. Tsc1 ablation in Schwann cell progenitors in mice resulted in activation of mTOR signaling, and caused over-proliferation of Schwann cells and blocked their differentiation, leading to hypomyelination. Transcriptome profiling analysis revealed that mTOR activation in Tsc1 mutants resulted in upregulation of a polo-like kinase (PLK)-dependent pathway and cell cycle regulators. Attenuation of mTOR or pharmacological inhibition of polo-like kinases partially rescued hypomyelination caused by Tsc1 loss in the developing peripheral nerves. In contrast, deletion of Tsc1 in mature Schwann cells led to redundant and overgrown myelin sheaths in adult mice. Together, our findings indicate stage-specific functions for the TSC1-mTOR-PLK signaling axis in controlling the transition from proliferation to differentiation and myelin homeostasis during Schwann cell development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/fisiología , Homeostasis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Células de Schwann/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Femenino , Homeostasis/efectos de los fármacos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pteridinas/farmacología , Células de Schwann/efectos de los fármacos , Células de Schwann/patología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo , Nervio Ciático/patología , Transcriptoma , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Quinasa Tipo Polo 1
12.
J Cell Biochem ; 119(10): 8643-8658, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29953642

RESUMEN

Myelin sheath is critical for the proper functioning of the peripheral nervous system (PNS), which allows the effective conduction of nerve impulses. Fibroblast growth factor 9 (FGF9) is an autocrine and paracrine protein in the fibroblast growth factor family that regulates cell differentiation and proliferation. Fgf9 Schwann cell (SC) conditional knockout mice were developed to detect the role of FGF9 in the PNS. In our study, the absence of Fgf9 led to delayed myelination in early development. The expression of mature SC-related genes decreased, and the expression of genes associated with immature SCs increased in the Fgf9 knockout mice. These data were consistent with the morphology and praxeology we observed during the development of the peripheral nerves. Extracellular-regulated kinases 1/2 (ERK1/2) are key signals for myelination, and our results showed that Fgf9 ablation led to the inactivation of ERK1/2. Further research was performed to detect the role of FGF9 in peripheral nerve injury. In superoxide dismutase 1-G93A mice with Fgf9 SC knockout, we found that Fgf9 ablation inhibited the expressions of Cd68, Il-1ß, and Cd86, which contributed to the degeneration of the axon and myelin sheath.


Asunto(s)
Factor 9 de Crecimiento de Fibroblastos/metabolismo , Inflamación/metabolismo , Neurogénesis/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Células de Schwann/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Apoptosis/fisiología , Axones/metabolismo , Antígeno B7-2/metabolismo , Conducta Animal/fisiología , Factor 9 de Crecimiento de Fibroblastos/genética , Técnicas de Inactivación de Genes , Interleucina-1beta/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Vaina de Mielina/metabolismo , Sistema Nervioso Periférico/metabolismo , Nervio Ciático/crecimiento & desarrollo , Estadísticas no Paramétricas , Superóxido Dismutasa/metabolismo
13.
Glia ; 65(9): 1452-1470, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28617998

RESUMEN

The PI 3-kinase Vps34 (Pik3c3) synthesizes phosphatidylinositol 3-phosphate (PI3P), a lipid critical for both endosomal membrane traffic and macroautophagy. Human genetics have implicated PI3P dysregulation, and endosomal trafficking in general, as a recurring cause of demyelinating Charcot-Marie-Tooth (CMT) peripheral neuropathy. Here, we investigated the role of Vps34, and PI3P, in mouse Schwann cells by selectively deleting Vps34 in this cell type. Vps34-Schwann cell knockout (Vps34SCKO ) mice show severe hypomyelination in peripheral nerves. Vps34-/- Schwann cells interact abnormally with axons, and there is a delay in radial sorting, a process by which large axons are selected for myelination. Upon reaching the promyelinating stage, Vps34-/- Schwann cells are significantly impaired in the elaboration of myelin. Nerves from Vps34SCKO mice contain elevated levels of the LC3 and p62 proteins, indicating impaired autophagy. However, in the light of recent demonstrations that autophagy is dispensable for myelination, it is unlikely that hypomyelination in Vps34SCKO mice is caused by impaired autophagy. Endosomal trafficking is also disturbed in Vps34-/- Schwann cells. We investigated the activation of the ErbB2/3 receptor tyrosine kinases in Vps34SCKO nerves, as these proteins, which play essential roles in Schwann cell myelination, are known to traffic through endosomes. In Vps34SCKO nerves, ErbB3 was hyperphosphorylated on a tyrosine known to be phosphorylated in response to neuregulin 1 exposure. ErbB2 protein levels were also decreased during myelination. Our findings suggest that the loss of Vps34 alters the trafficking of ErbB2/3 through endosomes. Abnormal ErbB2/3 signaling to downstream targets may contribute to the hypomyelination observed in Vps34SCKO mice.


Asunto(s)
Axones/enzimología , Fosfatidilinositol 3-Quinasas Clase III/deficiencia , Proyección Neuronal/fisiología , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Células de Schwann/enzimología , Animales , Autofagia/fisiología , Axones/patología , Proliferación Celular/fisiología , Fosfatidilinositol 3-Quinasas Clase III/genética , Endosomas/enzimología , Endosomas/patología , Femenino , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Nervios Periféricos/enzimología , Nervios Periféricos/crecimiento & desarrollo , Nervios Periféricos/patología , Fosforilación , Células de Schwann/patología , Nervio Ciático/enzimología , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/patología , Transducción de Señal
14.
Glia ; 64(1): 175-94, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26507463

RESUMEN

In mammals, large caliber axons are ensheathed by myelin, a glial specialization supporting axon integrity and conferring accelerated and energy-efficient action potential conduction. Myelin basic protein (MBP) is required for normal myelin elaboration with maximal mbp transcription in oligodendrocytes requiring the upstream M3 enhancer. To further characterize the mechanism regulating mbp transcription, we defined M3 structure/function relationships by evaluating its evolutionary conservation, DNA footprints and the developmental programing conferred in mice by M3 derivatives. Multiple M3 regulatory element combinations were found to drive expression in oligodendrocytes and Schwann cells with a minimal 129 bp sequence conferring expression in oligodendrocytes throughout myelin elaboration, maintenance and repair. Unexpectedly, M3 derivatives conferred markedly different spatial and temporal expression programs thus illuminating striking transcriptional heterogeneity within post-mitotic oligodendrocytes. Finally, one M3 derivative engaged only during primary myelination, not during adult remyelination, demonstrating that transcriptional regulation in the two states is not equivalent.


Asunto(s)
Redes Reguladoras de Genes , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Secuencia de Bases , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Pollos , Secuencia Conservada , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/metabolismo , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo , Alineación de Secuencia , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , beta-Galactosidasa/metabolismo
15.
Muscle Nerve ; 53(5): 789-96, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26425938

RESUMEN

INTRODUCTION: A long-term peripheral neural interface is an area of intense research. The use of electrode interfaces is limited by the biological response to the electrode material. METHODS: We created an electrode construct to harbor the rat sciatic nerve with interposition of autogenous adipose tissue between the nerve and the electrode. The construct was implanted for 10 weeks. RESULTS: Immunohistochemistry showed a unique laminar pattern of axonal growth layered between fibro-collagenous tissue, forming a physical interface with the tungsten micro-electrode. Action potentials transmitted across the intrerface showed mean conduction velocities varying between 6.99 ± 2.46 and 20.14 ± 4 m/s. CONCLUSIONS: We have demonstrated the feasibility of a novel peripheral nerve interface through modulation of normal biologic phenomena. It has potential applications as a chronic implantable neural interface.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Electrodos Implantados , Microelectrodos , Tejido Nervioso/fisiología , Conducción Nerviosa/fisiología , Nervio Ciático/fisiología , Tejido Adiposo , Animales , Axones/patología , Colágeno/fisiología , Femenino , Inmunohistoquímica , Metales , Tejido Nervioso/crecimiento & desarrollo , Tejido Nervioso/patología , Ratas , Ratas Sprague-Dawley , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/patología
16.
Glia ; 63(9): 1522-36, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25988855

RESUMEN

In myelinating Schwann cells, E-cadherin is a component of the adherens junctions that stabilize the architecture of the noncompact myelin region. In other cell types, E-cadherin has been considered as a signaling receptor that modulates intracellular signal transduction and cellular responses. To determine whether E-cadherin plays a regulatory role during Schwann cell myelination, we investigated the effects of E-cadherin deletion and over-expression in Schwann cells. In vivo, Schwann cell-specific E-cadherin ablation results in an early myelination delay. In Schwann cell-dorsal root ganglia neuron co-cultures, E-cadherin deletion attenuates myelin formation and shortens the myelin segment length. When over-expressed in Schwann cells, E-cadherin improves myelination on Nrg1 type III(+/-) neurons and induces myelination on normally non-myelinated axons of sympathetic neurons. The pro-myelinating effect of E-cadherin is associated with an enhanced Nrg1-erbB receptor signaling, including activation of the downstream Akt and Rac. Accordingly, in the absence of E-cadherin, Nrg1-signaling is diminished in Schwann cells. Our data also show that E-cadherin expression in Schwann cell is induced by axonal Nrg1 type III, indicating a reciprocal interaction between E-cadherin and the Nrg1 signaling. Altogether, our data suggest a regulatory function of E-cadherin that modulates Nrg1 signaling and promotes Schwann cell myelin formation.


Asunto(s)
Axones/fisiología , Cadherinas/metabolismo , Vaina de Mielina/fisiología , Neurregulina-1/metabolismo , Células de Schwann/fisiología , Animales , Western Blotting , Cadherinas/genética , Técnicas de Cocultivo , Receptores ErbB/metabolismo , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Ratones Transgénicos , Interferencia de ARN , Ratas , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/fisiología , Transducción de Señal/fisiología
17.
J Neurosci Res ; 93(2): 285-95, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25327365

RESUMEN

The γ-aminobutyric acid (GABA) type B receptor has been implicated in glial cell development in the peripheral nervous system (PNS), although the exact function of GABA signaling is not known. To investigate GABA and its B receptor in PNS development and degeneration, we studied the expression of the GABAB receptor, GABA, and glutamic acid decarboxylase GAD65/67 in both development and injury in fetal dissociated dorsal root ganglia (DRG) cell cultures and in the rat sciatic nerve. We found that GABA, GAD65/67, and the GABAB receptor were expressed in premyelinating and nonmyelinating Schwann cells throughout development and after injury. A small population of myelinated sensory fibers displayed all of these molecules at the node of Ranvier, indicating a role in axon-glia communication. Functional studies using GABAB receptor agonists and antagonists were performed in fetal DRG primary cultures to study the function of this receptor during development. The results show that GABA, via its B receptor, is involved in the myelination process but not in Schwann cell proliferation. The data from adult nerves suggest additional roles in axon-glia communication after injury.


Asunto(s)
Vaina de Mielina/metabolismo , Nódulos de Ranvier/metabolismo , Receptores de GABA-B/metabolismo , Nervio Ciático , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Proliferación Celular/efectos de los fármacos , Embrión de Mamíferos , GABAérgicos/farmacología , Ganglios Espinales/citología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Glicoproteína Asociada a Mielina/genética , Glicoproteína Asociada a Mielina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/genética , Nervio Ciático/citología , Nervio Ciático/embriología , Nervio Ciático/crecimiento & desarrollo , Neuropatía Ciática/metabolismo , Neuropatía Ciática/patología
18.
Biomed Microdevices ; 17(6): 109, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26494637

RESUMEN

Injuries that result in the loss of limb functionality may be caused by the severing of the peripheral nerves within the affected limb. Several bioengineered peripheral nerve scaffolds have been developed in order to provide the physical support and topographical guidance necessary for the naturally disorganized axon outgrowth to reattach to distal nerve stumps as an alternative to other procedures, like nerve grafting. PDMS has been chosen for the base material of the scaffolds due to its biocompatibility, flexibility, transparency, and well-developed fabrication techniques. The process of observing the axon outgrowth across the nerve gaps with PDMS scaffolds has been challenging due to the limited number and fineness of longitudinal sections that can be extracted from harvested nerve tissue samples after implantation. To address this, multilayer microchannel scaffolds were developed with the object of providing more refined longitudinal observation of axon outgrowth by longitudinally 'sectioning' the device during fabrication, removing the need for much of the sample preparation process. This device was then implanted into the sciatic nerves of Lewis rats, and then harvested after two and four weeks to analyze the difference in nerve regeneration between two different time periods. The present layer by layer structure, which is separable after nerve regeneration and is treated as an individual layer during the histology process, provides the details of biological events during axonal regeneration. Confocal microscopic imaging showed the details of peripheral nerve regeneration including nerve branches and growth cones observable from within the microchannels of the multilayer PDMS microchannel scaffolds.


Asunto(s)
Dimetilpolisiloxanos/química , Regeneración Nerviosa , Nervio Ciático/crecimiento & desarrollo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Diseño de Equipo , Tejido Nervioso/crecimiento & desarrollo , Ratas , Ratas Endogámicas Lew
19.
Glia ; 62(9): 1392-406, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24796807

RESUMEN

The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor ß-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.


Asunto(s)
Movimiento Celular/fisiología , Distroglicanos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Células de Schwann/fisiología , Citoesqueleto de Actina/fisiología , Animales , Axones/diagnóstico por imagen , Axones/fisiología , Células Cultivadas , Elasticidad , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Ratones Noqueados , Microscopía de Fuerza Atómica , Vaina de Mielina/fisiología , Vaina de Mielina/ultraestructura , Proteínas de Neoplasias/genética , Fibras Nerviosas Mielínicas/fisiología , Fibras Nerviosas Mielínicas/ultraestructura , ARN Interferente Pequeño/metabolismo , Células de Schwann/ultraestructura , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/fisiopatología , Nervio Ciático/ultraestructura , Ultrasonografía
20.
Biochem Biophys Res Commun ; 452(3): 782-8, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25204498

RESUMEN

The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration.


Asunto(s)
Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Receptor ErbB-3/genética , Células de Schwann/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Diferenciación Celular , Embrión de Mamíferos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Neurregulina-1/genética , Neurregulina-1/metabolismo , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Receptor ErbB-3/metabolismo , Células de Schwann/ultraestructura , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo , Nervio Ciático/ultraestructura , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA