RESUMEN
Mutations in the gene encoding the CDKL5 kinase are among the most common genetic causes of childhood epilepsy and can also give rise to the severe neurodevelopmental condition CDD (CDKL5 deficiency disorder). Despite its importance for human health, the phosphorylation targets and cellular roles of CDKL5 are poorly understood, especially in the cell nucleus. Here, we report that CDKL5 is recruited to sites of DNA damage in actively transcribed regions of the nucleus. A quantitative phosphoproteomic screen for nuclear CDKL5 substrates reveals a network of transcriptional regulators including Elongin A (ELOA), phosphorylated on a specific CDKL5 consensus motif. Recruitment of CDKL5 and ELOA to damaged DNA, and subsequent phosphorylation of ELOA, requires both active transcription and the synthesis of poly(ADP-ribose) (PAR), to which CDKL5 can bind. Critically, CDKL5 kinase activity is essential for the transcriptional silencing of genes induced by DNA double-strand breaks. Thus, CDKL5 is a DNA damage-sensing, PAR-controlled transcriptional modulator, a finding with implications for understanding the molecular basis of CDKL5-related diseases.
Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , Elonguina/metabolismo , Neuronas/patología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Activación Transcripcional , Elonguina/genética , Síndromes Epilépticos/genética , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/patología , Humanos , Mutación , Neuronas/metabolismo , Fosfoproteínas/genética , Fosforilación , Poli Adenosina Difosfato Ribosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Espasmos Infantiles/patologíaRESUMEN
CDKL5 is a brain-enriched serine/threonine kinase, associated with a profound developmental and epileptic encephalopathy called CDKL5 deficiency disorder (CDD). To design targeted therapies for CDD, it is essential to determine where CDKL5 is expressed and is active in the brain and test if compensatory mechanisms exist at cellular level. We generated conditional Cdkl5 knockout mice in excitatory neurons, inhibitory neurons and astrocytes. To assess CDKL5 activity, we utilized a phosphospecific antibody for phosphorylated EB2, a well-known substrate of CDKL5. We found that CDKL5 and EB2 pS222 were prominent in excitatory and inhibitory neurons but were not detected in astrocytes. We observed that approximately 15-20% of EB2 pS222 remained in Cdkl5 knockout brains and primary neurons. Surprisingly, the remaining phosphorylation was modulated by NMDA and PP1/PP2A in neuronal CDKL5 knockout cultures, indicating the presence of a compensating kinase. Using a screen of candidate kinases with highest homology to the CDKL5 kinase domain, we found that CDKL2 and ICK can phosphorylate EB2 S222 in HEK293T cells and in primary neurons. We then generated Cdkl5/Cdkl2 dual knockout mice to directly test if CDKL2 phosphorylates EB2 in vivo and found that CDKL2 phosphorylates CDKL5 substrates in the brain. This study is the first indication that CDKL2 could potentially replace CDKL5 functions in the brain, alluding to novel therapeutic possibilities.
Asunto(s)
Encéfalo , Síndromes Epilépticos , Ratones Noqueados , Neuronas , Proteínas Serina-Treonina Quinasas , Espasmos Infantiles , Animales , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Neuronas/metabolismo , Encéfalo/metabolismo , Fosforilación , Humanos , Células HEK293 , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/genética , Espasmos Infantiles/metabolismo , Espasmos Infantiles/genética , Astrocitos/metabolismoRESUMEN
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Asunto(s)
Síndromes Epilépticos , Células Madre Pluripotentes Inducidas , Neuronas , Proteínas Serina-Treonina Quinasas , Espasmos Infantiles , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Neuronas/metabolismo , Neuronas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Fosforilación , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/genética , Síndromes Epilépticos/patología , Espasmos Infantiles/metabolismo , Espasmos Infantiles/genética , Espasmos Infantiles/patologíaRESUMEN
Cyclin-dependent kinase-like 5 (CDKL5) is a serine/threonine protein kinase involved in human brain development and functioning. Mutations in CDKL5, especially in its catalytic domain, cause a severe developmental condition named CDKL5 deficiency disorder. Nevertheless, molecular studies investigating the structural consequences of such mutations are still missing. The CDKL5 catalytic domain harbors different sites of post-translational modification, such as phosphorylations, but their role in catalytic activity, protein folding, and stability has not been entirely investigated. With this work, we describe the expression pattern of the CDKL5 catalytic domain in Escherichia coli demonstrating that it predominantly aggregates. However, the use of solubility tags, the lowering of the expression temperature, the manual codon optimization to overcome an internal translational start, and the incubation of the protein with K+ and MgATP allow the collection of a soluble catalytically active kinase. Interestingly, the resulting protein exhibits hypophosphorylation compared to its eukaryotic counterpart, proving that bacteria are a useful tool to achieve almost unmodified CDKL5. Posing questions about the CDKL5 autoactivation mechanism and the determinants for its stability, this research provides a valuable platform for comparative biophysical studies between bacterial and eukaryotic-expressed proteins, contributing to our understanding of neurodevelopmental disorders associated with CDKL5 dysfunction.
Asunto(s)
Dominio Catalítico , Escherichia coli , Proteínas Serina-Treonina Quinasas , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/química , Humanos , Escherichia coli/metabolismo , Escherichia coli/genética , Biosíntesis de Proteínas , Agregado de Proteínas , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/genética , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Espasmos InfantilesRESUMEN
Cognitive impairment is a core feature of cyclin-dependent kinase-like 5 (CDKL5) deficiency, a neurodevelopmental disorder characterized by early epileptic seizures, intellectual disability, and autistic behaviors. Although loss of CDKL5 affects a number of molecular pathways, very little has been discovered about the physiological effects of these changes on the neural circuitry. We therefore studied synaptic plasticity and local circuit activity in the dentate gyrus of both Cdkl5-/y and Cdkl5+/- mutant mice. We found that CDKL5 haploinsufficiency in both male and female mice impairs hippocampus-dependent learning and memory in multiple tasks. In vivo, loss of CDKL5 reduced LTP of the perforant path to the dentate gyrus and augmented feedforward inhibition in this pathway; ex vivo experiments confirmed that excitatory/inhibitory input into the dentate gyrus is skewed toward inhibition. Injecting the GABAergic antagonist gabazine into the dentate improved contextual fear memory in Cdkl5-/y mice. Finally, chronic forniceal deep brain stimulation rescued hippocampal memory deficits, restored synaptic plasticity, and relieved feedforward inhibition in Cdkl5+/- mice. These results indicate that CDKL5 is important for maintaining proper dentate excitatory/inhibitory balance, with consequences for hippocampal memory.SIGNIFICANCE STATEMENT Cognitive impairment is a core feature of cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder. Although CDKL5 deficiency has been found to affect a number of molecular pathways, little is known about its physiological effects on the neural circuitry. We find that CDKL5 loss reduces hippocampal synaptic plasticity and augments feedforward inhibition in the perforant path to the dentate gyrus in vivo in Cdkl5 mutant mice. Chronic forniceal deep brain stimulation rescued hippocampal memory deficits, restored synaptic plasticity, and relieved feedforward inhibition in Cdkl5+/- mice, as it had previously done with Rett syndrome mice, suggesting that such stimulation may be useful for other neurodevelopmental disorders.
Asunto(s)
Estimulación Encefálica Profunda/métodos , Giro Dentado/metabolismo , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/terapia , Inhibición Neural/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Espasmos Infantiles/metabolismo , Espasmos Infantiles/terapia , Animales , Reacción de Prevención/fisiología , Síndromes Epilépticos/genética , Miedo/fisiología , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genéticaRESUMEN
Loss-of-function mutations in CDKL5 kinase cause severe neurodevelopmental delay and early-onset seizures. Identification of CDKL5 substrates is key to understanding its function. Using chemical genetics, we found that CDKL5 phosphorylates three microtubule-associated proteins: MAP1S, EB2 and ARHGEF2, and determined the phosphorylation sites. Substrate phosphorylations are greatly reduced in CDKL5 knockout mice, verifying these as physiological substrates. In CDKL5 knockout mouse neurons, dendritic microtubules have longer EB3-labelled plus-end growth duration and these altered dynamics are rescued by reduction of MAP1S levels through shRNA expression, indicating that CDKL5 regulates microtubule dynamics via phosphorylation of MAP1S. We show that phosphorylation by CDKL5 is required for MAP1S dissociation from microtubules. Additionally, anterograde cargo trafficking is compromised in CDKL5 knockout mouse dendrites. Finally, EB2 phosphorylation is reduced in patient-derived human neurons. Our results reveal a novel activity-dependent molecular pathway in dendritic microtubule regulation and suggest a pathological mechanism which may contribute to CDKL5 deficiency disorder.
Asunto(s)
Dendritas/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Síndromes Epilépticos/genética , Síndromes Epilépticos/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismoRESUMEN
Mutations in the gene encoding the protein kinase CDKL5 cause a debilitating neurodevelopmental disease termed CDKL5 disorder. The impact of these mutations on CDKL5 function is poorly understood because the substrates and cellular processes controlled by CDKL5 are unclear. Here, we describe a quantitative phosphoproteomic screening which identified MAP1S, CEP131 and DLG5-regulators of microtubule and centrosome function-as cellular substrates of CDKL5. Antibodies against MAP1S phospho-Ser900 and CEP131 phospho-Ser35 confirmed CDKL5-dependent phosphorylation of these targets in human cells. The phospho-acceptor serine residues in MAP1S, CEP131 and DLG5 lie in the motif RPXSA, although CDKL5 can tolerate residues other than Ala immediately C-terminal to the phospho-acceptor serine. We provide insight into the control of CDKL5 activity and show that pathogenic mutations in CDKL5 cause a major reduction in CDKL5 activity in vitro and in cells. These data reveal the first cellular substrates of CDKL5, which may represent important biomarkers in the diagnosis and treatment of CDKL5 disorder, and illuminate the functions of this poorly characterized kinase.
Asunto(s)
Síndromes Epilépticos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Espasmos Infantiles/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Centrosoma/metabolismo , Proteínas del Citoesqueleto , Síndromes Epilépticos/genética , Síndromes Epilépticos/patología , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Espasmos Infantiles/genética , Espasmos Infantiles/patología , Proteínas Supresoras de Tumor/genéticaRESUMEN
Mutations in the X-linked CDKL5 gene cause CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition mainly characterized by infantile epileptic encephalopathy, intellectual disability, and autistic features. The molecular mechanisms underlying the clinical symptoms remain largely unknown and the identification of reliable biomarkers in animal models will certainly contribute to increase our comprehension of CDD as well as to assess the efficacy of therapeutic strategies. Here, we used different Magnetic Resonance (MR) methods to disclose structural, functional, or metabolic signatures of Cdkl5 deficiency in the brain of adult mice. We found that loss of Cdkl5 does not cause cerebral atrophy but affects distinct brain areas, particularly the hippocampus. By in vivo proton-MR spectroscopy (MRS), we revealed in the Cdkl5 null brain a metabolic dysregulation indicative of mitochondrial dysfunctions. Accordingly, we unveiled a significant reduction in ATP levels and a decrease in the expression of complex IV of mitochondrial electron transport chain. Conversely, the number of mitochondria appeared preserved. Importantly, we reported a significant defect in the activation of one of the major regulators of cellular energy balance, the adenosine monophosphate-activated protein kinase (AMPK), that might contribute to the observed metabolic impairment and become an interesting therapeutic target for future preclinical trials. In conclusion, MRS revealed in the Cdkl5 null brain the presence of a metabolic dysregulation suggestive of a mitochondrial dysfunction that permitted to foster our comprehension of Cdkl5 deficiency and brought our interest towards targeting mitochondria as therapeutic strategy for CDD.
Asunto(s)
Encéfalo/metabolismo , Síndromes Epilépticos , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/patología , Espectroscopía de Resonancia Magnética , Metaboloma , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/patología , Espasmos Infantiles/metabolismo , Espasmos Infantiles/patologíaRESUMEN
CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental disorder caused by pathogenic variants in the Cyclin-dependent kinase-like 5 (CDKL5) gene, resulting in dysfunctional CDKL5 protein. It predominantly affects females and causes seizures in the first few months of life, ultimately resulting in severe intellectual disability. In the absence of targeted therapies, treatment is currently only symptomatic. CDKL5 is a serine/threonine kinase that is highly expressed in the brain, with a critical role in neuronal development. Evidence of mitochondrial dysfunction in CDD is gathering, but has not been studied extensively. We used human patient-derived induced pluripotent stem cells with a pathogenic truncating mutation (p.Arg59*) and CRISPR/Cas9 gene-corrected isogenic controls, differentiated into neurons, to investigate the impact of CDKL5 mutation on cellular function. Quantitative proteomics indicated mitochondrial defects in CDKL5 p.Arg59* neurons, and mitochondrial bioenergetics analysis confirmed decreased activity of mitochondrial respiratory chain complexes. Additionally, mitochondrial trafficking velocity was significantly impaired, and there was a higher percentage of stationary mitochondria. We propose mitochondrial dysfunction is contributing to CDD pathology, and should be a focus for development of targeted treatments for CDD.
Asunto(s)
Metabolismo Energético/fisiología , Síndromes Epilépticos/genética , Síndromes Epilépticos/metabolismo , Dinámicas Mitocondriales/fisiología , Neuronas/metabolismo , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Adolescente , Diferenciación Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , Preescolar , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lactante , Masculino , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteómica/métodosRESUMEN
CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental encephalopathy characterized by early-onset epilepsy and intellectual disability. Studies in mouse models have linked CDKL5 deficiency to defects in neuronal maturation and synaptic plasticity, and disruption of the excitatory/inhibitory balance. Interestingly, increased density of both GABAergic synaptic terminals and parvalbumin inhibitory interneurons was recently observed in the primary visual cortex of Cdkl5 knockout (KO) mice, suggesting that excessive GABAergic transmission might contribute to the visual deficits characteristic of CDD. However, the functional relevance of cortical GABAergic circuits abnormalities in these mutant mice has not been investigated so far. Here we examined GABAergic circuits in the perirhinal cortex (PRC) of Cdkl5 KO mice, where we previously observed impaired long-term potentiation (LTP) associated with deficits in novel object recognition (NOR) memory. We found a higher number of GABAergic (VGAT)-immunopositive terminals in the PRC of Cdkl5 KO compared to wild-type mice, suggesting that increased inhibitory transmission might contribute to LTP impairment. Interestingly, while exposure of PRC slices to the GABAA receptor antagonist picrotoxin had no positive effects on LTP in Cdkl5 KO mice, the selective GABAB receptor antagonist CGP55845 restored LTP magnitude, suggesting that exaggerated GABAB receptor-mediated inhibition contributes to LTP impairment in mutants. Moreover, acute in vivo treatment with CGP55845 increased the number of PSD95 positive puncta as well as density and maturation of dendritic spines in PRC, and restored NOR memory in Cdkl5 KO mice. The present data show the efficacy of limiting excessive GABAB receptor-mediated signaling in improving synaptic plasticity and cognition in CDD mice.
Asunto(s)
Síndromes Epilépticos/metabolismo , Antagonistas de Receptores de GABA-B/farmacología , Neuronas GABAérgicas/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Corteza Perirrinal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Receptores de GABA-B/metabolismo , Espasmos Infantiles/metabolismo , Animales , Modelos Animales de Enfermedad , Síndromes Epilépticos/genética , Antagonistas de Receptores de GABA-A/farmacología , Potenciación a Largo Plazo/genética , Ratones , Ratones Noqueados , Plasticidad Neuronal , Prueba de Campo Abierto , Corteza Perirrinal/metabolismo , Ácidos Fosfínicos/farmacología , Picrotoxina/farmacología , Propanolaminas/farmacología , Espasmos Infantiles/genéticaRESUMEN
The X-linked neurodevelopmental diseases CDKL5 deficiency disorder (CDD) and Rett syndrome (RTT) are associated with intellectual disability, infantile spasms and seizures. Although mitochondrial dysfunction has been suggested in RTT, less is understood about mitochondrial function in CDD. A comparison of bioenergetics and mitochondrial function between isogenic wild-type and mutant neural progenitor cell (NPC) lines revealed increased oxygen consumption in CDD mutant lines, which is associated with altered mitochondrial function and structure. Transcriptomic analysis revealed differential expression of genes related to mitochondrial and REDOX function in NPCs expressing the mutant CDKL5. Furthermore, a similar increase in oxygen consumption specific to RTT patient-derived isogenic mutant NPCs was observed, though the pattern of mitochondrial functional alterations was distinct from CDKL5 mutant-expressing NPCs. We propose that aberrant neural bioenergetics is a common feature between CDD and RTT disorders. The observed changes in oxidative stress and mitochondrial function may facilitate the development of therapeutic agents for CDD and related disorders.
Asunto(s)
Síndromes Epilépticos/metabolismo , Mitocondrias/metabolismo , Síndrome de Rett/metabolismo , Espasmos Infantiles/metabolismo , Adulto , Células Cultivadas , Preescolar , Metabolismo Energético , Síndromes Epilépticos/genética , Femenino , Humanos , Mitocondrias/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Síndrome de Rett/genética , Espasmos Infantiles/genéticaRESUMEN
BACKGROUND: CDKL5 deficiency disorder (CDD), a severe neurodevelopmental disorder characterized by early onset epilepsy, intellectual disability, and autistic features, is caused by mutations in the CDKL5 gene. Evidence in animal models of CDD showed that absence of CDKL5 negatively affects neuronal survival, as well as neuronal maturation and dendritic outgrowth; however, knowledge of the substrates underlying these alterations is still limited. Neuroinflammatory processes are known to contribute to neuronal dysfunction and death. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, to date, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether this plays a causative or exacerbating role in the pathophysiology of CDD. METHODS: We evaluated microglia activation using AIF-1 immunofluorescence, proinflammatory cytokine expression, and signaling in the brain of a mouse model of CDD, the Cdkl5 KO mouse, which is characterized by an impaired survival of hippocampal neurons that worsens with age. Hippocampal neuron survival was determined by DCX, NeuN, and cleaved caspase-3 immunostaining in Cdkl5 KO mice treated with luteolin (10 mg/kg), a natural anti-inflammatory flavonoid. Since hippocampal neurons of Cdkl5 KO mice exhibit increased susceptibility to excitotoxic stress, we evaluated neuronal survival in Cdkl5 KO mice injected with NMDA (60 mg/kg) after a 7-day treatment with luteolin. RESULTS: We found increased microglial activation in the brain of the Cdkl5 KO mouse. We found alterations in microglial cell morphology and number, increased levels of AIF-1 and proinflammatory cytokines, and activation of STAT3 signaling. Remarkably, treatment with luteolin recovers microglia alterations as well as neuronal survival and maturation in Cdkl5 KO mice, and prevents the increase in NMDA-induced cell death in the hippocampus. CONCLUSIONS: Our results suggest that neuroinflammatory processes contribute to the pathogenesis of CDD and imply the potential usefulness of luteolin as a treatment option in CDD patients.
Asunto(s)
Encéfalo/metabolismo , Síndromes Epilépticos/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Espasmos Infantiles/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Supervivencia Celular/fisiología , Síndromes Epilépticos/genética , Luteolina/farmacología , Luteolina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microglía/patología , Neuronas/patología , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genéticaRESUMEN
OBJECTIVE: Mutations of the cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders characterized by intractable epilepsy, intellectual disability, and autism. Multiple mouse models generated for mechanistic studies have exhibited phenotypes similar to some human pathological features, but none of the models has developed one of the major symptoms affecting CDKL5 deficiency disorder (CDD) patients: intractable recurrent seizures. As disrupted neuronal excitation/inhibition balance is closely associated with the activity of glutamatergic and γ-aminobutyric acidergic (GABAergic) neurons, our aim was to study the effect of the loss of CDKL5 in different types of neurons on epilepsy. METHODS: Using the Cre-LoxP system, we generated conditional knockout (cKO) mouse lines allowing CDKL5 deficiency in glutamatergic or GABAergic neurons. We employed noninvasive video recording and in vivo electrophysiological approaches to study seizure activity in these Cdkl5 cKO mice. Furthermore, we conducted Timm staining to confirm a morphological alteration, mossy fiber sprouting, which occurs with limbic epilepsy in both human and mouse brains. Finally, we performed whole-cell patch clamp in dentate granule cells to investigate cell-intrinsic properties and synaptic excitatory activity. RESULTS: We demonstrate that Emx1- or CamK2α-derived Cdkl5 cKO mice manifest high-frequency spontaneous seizure activities recapitulating the epilepsy of CDD patients, which ultimately led to sudden death in mice. However, Cdkl5 deficiency in GABAergic neurons does not generate such seizures. The seizures were accompanied by typical epileptic features including higher amplitude spikes for epileptiform discharges and abnormal hippocampal mossy fiber sprouting. We also found an increase in spontaneous and miniature excitatory postsynaptic current frequencies but no change in amplitudes in the dentate granule cells of Emx1-cKO mice, indicating enhanced excitatory synaptic activity. SIGNIFICANCE: Our study demonstrates that Cdkl5 cKO mice, serving as an animal model to study recurrent spontaneous seizures, have potential value for the pathological study of CDD-related seizures and for therapeutic innovation.
Asunto(s)
Síndromes Epilépticos/genética , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Convulsiones/genética , Espasmos Infantiles/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Giro Dentado/citología , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/fisiopatología , Potenciales Postsinápticos Excitadores/fisiología , Neuronas GABAérgicas/patología , Proteínas de Homeodominio , Ratones , Ratones Noqueados , Fibras Musgosas del Hipocampo/patología , Neuronas/metabolismo , Neuronas/patología , Técnicas de Placa-Clamp , Prosencéfalo , Convulsiones/metabolismo , Convulsiones/fisiopatología , Espasmos Infantiles/metabolismo , Espasmos Infantiles/fisiopatología , Factores de TranscripciónRESUMEN
Developmental and epileptic encephalopathies (DEEs) are complex conditions characterized primarily by seizures associated with neurodevelopmental and motor deficits. Recent evidence supports sigma-1 receptor modulation in both neuroprotection and antiseizure activity, suggesting that sigma-1 receptors may play a role in the pathogenesis of DEEs, and that targeting this receptor has the potential to positively impact both seizures and non-seizure outcomes in these disorders. Recent studies have demonstrated that the antiseizure medication fenfluramine, a serotonin-releasing drug that also acts as a positive modulator of sigma-1 receptors, reduces seizures and improves everyday executive functions (behavior, emotions, cognition) in patients with Dravet syndrome and Lennox-Gastaut syndrome. Here, we review the evidence for sigma-1 activity in reducing seizure frequency and promoting neuroprotection in the context of DEE pathophysiology and clinical presentation, using fenfluramine as a case example. Challenges and opportunities for future research include developing appropriate models for evaluating sigma-1 receptors in these syndromic epileptic conditions with multisystem involvement and complex clinical presentation.
Asunto(s)
Encefalopatías/metabolismo , Síndromes Epilépticos/metabolismo , Receptores sigma/metabolismo , Animales , Anticonvulsivantes/farmacología , Encefalopatías/tratamiento farmacológico , Síndromes Epilépticos/tratamiento farmacológico , Fenfluramina/farmacología , Humanos , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Receptor Sigma-1RESUMEN
CDKL5 deficiency disorder (CDD) is a rare X-linked neurodevelopmental disorder that is characterised by early-onset seizures, intellectual disability, gross motor impairment, and autistic-like features. CDD is caused by mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene that encodes a serine/threonine kinase with a predominant expression in the brain. Loss of CDKL5 causes neurodevelopmental alterations in vitro and in vivo, including defective dendritic arborisation and spine maturation, which most likely underlie the cognitive defects and autistic features present in humans and mice. Here, we show that treatment with epigallatocathechin-3-gallate (EGCG), the major polyphenol of green tea, can restore defects in dendritic and synaptic development of primary Cdkl5 knockout (KO) neurons. Furthermore, defective synaptic maturation in the hippocampi and cortices of adult Cdkl5-KO mice can be rescued through the intraperitoneal administration of EGCG, which is however not sufficient to normalise behavioural CDKL5-dependent deficits. EGCG is a pleiotropic compound with numerous cellular targets, including the dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) that is selectively inhibited by EGCG. DYRK1A controls dendritic development and spine formation and its deregulation has been implicated in neurodevelopmental and degenerative diseases. Treatment with another DYRK1A inhibitor, harmine, was capable of correcting neuronal CDKL5-dependent defects; moreover, DYRK1A levels were upregulated in primary Cdkl5-KO neurons in concomitance with increased phosphorylation of Tau, a well-accepted DYRK1A substrate. Altogether, our results indicate that DYRK1A deregulation may contribute, at least in part, to the neurodevelopmental alterations caused by CDKL5 deficiency.
Asunto(s)
Catequina/análogos & derivados , Síndromes Epilépticos/metabolismo , Polifenoles/metabolismo , Espasmos Infantiles/metabolismo , Té/metabolismo , Animales , Encéfalo/metabolismo , Catequina/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Quinasas DyrKRESUMEN
Cyclin-dependent kinase like-5 (CDKL5) disorder is a rare neurodevelopmental disease caused by mutations in the CDKL5 gene. The consequent misexpression of the CDKL5 protein in the nervous system leads to a severe phenotype characterized by intellectual disability, motor impairment, visual deficits and early-onset epilepsy. No therapy is available for CDKL5 disorder. It has been reported that a protein transduction domain (TAT) is able to deliver macromolecules into cells and even into the brain when fused to a given protein. We demonstrate that TAT-CDKL5 fusion protein is efficiently internalized by target cells and retains CDKL5 activity. Intracerebroventricular infusion of TAT-CDKL5 restored hippocampal development, hippocampus-dependent memory and breathing pattern in Cdkl5-null mice. Notably, systemically administered TAT-CDKL5 protein passed the blood-brain-barrier, reached the CNS, and rescued various neuroanatomical and behavioral defects, including breathing pattern and visual responses. Our results suggest that CDKL5 protein therapy may be an effective clinical tool for the treatment of CDKL5 disorder.
Asunto(s)
Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/terapia , Proteínas Serina-Treonina Quinasas/metabolismo , Espasmos Infantiles/metabolismo , Espasmos Infantiles/terapia , Animales , Encéfalo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
OBJECTIVE: We recently reported successful treatment of a child with febrile infection-related epilepsy syndrome (FIRES), a subtype of new onset refractory status epilepticus, with the recombinant interleukin-1 (IL1) receptor antagonist (IL1RA) anakinra. On this basis, we tested whether endogenous IL1RA production or function is deficient in FIRES patients. METHODS: Levels of IL1ß and IL1RA were measured in serum and cerebrospinal fluid (CSF). The inhibitory activity of endogenous IL1RA was assessed using a cell-based reporter assay. IL1RN gene variants were identified by sequencing. Expression levels for the secreted and intracellular isoforms of IL1RA were measured in patient and control cells by real-time polymerase chain reaction. RESULTS: Levels of endogenous IL1RA and IL1ß were elevated in the serum and CSF of patients with FIRES (n = 7) relative to healthy controls (n = 10). Serum from FIRES patients drove IL1R signaling activity and potentiated IL1R signaling in response to exogenous IL1ß in a cell-based reporter assay. Functional assessment of endogenous IL1RA activity in 3 FIRES patients revealed attenuated inhibition of IL1R signaling. Sequencing of IL1RN in our index patient revealed multiple variants. This was accompanied by reduced expression of intracellular but not secreted isoforms of IL1RA in the patient's peripheral blood mononuclear cells. INTERPRETATION: Our findings suggest that FIRES is associated with reduced expression of intracellular IL1RA isoforms and a functional deficiency in IL1RA inhibitory activity. These observations may provide insight into disease pathogenesis for FIRES and other inflammatory seizure disorders and may provide a valuable biomarker for therapeutic decision-making. Ann Neurol 2019;85:526-537.
Asunto(s)
Epilepsia Refractaria/metabolismo , Síndromes Epilépticos/metabolismo , Infecciones/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/sangre , Proteína Antagonista del Receptor de Interleucina 1/líquido cefalorraquídeo , Convulsiones Febriles/metabolismo , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/tratamiento farmacológico , Síndromes Epilépticos/diagnóstico , Síndromes Epilépticos/tratamiento farmacológico , Femenino , Células HEK293 , Humanos , Infecciones/diagnóstico , Infecciones/tratamiento farmacológico , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Masculino , Convulsiones Febriles/diagnóstico , Convulsiones Febriles/tratamiento farmacológicoRESUMEN
Cyclin-dependent kinase-like 5 (CDKL5, also known as STK9) is a serine/threonine protein kinase originally identified in 1998 during a transcriptional mapping project of the human X chromosome. Thereafter, a mutation in CDKL5 was reported in individuals with the atypical Rett syndrome, a neurodevelopmental disorder, suggesting that CDKL5 plays an important regulatory role in neuronal function. The disease associated with CDKL5 mutation has recently been recognised as CDKL5 deficiency disorder (CDD) and has been distinguished from the Rett syndrome owing to its symptomatic manifestation. Because CDKL5 mutations identified in patients with CDD cause enzymatic loss of function, CDKL5 catalytic activity is likely strongly associated with the disease. Consequently, the exploration of CDKL5 substrate characteristics and regulatory mechanisms of its catalytic activity are important for identifying therapeutic target molecules and developing new treatment. In this review, we summarise recent findings on the phosphorylation of CDKL5 substrates and the mechanisms of CDKL5 phosphorylation and dephosphorylation. We also discuss the relationship between changes in the phosphorylation signalling pathways and the Cdkl5 knockout mouse phenotype and consider future prospects for the treatment of mental and neurological disease associated with CDKL5 mutations.
Asunto(s)
Síndromes Epilépticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Espasmos Infantiles/metabolismo , Animales , Modelos Animales de Enfermedad , Síndromes Epilépticos/genética , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genéticaRESUMEN
The X-linked CDKL5 gene codes for a kinase whose mutations have been associated with a suite of neurodevelopmental disorders generally characterized by early-onset epileptic encephalopathy and severe intellectual disability. The impact of these mutations on CDKL5 functions and brain development remain mainly unknown, although the importance of maintaining the catalytic activity is generally recognized. Since no cure exists for CDKL5 disorders, the demand for innovative therapies is a real emergency. The recent discovery that CDKL5 is dosage sensitive poses concerns on conventional protein and gene augmentative therapies. Thus, RNA-based therapeutic approaches might be preferred. We studied the efficacy of read-through therapy on CDKL5 premature termination codons (PTCs) that correspond roughly to 15% of all mutations. Our results provide the first demonstration that all tested CDKL5 nonsense mutations are efficiently suppressed by aminoglycoside drugs. The functional characterization of the restored full-length CDKL5 reveals that read-through proteins fully recover their subcellular localization, but only partially rescue their catalytic activity. Since read-through can cause amino acid substitution, CDKL5 patients carrying the PTC outside the catalytic domain might benefit more from a nonsense suppression therapy. Eventually, we demonstrate that non-aminoglycoside drugs, such as Ataluren (PTC124) and GJ072, are unable to induce read-through activity on CDKL5 PTCs. Although these drugs might be more effective in vivo, these results question the validity of the Ataluren phase 2 clinical trial that is currently ongoing on CDKL5 patients.
Asunto(s)
Aminoglicósidos/farmacología , Codón sin Sentido , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Síndromes Epilépticos/genética , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/fisiopatología , Síndromes Epilépticos/terapia , Humanos , Ratones , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/fisiopatología , Trastornos del Neurodesarrollo/terapia , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Espasmos Infantiles/fisiopatología , Espasmos Infantiles/terapia , Reparación del Gen BlancoRESUMEN
CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental encephalopathy caused by mutations in the X-linked CDKL5 gene that encodes a serine/threonine kinase. CDD is characterised by the early onset of seizures and impaired cognitive and motor skills. Loss of CDKL5 in vitro and in vivo affects neuronal morphology at early and late stages of maturation, suggesting a link between CDKL5 and the neuronal cytoskeleton. Recently, various microtubule (MT)-binding proteins have been identified as interactors of CDKL5, indicating that its roles converge on regulating MT functioning. MTs are dynamic structures that are important for neuronal morphology, migration and polarity. The delicate control of MT dynamics is fundamental for proper neuronal functions, as evidenced by the fact that aberrant MT dynamics are involved in various neurological disorders. In this review, we highlight the link between CDKL5 and MTs, discussing how CDKL5 deficiency may lead to deranged neuronal functions through aberrant MT dynamics. Finally, we discuss whether the regulation of MT dynamics through microtubule-targeting agents may represent a novel strategy for future pharmacological approaches in the CDD field.