Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 974
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6360-6375, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38682589

RESUMEN

Although DNA-PK inhibitors (DNA-PK-i) have been applied in clinical trials for cancer treatment, the biomarkers and mechanism of action of DNA-PK-i in tumor cell suppression remain unclear. Here, we observed that a low dose of DNA-PK-i and PARP inhibitor (PARP-i) synthetically suppresses BRCA-deficient tumor cells without inducing DNA double-strand breaks (DSBs). Instead, we found that a fraction of DNA-PK localized inside of nucleoli, where we did not observe obvious DSBs. Moreover, the Ku proteins recognize pre-rRNA that facilitates DNA-PKcs autophosphorylation independent of DNA damage. Ribosomal proteins are also phosphorylated by DNA-PK, which regulates pre-rRNA biogenesis. In addition, DNA-PK-i acts together with PARP-i to suppress pre-rRNA biogenesis and tumor cell growth. Collectively, our studies reveal a DNA damage repair-independent role of DNA-PK-i in tumor suppression.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Quinasa Activada por ADN , Autoantígeno Ku , Precursores del ARN , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Humanos , Precursores del ARN/metabolismo , Precursores del ARN/genética , Línea Celular Tumoral , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Fosforilación , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico/genética , Animales , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
2.
Nature ; 554(7690): 112-117, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364875

RESUMEN

Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and dosage-dependent effects on craniofacial development. Taken together, our findings illustrate how disruption in general regulators that compromise nucleolar homeostasis can result in tissue-selective malformations.


Asunto(s)
Nucléolo Celular/metabolismo , Nucléolo Celular/patología , Daño del ADN , ADN Ribosómico/metabolismo , Disostosis Mandibulofacial/genética , Disostosis Mandibulofacial/patología , Estrés Fisiológico , Animales , Apoptosis , Benzotiazoles/farmacología , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patología , Cromatina/metabolismo , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Ribosómico/genética , ARN Polimerasas Dirigidas por ADN/deficiencia , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Disostosis Mandibulofacial/embriología , Ratones , Naftiridinas/farmacología , Cresta Neural/enzimología , Cresta Neural/patología , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidad de Órganos , Fenotipo , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , ARN Helicasas/metabolismo , ARN Polimerasa I/antagonistas & inhibidores , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética , Ribosomas/genética , Ribosomas/metabolismo , Cráneo/patología , Estrés Fisiológico/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Xenopus , Pez Cebra/embriología , Proteínas de Pez Cebra/deficiencia
3.
PLoS Genet ; 16(11): e1009117, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33201894

RESUMEN

Glioblastoma is the most common and aggressive type of cancer in the brain; its poor prognosis is often marked by reoccurrence due to resistance to the chemotherapeutic agent temozolomide, which is triggered by an increase in the expression of DNA repair enzymes such as MGMT. The poor prognosis and limited therapeutic options led to studies targeted at understanding specific vulnerabilities of glioblastoma cells. Metabolic adaptations leading to increased synthesis of nucleotides by de novo biosynthesis pathways are emerging as key alterations driving glioblastoma growth. In this study, we show that enzymes necessary for the de novo biosynthesis of pyrimidines, DHODH and UMPS, are elevated in high grade gliomas and in glioblastoma cell lines. We demonstrate that DHODH's activity is necessary to maintain ribosomal DNA transcription (rDNA). Pharmacological inhibition of DHODH with the specific inhibitors brequinar or ML390 effectively depleted the pool of pyrimidines in glioblastoma cells grown in vitro and in vivo and impaired rDNA transcription, leading to nucleolar stress. Nucleolar stress was visualized by the aberrant redistribution of the transcription factor UBF and the nucleolar organizer nucleophosmin 1 (NPM1), as well as the stabilization of the transcription factor p53. Moreover, DHODH inhibition decreased the proliferation of glioblastoma cells, including temozolomide-resistant cells. Importantly, the addition of exogenous uridine, which reconstitutes the cellular pool of pyrimidine by the salvage pathway, to the culture media recovered the impaired rDNA transcription, nucleolar morphology, p53 levels, and proliferation of glioblastoma cells caused by the DHODH inhibitors. Our in vivo data indicate that while inhibition of DHODH caused a dramatic reduction in pyrimidines in tumor cells, it did not affect the overall pyrimidine levels in normal brain and liver tissues, suggesting that pyrimidine production by the salvage pathway may play an important role in maintaining these nucleotides in normal cells. Our study demonstrates that glioblastoma cells heavily rely on the de novo pyrimidine biosynthesis pathway to generate ribosomal RNA (rRNA) and thus, we identified an approach to inhibit ribosome production and consequently the proliferation of glioblastoma cells through the specific inhibition of the de novo pyrimidine biosynthesis pathway.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Nucléolo Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Pirimidinas/biosíntesis , Animales , Antineoplásicos/uso terapéutico , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Dihidroorotato Deshidrogenasa , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Glioblastoma/patología , Humanos , Ratones , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Nucleofosmina , Orotato Fosforribosiltransferasa/antagonistas & inhibidores , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/antagonistas & inhibidores , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , ARN Ribosómico/biosíntesis , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Biol Chem ; 296: 100633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33819479

RESUMEN

Recent reports provide evidence that the platinum chemotherapeutic oxaliplatin causes cell death via ribosome biogenesis stress, while cisplatin causes cell death via the DNA damage response (DDR). Underlying differences in mechanisms that might initiate disparate routes to cell death by these two broadly used platinum compounds have not yet been carefully explored. Additionally, prior studies had demonstrated that cisplatin can also inhibit ribosome biogenesis. Therefore, we sought to directly compare the initial influences of oxaliplatin and cisplatin on nucleolar processes and on the DDR. Using pulse-chase experiments, we found that at equivalent doses, oxaliplatin but not cisplatin significantly inhibited ribosomal RNA (rRNA) synthesis by Pol I, but neither compound affected rRNA processing. Inhibition of rRNA synthesis occurred as early as 90 min after oxaliplatin treatment in A549 cells, concurrent with the initial redistribution of the nucleolar protein nucleophosmin (NPM1). We observed that the nucleolar protein fibrillarin began to redistribute by 6 h after oxaliplatin treatment and formed canonical nucleolar caps by 24 h. In cisplatin-treated cells, DNA damage, as measured by γH2AX immunofluorescence, was more extensive, whereas nucleolar organization was unaffected. Taken together, our results demonstrate that oxaliplatin causes early nucleolar disruption via inhibition of rRNA synthesis accompanied by NPM1 relocalization and subsequently causes extensive nucleolar reorganization, while cisplatin causes early DNA damage without significant nucleolar disruption. These data support a model in which, at clinically relevant doses, cisplatin kills cells via the canonical DDR, and oxaliplatin kills cells via ribosome biogenesis stress, specifically via rapid inhibition of rRNA synthesis.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Muerte Celular , Nucléolo Celular/patología , Neoplasias Pulmonares/patología , Proteínas Nucleares/metabolismo , Células A549 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo , Cisplatino/administración & dosificación , Daño del ADN , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/genética , Nucleofosmina , Oxaliplatino/administración & dosificación , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo
5.
Anticancer Drugs ; 33(1): e21-e27, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561998

RESUMEN

The nucleolus is the site of ribosome biogenesis and is found to play an important role in stress sensing. For over 100 years, the increase in the size and number of nucleoli has been considered as a marker of aggressive tumors. Despite this, the contribution of the nucleolus and the biologic processes mediated by it to cancer pathogenesis has been largely overlooked. This state has been changed over the recent decades with the demonstration that the nucleolus controls numerous cellular functions associated with cancer development. Induction of nucleolar stress has recently been regarded as being superior to conventional cytotoxic/cytostatic strategy in that it is more selective to neoplastic cells while sparing normal cells. Natural products represent an excellent source of bioactive molecules and some of them have been found to be able to induce nucleolar stress. The demonstration of these nucleolar stress-inducing natural products has paved the way for a new therapeutic approach to more delicate tumor cell-killing. This review provides a contemporary summary of the role of the nucleolus as a novel promising target for cancer therapy, with particular emphasis on natural products as an exciting new class of anti-cancer drugs with nucleolar stress-inducing properties.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Nucléolo Celular/efectos de los fármacos , Neoplasias/patología , ADN Ribosómico/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , ARN Polimerasa I/efectos de los fármacos , ARN Ribosómico/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
6.
Nucleic Acids Res ; 48(17): 9449-9461, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32857853

RESUMEN

DNA damage poses a serious threat to human health and cells therefore continuously monitor and repair DNA lesions across the genome. Ribosomal DNA is a genomic domain that represents a particular challenge due to repetitive sequences, high transcriptional activity and its localization in the nucleolus, where the accessibility of DNA repair factors is limited. Recent discoveries have significantly extended our understanding of how cells respond to DNA double-strand breaks (DSBs) in the nucleolus, and new kinases and multiple down-stream targets have been identified. Restructuring of the nucleolus can occur as a consequence of DSBs and new data point to an active regulation of this process, challenging previous views. Furthermore, new insights into coordination of cell cycle phases and ribosomal DNA repair argue against existing concepts. In addition, the importance of nucleolar-DNA damage response (n-DDR) mechanisms for maintenance of genome stability and the potential of such factors as anti-cancer targets is becoming apparent. This review will provide a detailed discussion of recent findings and their implications for our understanding of the n-DDR. The n-DDR shares features with the DNA damage response (DDR) elsewhere in the genome but is also emerging as an independent response unique to ribosomal DNA and the nucleolus.


Asunto(s)
Nucléolo Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Animales , Antineoplásicos/farmacología , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Inestabilidad Genómica , Recombinación Homóloga , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
7.
Nucleic Acids Res ; 48(11): 6210-6222, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32365182

RESUMEN

The ribotoxin α-sarcin belongs to a family of ribonucleases that cleave the sarcin/ricin loop (SRL), a critical functional rRNA element within the large ribosomal subunit (60S), thereby abolishing translation. Whether α-sarcin targets the SRL only in mature 60S subunits remains unresolved. Here, we show that, in yeast, α-sarcin can cleave SRLs within late 60S pre-ribosomes containing mature 25S rRNA but not nucleolar/nuclear 60S pre-ribosomes containing 27S pre-rRNA in vivo. Conditional expression of α-sarcin is lethal, but does not impede early pre-rRNA processing, nuclear export and the cytoplasmic maturation of 60S pre-ribosomes. Thus, SRL-cleaved containing late 60S pre-ribosomes seem to escape cytoplasmic proofreading steps. Polysome analyses revealed that SRL-cleaved 60S ribosomal subunits form 80S initiation complexes, but fail to progress to the step of translation elongation. We suggest that the functional integrity of a α-sarcin cleaved SRL might be assessed only during translation.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ricina/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Endorribonucleasas/farmacología , Proteínas Fúngicas/farmacología , Biosíntesis de Proteínas , ARN Ribosómico/metabolismo , Ricina/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo
8.
J Am Chem Soc ; 143(14): 5396-5405, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33813827

RESUMEN

As an important nuclear substructure, the nucleolus has received increasing attention because of its significant functions in the transcription and processing of ribosomal RNA in eukaryotic cells. In this work, we introduce a proof-of-concept luminescence assay to detect RNA and to accomplish nucleolus imaging with the use of the supramolecular self-assembly of platinum(II) complexes. Noncovalent interactions between platinum(II) complexes and RNA can be induced by the introduction of a guanidinium group into the complexes, and accordingly, a high RNA affinity can be achieved. Interestingly, the aggregation affinities of platinum(II) complexes enable them to display remarkable luminescence turn-on upon RNA binding, which is a result of the strengthening of noncovalent Pt(II)···Pt(II) and π-π stacking interactions. The complexes exhibit not only intriguing spectroscopic changes and luminescence enhancement after RNA binding but also specific nucleolus imaging in cells. As compared to fluorescent dyes, the low-energy red luminescence and large Stokes shifts of platinum(II) complexes afford a high signal-to-background autofluorescence ratio in nucleolus imaging. Additional properties, including long phosphorescence lifetimes and low cytotoxicity, have endowed the platinum(II) complexes with the potential for biological applications. Also, platinum(II) complexes have been adopted to monitor the dynamics of the nucleolus induced by the addition of RNA synthesis inhibitors. This capability allows the screening of inhibitors and can be advantageous for the development of antineoplastic agents. This work provides a novel strategy for exploring the application of platinum(II) complex-based cell imaging agents based on the mechanism of supramolecular self-assembly. It is envisaged that platinum(II) complexes can be utilized as valuable probes because of the aforementioned appealing advantages.


Asunto(s)
Alquinos/química , Nucléolo Celular/metabolismo , Luminiscencia , Imagen Molecular/métodos , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , ARN/metabolismo , Nucléolo Celular/efectos de los fármacos , ARN/biosíntesis
9.
Lab Invest ; 101(11): 1439-1448, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34267320

RESUMEN

The nucleolus of a cell is a critical cellular compartment that is responsible for ribosome biogenesis and plays a central role in tumor progression. Fisetin, a nutraceutical, is a naturally occurring flavonol from the flavonoid group of polyphenols that has anti-cancer effects. Fisetin negatively impacts several signaling pathways that support tumor progression. However, effect of fisetin on the nucleolus and its functions were unknown. We observed that fisetin is able to physically enter the nucleolus. In the nucleolus, RNA polymerase I (RNA Pol I) mediates the biogenesis of ribosomal RNA. Thus, we investigated the impacts of fisetin on the nucleolus. We observed that breast tumor cells treated with fisetin show a 20-30% decreased nucleolar abundance per cell and a 30-60% downregulation of RNA Pol I transcription activity, as well as a 50-70% reduction in nascent rRNA synthesis, depending on the cell line. Our studies show that fisetin negatively influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis. Functionally, we demonstrate that fisetin acts synergistically (CI = 0.4) with RNA Pol I inhibitor, BMH-21 and shows a noteworthy negative impact (60% decrease) on lung colonization of breast cancer cells. Overall, our findings highlight the potential of ribosomal RNA (rRNA) biogenesis as a target for secondary prevention and possible treatment of metastatic disease.


Asunto(s)
Nucléolo Celular/efectos de los fármacos , Flavonoles/uso terapéutico , Neoplasias Pulmonares/prevención & control , ARN Polimerasa I/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Flavonas/farmacología , Flavonas/uso terapéutico , Flavonoles/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Humanos , Neoplasias Pulmonares/secundario , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , ARN Ribosómico/biosíntesis
10.
Biochem Cell Biol ; 99(4): 508-518, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33507833

RESUMEN

G protein coupled receptor kinase 5 (GRK5) is localized within the nucleus and moderates functions such as DNA transcription, in addition to its localization at the plasma membrane. In this report, we show that GRK5 modifies the nucleolar stress response activated by the DNA polymerase inhibitor, actinomycin D (ActD). We show an increased sensitivity to the apoptotic effects of ActD on cervical HeLa cells and the breast cancer cell line MDA MB 231 with reduced protein expression of GRK5. We also tested two types of breast cancer cells (MDA MB 231 and MCF7 cells) and found that the rate of response to ActD varied between them because they have innate differences in the protein expression of GRK5. We also found that GRK5 phosphorylates nucleophosmin (NPM1) at T199 before and during the early stages of ActD treatment. Phosphorylation at T199 increases the ability of NPM1 to interact with p14ARF in vitro, which may affect the protein expression levels of p14ARF. We found that the expression levels of p14ARF were lower in the cells transfected with the control shRNA, but higher in cells transfected with GRK5 shRNA. Collectively, this suggests that GRK5 modifies the nucleolar stress response associated with ActD.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Nucléolo Celular/patología , Dactinomicina/farmacología , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Neoplasias/patología , Proteínas Nucleares/metabolismo , Apoptosis , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Nucleofosmina , Fosforilación , Unión Proteica , Células Tumorales Cultivadas
11.
Plant Cell ; 30(1): 209-227, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29242314

RESUMEN

Ribosome biogenesis is one of the most energy-consuming events in the cell and must therefore be coordinated with changes in cellular energy status. Here, we show that the sugar-inducible gene ARABIDOPSIS PUMILIO PROTEIN24 (APUM24) encodes a Pumilio homology domain-containing protein involved in pre-rRNA processing in Arabidopsis thaliana Null mutation of APUM24 resulted in aborted embryos due to abnormal gametogenesis and embryogenesis, whereas reduced expression of APUM24 caused several phenotypes characteristic of ribosome biogenesis or function-related mutants. APUM24 interacted with other pre-rRNA processing factors and a putative endonuclease for the removal of the internal transcribed spacer 2 (ITS2) of pre-rRNA in the nucleolus. The APUM24-containing complex also interacted with ITS2, and reduced APUM24 expression caused the overaccumulation of processing intermediates containing ITS2. Thus, APUM24 likely functions as an ITS2 removal-associated factor. Most importantly, the apum24 knockdown mutant was hypersensitive to highly concentrated sugar, and the mutant showed sugar-dependent overaccumulation of processing intermediates and nucleolar stress (changes in nucleolar size). Furthermore, reduced APUM24 expression diminished sugar-induced promotion of leaf and root growth. Hence, a breakdown in the coordinated expression of ribosome biogenesis-related genes with energy status may induce nucleolar stress and disturb proper sugar responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Nucléolo Celular/fisiología , Proteínas Nucleares/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico/genética , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico/efectos de los fármacos , Azúcares/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/embriología , Nucléolo Celular/efectos de los fármacos , Segregación Cromosómica , Cruzamientos Genéticos , Técnicas de Silenciamiento del Gen , Pleiotropía Genética , Mutación/genética , Fenotipo , Células Vegetales/metabolismo , Unión Proteica/efectos de los fármacos , Semillas/metabolismo
12.
Nucleic Acids Res ; 47(13): 6811-6825, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31114877

RESUMEN

The contribution of nucleoli to the cellular stress response has been discussed for over a decade. Stress-induced inhibition of RNA polymerase I-dependent transcription is hypothesized as a possible effector program in such a response. In this study, we report a new mechanism by which ribosomal DNA transcription can be inhibited in response to cellular stress. Specifically, we demonstrate that mild hypoosmotic stress induces stabilization of R loops in ribosomal genes and thus provokes the nucleoli-specific DNA damage response, which is governed by the ATM- and Rad3-related (ATR) kinase. Activation of ATR in nucleoli strongly depends on Treacle, which is needed for efficient recruitment/retention of TopBP1 in nucleoli. Subsequent ATR-mediated activation of ATM results in repression of nucleolar transcription.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Proteínas Portadoras/genética , Nucléolo Celular/metabolismo , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Silenciador del Gen , Proteínas Nucleares/genética , Presión Osmótica , Estructuras R-Loop , Transcripción Genética/fisiología , Animales , Línea Celular , Nucléolo Celular/efectos de los fármacos , Supervivencia Celular , Roturas del ADN de Doble Cadena , Daño del ADN , Replicación del ADN , Dactinomicina/farmacología , Activación Enzimática/efectos de los fármacos , Técnicas de Inactivación de Genes , Histonas/metabolismo , Humanos , Soluciones Hipotónicas/farmacología , Ratones , Proteínas Nucleares/fisiología , Fosfoproteínas/fisiología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
13.
J Am Chem Soc ; 142(17): 7803-7812, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32216337

RESUMEN

Targeted anticancer prodrugs that can be controllably activated are highly desired for personalized precision medicine in cancer therapy. Such prodrugs with unique action modes are also promising to overcome drug resistance. Herein, we report coumaplatin, an oxaliplatin-based and photocaged Pt(IV) prodrug, to realize nuclear accumulation along with "on-demand" activation. This prodrug is based on a Pt(IV) complex that can be efficiently photoactivated via water oxidation without the requirement of a reducing agent. Coumaplatin accumulates very efficiently in the nucleoli, and upon photoactivation, this prodrug exhibits a level of photocytotoxicity up to 2 orders of magnitude higher than that of oxaliplatin. Unexpectedly, this prodrug presents strikingly enhanced tumor penetration ability and utilizes a distinct action mode to overcome drug resistance; i.e., coumaplatin but not oxaliplatin induces cell senescence, p53-independent cell death, and immunogenic cell death along with T cell activation. Our findings not only provide a novel strategy for the rational design of controllably activated and nucleolus-targeted Pt(IV) anticancer prodrugs but also demonstrate that accumulating conventional platinum drugs to the nucleus is a practical way to change its canonical mechanism of action and to achieve reduced resistance.


Asunto(s)
Antineoplásicos/uso terapéutico , Nucléolo Celular/efectos de los fármacos , Platino (Metal)/uso terapéutico , Agua/química , Antineoplásicos/farmacología , Humanos , Platino (Metal)/farmacología
14.
Biochem Biophys Res Commun ; 528(1): 227-233, 2020 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-32475643

RESUMEN

We investigated the novel molecular mechanisms of the antitumor effect of berberine. In this study, two different human cell lines (breast cancer MCF7 cells and non-tumorigenic epithelial MCF12A cells) were treated with various concentrations of berberine. Treatment with 1 and 10 µM berberine inhibited proliferation with G0/G1 cell cycle arrest in both cell lines, and treatment with 100 µM berberine triggered a marked level of cell death in MCF7 cells but not in MCF12A cells. Berberine increased the level of p53 protein and of its target p21 both time- and dose-dependently in MCF7 cells. At any concentration of berberine, immediate uptake (within 15 min) followed by predominantly mitochondrial accumulation were observed by confocal microscopy in both cell lines. At high concentrations (10 or 100 µM), accumulation in the nucleolus became prominent after the transition to the nucleoplasm, especially remarkable in MCF7 cells. Therefore, we evaluated the possibility of berberine-induced nucleolar stress and observed the disappearance of ribosomal protein (RP)L5 from the nucleolus and accumulation of p53 protein in the nucleus after treatment with 10 or 100 µM berberine in MCF7 cells. We also detected the accumulation of RPL5 and RPL11 in the nucleoplasm fraction where they bind to Mdm2. Moreover, downregulation of RPL5 inhibited berberine-driven induction of p53 and p21 and cell death in MCF7 cells. Whereas, in MCF12A cells, down-regulation of RPL5 had little effect on the growth inhibitory effect of high concentration of berberine. These results indicated that cell growth inhibition and cell death induced by higher doses (>10 µM) of berberine in MCF7 cells were due to the upregulation of p53 under the nucleolar stress response caused by a significant accumulation of berberine in the nucleoli.


Asunto(s)
Berberina/farmacología , Neoplasias de la Mama/patología , Nucléolo Celular/metabolismo , Estrés Fisiológico , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Nucléolo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Fluorescencia , Humanos , Proteínas Ribosómicas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
15.
J Struct Biol ; 208(3): 107398, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31585176

RESUMEN

The nucleolus is a multifunctional structure of the eukaryotic cell nucleus. However, its primary role is ribosome formation. Although the factors and mechanisms involved in ribogenesis are well conserved in eukaryotes, two types of nucleoli have been observed under the electron microscope: a tricompartmentalized nucleolus in amniotes and a bicompartmentalized nucleolus in other species. A recent study has also revealed that turtles, although belonging to amniotes, displayed a nucleolus with bipartite organization, suggesting that this reptile group may have carried out a reversion phenomenon during evolution. In this study, we examine in great detail the functional organization of the turtle nucleolus. In liver and spleen cells cultured in vitro, we confirm that the turtle nucleolus is mainly formed by two components: a fibrillar zone surrounded by a granular zone. We further show that the fibrillar zone includes densely-contrasted strands, which are positive after silver-stained Nucleolar Organizer Region (Ag-NOR) staining and DNA labelling. We also reveal that the dense strands condensed into a very compact mass within the fibrillar zone after a treatment with actinomycin D or 5,6-dichlorobenzimidazole riboside. Finally, by using pulse-chase experiments with BrUTP, three-dimensional image reconstructions of confocal optical sections, and electron microscopy analysis of ultrathin sections, we show that the topological and spatial dynamics of rRNA within the nucleolus extend from upstream binding factor (UBF)-positive sites in the fibrillar zone to the granular zone, without ever releasing the positive sites for the UBF. Together, these results seem to clearly indicate that the compartmentalization of the turtle nucleolus into two main components reflects a less orderly organization of ribosome formation.


Asunto(s)
Nucléolo Celular/genética , Nucléolo Celular/ultraestructura , Tortugas , Animales , Nucléolo Celular/efectos de los fármacos , Células Cultivadas , Dactinomicina/farmacología , Diclororribofuranosil Benzoimidazol/farmacología , Hígado/citología , Microscopía Confocal , Región Organizadora del Nucléolo , ARN Ribosómico/metabolismo , Bazo/citología
16.
Nucleic Acids Res ; 45(18): 10672-10692, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28977560

RESUMEN

An R-loop is a DNA:RNA hybrid formed during transcription when a DNA duplex is invaded by a nascent RNA transcript. R-loops accumulate in nucleoli during RNA polymerase I (RNAP I) transcription. Here, we report that mammalian RNase H1 enriches in nucleoli and co-localizes with R-loops in cultured human cells. Co-migration of RNase H1 and R-loops from nucleoli to perinucleolar ring structures was observed upon inhibition of RNAP I transcription. Treatment with camptothecin which transiently stabilized nucleolar R-loops recruited RNase H1 to the nucleoli. It has been reported that the absence of Topoisomerase and RNase H activity in Escherichia coli or Saccharomyces cerevisiae caused R-loop accumulation along rDNA. We found that the distribution of RNase H1 and Top1 along rDNA coincided at sites where R-loops accumulated in mammalian cells. Loss of either RNase H1 or Top1 caused R-loop accumulation, and the accumulation of R-loops was exacerbated when both proteins were depleted. Importantly, we observed that protein levels of Top1 were negatively correlated with the abundance of RNase H1. We conclude that Top1 and RNase H1 are partially functionally redundant in mammalian cells to suppress RNAP I transcription-associate R-loops.


Asunto(s)
Nucléolo Celular/genética , ADN Ribosómico/química , ARN Polimerasa I/metabolismo , Ribonucleasa H/análisis , Transcripción Genética , Animales , Camptotecina/farmacología , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/enzimología , Daño del ADN , ADN-Topoisomerasas de Tipo I/análisis , ADN Ribosómico/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones Noqueados , Dominios Proteicos , ARN/química , ARN Polimerasa I/análisis , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Transcripción Genética/efectos de los fármacos
17.
Nucleic Acids Res ; 45(20): 11725-11742, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28981686

RESUMEN

The nuclear mitotic apparatus protein, NuMA, is involved in major cellular events such as DNA damage response, apoptosis and p53-mediated growth-arrest, all of which are under the control of the nucleolus upon stress. Proteomic investigation has identified NuMA among hundreds of nucleolar proteins. Yet, the precise link between NuMA and nucleolar function remains undetermined. We confirm that NuMA is present in the nucleolus and reveal redistribution of NuMA upon actinomycin D or doxorubicin-induced nucleolar stress. NuMA coimmunoprecipitates with RNA polymerase I, with ribosomal proteins RPL26 and RPL24, and with components of B-WICH, an ATP-dependent chromatin remodeling complex associated with rDNA transcription. NuMA also binds to 18S and 28S rRNAs and localizes to rDNA promoter regions. Downregulation of NuMA expression triggers nucleolar stress, as shown by decreased nascent pre-rRNA synthesis, fibrillarin perinucleolar cap formation and upregulation of p27kip1, but not p53. Physiologically relevant nucleolar stress induction with reactive oxygen species reaffirms a p53-independent p27kip1 response pathway and leads to nascent pre-rRNA reduction. It also promotes the decrease in the amount of NuMA. This previously uncharacterized function of NuMA in rDNA transcription and p53-independent nucleolar stress response supports a central role for this nuclear structural protein in cellular homeostasis.


Asunto(s)
Antígenos Nucleares/genética , Nucléolo Celular/genética , ADN Ribosómico/genética , Proteínas Asociadas a Matriz Nuclear/genética , Transcripción Genética , Antígenos Nucleares/metabolismo , Western Blotting , Proteínas de Ciclo Celular , Línea Celular , Línea Celular Tumoral , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Dactinomicina/farmacología , Doxorrubicina/farmacología , Humanos , Microscopía Electrónica , Proteínas Asociadas a Matriz Nuclear/metabolismo , Unión Proteica , Interferencia de ARN , ARN Polimerasa I/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Ecotoxicol Environ Saf ; 174: 630-636, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30875556

RESUMEN

Pollution generated by deposition of industrial activity waste in the environment without due care can lead to serious environmental consequences. Bioassays in higher plants are means of understanding the cytogenotoxic effects of these substances. In the present work, Allium cepa L. was used as a model species to assess nucleolar changes induced by environmental pollutants. The substances used were Methyl Methane Sulfonate (MMS), cadmium (Cd), Spent Potliner (SPL) and the herbicide Atrazine. Water was used as a negative control. The silver-stained nucleolar organizer region (AgNOR) assay was used making it possible to evaluate how nucleolar parameters (number of nucleoli per nucleus and nucleoli area) behave when facing stress caused by such pollutants. The results obtained showed a variation in the observed parameters: an increase in the number of nucleoli in the treated cells and tendency to a reduction in nucleolar area, indicating that the tested pollutants may have impaired nucleolar activity. In addition, it was possible to establish a relationship between the behavior of the nucleolus with other changes as plantlet growth, cell proliferation, and DNA damage.


Asunto(s)
Nucléolo Celular/efectos de los fármacos , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/toxicidad , Residuos Industriales/efectos adversos , Mutágenos/toxicidad , Nucléolo Celular/patología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/patología , Biomarcadores Ambientales/efectos de los fármacos , Cebollas/citología , Cebollas/efectos de los fármacos
19.
Neural Plast ; 2019: 4383258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827497

RESUMEN

Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear protein that regulates gene expression through poly(ADP)-ribosylation, resulting in the loosening of chromatin structure. PARP-1 enzymatic activity has been shown to be necessary for the expression of several genes required for memory formation and consolidation. Previously, we showed that nucleolar PARP-1 is significantly decreased in hippocampal pyramidal cells in Alzheimer's disease (AD). We proposed that the displacement of PARP-1 from the nucleolus results in downregulation of new rRNA expression and ribosome biogenesis, leading to cognitive impairment. To further investigate the relationship between nucleolar PARP-1 and memory impairment, we examined PARP-1 expression in the hippocampi of individuals with mild cognitive impairment (MCI) compared to control and AD cases. We used immunohistochemical techniques to examine the nucleolar distribution of PARP-1 in the Cornu Ammonis (CA region) of the hippocampus. PARP-1 positive cells were then scored for the presence or absence of PARP-1 in the nucleolus. We found a significant decrease of PARP-1 staining in the nucleolar compartment of hippocampal pyramidal cells in MCI compared with Control and AD. When the four CA (CA1-4) regions were considered separately, only the CA1 region showed significant differences in nucleolar PARP-1 with Control > AD > MCI cases. Categorization of nucleolar PARP-1 into "distinct" and "diffuse" groups suggest that most of the changes occur within the distinct group. In addition, measurements of the nucleolar diameter of nucleolar PARP-1 positive cells in CA2 and CA4 showed Control > MCI. Thus, MCI cases had a lower percentage of PARP-1 nucleolar positive cells in CA1 and smaller nucleolar diameters in CA2 and CA4, compared to Control. Our data suggest that disruption of nucleolar form and function is an early and important step in the progression of cognitive impairment.


Asunto(s)
Disfunción Cognitiva/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo , Cognición/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Masculino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo
20.
Glia ; 66(1): 145-160, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28940767

RESUMEN

The generation of new oligodendrocytes is essential for adult brain repair in diseases such as multiple sclerosis. We previously identified the multifunctional p57kip2 protein as a negative regulator of myelinating glial cell differentiation and as an intrinsic switch of glial fate decision in adult neural stem cells (aNSCs). In oligodendroglial precursor cells (OPCs), p57kip2 protein nuclear exclusion was recently found to be rate limiting for differentiation to proceed. Furthermore, stimulation with mesenchymal stem cell (MSC)-derived factors enhanced oligodendrogenesis by yet unknown mechanisms. To elucidate this instructive interaction, we investigated to what degree MSC secreted factors are species dependent, whether hippocampal aNSCs respond equally well to such stimuli, whether apart from oligodendroglial differentiation also tissue integration and axonal wrapping can be promoted and whether the oligodendrogenic effect involved subcellular translocation of p57kip2. We found that CC1 positive oligodendrocytes within the hilus express nuclear p57kip2 protein and that MSC dependent stimulation of cultured hippocampal aNSCs was not accompanied by nuclear p57kip2 exclusion as observed for parenchymal OPCs after spontaneous differentiation. Stimulation with human MSC factors was observed to equally promote rat stem cell oligodendrogenesis, axonal wrapping and tissue integration. As forced nuclear shuttling of p57kip2 led to decreased CNPase- but elevated GFAP expression levels, this indicates heterogenic oligodendroglial mechanisms occurring between OPCs and aNSCs. We also show for the first time that dominant pro-oligodendroglial factors derived from human fetal MSCs can instruct human induced pluripotent stem cell-derived NSCs to differentiate into O4 positive oligodendrocytes.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Hipocampo/citología , Células-Madre Neurales/química , Oligodendroglía/efectos de los fármacos , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Animales , Animales Recién Nacidos , Proteínas Relacionadas con la Autofagia , Encéfalo/metabolismo , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo , Células Cultivadas , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Feto , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Oligodendroglía/fisiología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA