RESUMEN
The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.
Asunto(s)
Proteína AIRE , Autoinmunidad , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Animales , Timo/inmunología , Timo/metabolismo , Mutación , Tolerancia Inmunológica , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismoRESUMEN
It is difficult to believe that in about 1960 practically nothing was known about the thymus and some of its products, T cells bearing αß receptors for antigen. Thus I was lucky to join the field of T cell biology almost at its beginning, when knowledge about the cells was just getting off the ground and there was so much to discover. This article describes findings about these cells made by others and myself that led us all from ignorance, via complete confusion, to our current state of knowledge. I believe I was fortunate to practice science in very supportive institutions and with very collaborative colleagues in two countries that both encourage independent research by independent scientists, while simultaneously ignoring or somehow being able to avoid some of the difficulties of being a woman in what was, at the time, a male-dominated profession.
Asunto(s)
Susceptibilidad a Enfermedades , Trastorno Obsesivo Compulsivo/etiología , Trastorno Obsesivo Compulsivo/metabolismo , Animales , Autoinmunidad , Biomarcadores , Muerte Celular , Citocinas/metabolismo , Susceptibilidad a Enfermedades/inmunología , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/inmunología , Antígenos de Histocompatibilidad/metabolismo , Humanos , Inmunidad Innata , Trastorno Obsesivo Compulsivo/psicología , Unión Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Superantígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Timo/inmunología , Timo/metabolismoRESUMEN
Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.
Asunto(s)
Diferenciación Celular/inmunología , Linfopoyesis/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Biomarcadores , Diferenciación Celular/genética , Supresión Clonal , Selección Clonal Mediada por Antígenos , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Linfopoyesis/genética , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/citología , Timo/citología , Timo/inmunología , Timo/metabolismoRESUMEN
During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.
Asunto(s)
Linfocitos B/inmunología , Linfocitos/fisiología , Células Progenitoras Linfoides/fisiología , Células T Asesinas Naturales/inmunología , Timo/inmunología , Animales , Diferenciación Celular , Linaje de la Célula , Microambiente Celular , Citocinas/metabolismo , Humanos , Inmunidad Innata , Activación de Linfocitos , Comunicación Paracrina , TranscriptomaRESUMEN
Intrathymic T cell development is a complex process that depends upon continuous guidance from thymus stromal cell microenvironments. The thymic epithelium within the thymic stroma comprises highly specialized cells with a high degree of anatomic, phenotypic, and functional heterogeneity. These properties are collectively required to bias thymocyte development toward production of self-tolerant and functionally competent T cells. The importance of thymic epithelial cells (TECs) is evidenced by clear links between their dysfunction and multiple diseases where autoimmunity and immunodeficiency are major components. Consequently, TECs are an attractive target for cell therapies to restore effective immune system function. The pathways and molecular regulators that control TEC development are becoming clearer, as are their influences on particular stages of T cell development. Here, we review both historical and the most recent advances in our understanding of the cellular and molecular mechanisms controlling TEC development, function, dysfunction, and regeneration.
Asunto(s)
Células Epiteliales/metabolismo , Linfocitos T/fisiología , Timo/patología , Animales , Autoinmunidad , Diferenciación Celular , Células Epiteliales/inmunología , Factores de Transcripción Forkhead/metabolismo , Humanos , Tolerancia Inmunológica , Timo/inmunología , Factores de Transcripción/metabolismo , Proteína AIRERESUMEN
Medullary thymic epithelial cells (mTECs) generate immunological self-tolerance by ectopically expressing peripheral-tissue antigens (PTAs) within the thymus to preview the peripheral self to maturing T cells. Recent work, drawing inspiration from old histological observations, has shown that subtypes of mTECs, collectively termed mimetic cells, co-opt developmental programs from throughout the organism to express biologically coherent groups of PTAs. Here, we review key aspects of mimetic cells, especially as they relate to the larger contexts of molecular, cellular, developmental, and evolutionary biology. We highlight lineage-defining transcription factors as key regulators of mimetic cells and speculate as to what other factors, including Aire and the chromatin potential of mTECs, permit mimetic cell differentiation and function. Last, we consider what mimetic cells can teach us about not only the thymus but also other tissues.
Asunto(s)
Diferenciación Celular , Células Epiteliales , Timo , Timo/inmunología , Timo/citología , Timo/metabolismo , Animales , Humanos , Células Epiteliales/metabolismo , Células Epiteliales/citología , Células Epiteliales/inmunología , Factores de Transcripción/metabolismo , Linfocitos T/inmunología , Linfocitos T/citología , Linfocitos T/metabolismo , Autotolerancia , Linaje de la CélulaRESUMEN
The thymus is essential for establishing adaptive immunity yet undergoes age-related involution that leads to compromised immune responsiveness. The thymus is also extremely sensitive to acute insult and although capable of regeneration, this capacity declines with age for unknown reasons. We applied single-cell and spatial transcriptomics, lineage-tracing and advanced imaging to define age-related changes in nonhematopoietic stromal cells and discovered the emergence of two atypical thymic epithelial cell (TEC) states. These age-associated TECs (aaTECs) formed high-density peri-medullary epithelial clusters that were devoid of thymocytes; an accretion of nonproductive thymic tissue that worsened with age, exhibited features of epithelial-to-mesenchymal transition and was associated with downregulation of FOXN1. Interaction analysis revealed that the emergence of aaTECs drew tonic signals from other functional TEC populations at baseline acting as a sink for TEC growth factors. Following acute injury, aaTECs expanded substantially, further perturbing trophic regeneration pathways and correlating with defective repair of the involuted thymus. These findings therefore define a unique feature of thymic involution linked to immune aging and could have implications for developing immune-boosting therapies in older individuals.
Asunto(s)
Envejecimiento , Células Epiteliales , Factores de Transcripción Forkhead , Regeneración , Timo , Timo/inmunología , Animales , Células Epiteliales/inmunología , Regeneración/inmunología , Ratones , Envejecimiento/inmunología , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Transición Epitelial-Mesenquimal/inmunología , Ratones Endogámicos C57BL , Masculino , Timocitos/inmunología , Timocitos/metabolismo , Femenino , Análisis de la Célula IndividualRESUMEN
Upregulation of diverse self-antigens that constitute components of the inflammatory response overlaps spatially and temporally with the emergence of pathogen-derived foreign antigens. Therefore, discrimination between these inflammation-associated self-antigens and pathogen-derived molecules represents a unique challenge for the adaptive immune system. Here, we demonstrate that CD8+ T cell tolerance to T cell-derived inflammation-associated self-antigens is efficiently induced in the thymus and supported by redundancy in cell types expressing these molecules. In addition to thymic epithelial cells, this included thymic eosinophils and innate-like T cells, a population that expressed molecules characteristic for all major activated T cell subsets. We show that direct T cell-to-T cell antigen presentation by minute numbers of innate-like T cells was sufficient to eliminate autoreactive CD8+ thymocytes. Tolerance to such effector molecules was of critical importance, as its breach caused by decreased thymic abundance of a single model inflammation-associated self-antigen resulted in autoimmune elimination of an entire class of effector T cells.
Asunto(s)
Presentación de Antígeno , Autoantígenos , Linfocitos T CD8-positivos , Inflamación , Timocitos , Timo , Animales , Autoantígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Ratones , Timo/inmunología , Inflamación/inmunología , Presentación de Antígeno/inmunología , Timocitos/inmunología , Timocitos/metabolismo , Ratones Endogámicos C57BL , Inmunidad Innata , Autoinmunidad/inmunología , Tolerancia Inmunológica/inmunología , Ratones Transgénicos , Ratones Noqueados , Activación de Linfocitos/inmunología , Eosinófilos/inmunologíaRESUMEN
The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αß heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αß+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αß+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αß+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αß+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.
Asunto(s)
Inmunidad Innata , Interferón gamma , Receptores de Antígenos de Linfocitos T gamma-delta , Receptores de Interleucina-7 , Factor de Transcripción STAT5 , Timo , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones , Humanos , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Timo/inmunología , Receptores de Interleucina-7/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/inmunología , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Ratones Noqueados , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Antígenos CD8/metabolismo , Femenino , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Interleucina-7/metabolismoRESUMEN
The generation of the TCRαß lineage of T cells occurs in the thymus through a series of orchestrated developmental events that result in a carefully selected population of CD4 or CD8 lineage-committed TCR(+) thymocytes capable of recognizing foreign antigen in the context of self MHC. T cells first exit the thymus in a phenotypically and functionally immature state and require an approximately 3-week period of post-thymic maturation before transitioning into the mature T cell compartment. A greater understanding of recent thymic emigrant biology has come with the development of methods to exclusively identify and isolate this population for further characterization. I now review current knowledge about the phenotype and function of this key but understudied population of peripheral T cells.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Linaje de la Célula/inmunología , Movimiento Celular/inmunología , Senescencia Celular/inmunología , Timo/citología , Timo/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Movimiento Celular/genética , Senescencia Celular/genética , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Timo/metabolismoRESUMEN
On the whole, the healthy adaptive immune system is responsive to foreign antigens and tolerant to self. However, many individual lymphocytes have, and even require, substantial self-reactivity for their particular functions in immunity. In this review, we discuss several populations of lymphocytes that are thought to experience agonist stimulation through the T cell receptor during selection: nTreg cells, iNKT cells, nIELs, and nTh17s. We discuss the nature of this self-reactivity, how it compares with conventional T cells, and why it is important for overall immune health. We also outline molecular pathways unique to each lineage and consider possible commonalities to their development and survival.
Asunto(s)
Autotolerancia/inmunología , Linfocitos T/inmunología , Timo/inmunología , Animales , Homeostasis/inmunología , Humanos , Inmunidad , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Timo/metabolismo , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
The immune system has evolved to mount an effective defense against pathogens and to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, and metabolic inflammatory disorders. Regulatory T (Treg) cell-mediated suppression serves as a vital mechanism of negative regulation of immune-mediated inflammation and features prominently in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation. The discovery that Foxp3 is the transcription factor that specifies the Treg cell lineage facilitated recent progress in understanding the biology of regulatory T cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of these cells.
Asunto(s)
Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular , Citocinas/inmunología , Citocinas/metabolismo , Activación Enzimática , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Homeostasis/inmunología , Humanos , Tolerancia Inmunológica , MicroARNs/inmunología , MicroARNs/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Timo/inmunología , Timo/metabolismo , Transcripción GenéticaRESUMEN
Much has been learned about how cells enter lymphoid tissues. But how do they leave? Sphingosine-1-phosphate (S1P) has emerged over the past decade as a central mediator of lymphocyte egress. In this review, we summarize the current understanding of how S1P promotes exit from the secondary lymphoid organs and thymus. We review what is known about additional requirements for emigration and summarize the mostly distinct requirements for exit from the bone marrow. Egress from lymphoid organs is limited during immune responses, and we examine how this regulation works. There is accumulating evidence for roles of S1P in directing immune cell behavior within lymphoid tissues. How such actions can fit together with the egress-promoting role of S1P is discussed. Finally, we examine current understanding of how FTY720, a drug that targets S1P receptors and is approved for the treatment of multiple sclerosis, causes immune suppression.
Asunto(s)
Linfocitos/inmunología , Linfocitos/metabolismo , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/inmunología , Médula Ósea/metabolismo , Clorhidrato de Fingolimod , Humanos , Inmunosupresores/farmacología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Linfocitos/efectos de los fármacos , Tejido Linfoide/efectos de los fármacos , Lisofosfolípidos/inmunología , Modelos Biológicos , Glicoles de Propileno/farmacología , Esfingosina/inmunología , Esfingosina/metabolismo , Esfingosina/farmacología , Timo/efectos de los fármacos , Timo/inmunología , Timo/metabolismoRESUMEN
This year's Lasker Basic Medical Research Award honors Max Cooper and Jacques Miller for discoveries that revealed the organizing principles of adaptive immunity. Their collective contributions have had broad clinical impact in the treatment of immune disease.
Asunto(s)
Inmunidad Adaptativa/inmunología , Comunicación Celular/inmunología , Células Plasmáticas/inmunología , Linfocitos T/inmunología , Animales , Formación de Anticuerpos/inmunología , Presentación de Antígeno , Médula Ósea/inmunología , Pollos , Humanos , Hibridomas/inmunología , Cambio de Clase de Inmunoglobulina/inmunología , Ganglios Linfáticos/inmunología , Ratones , Premio Nobel , Autotolerancia/inmunología , Timo/inmunologíaRESUMEN
The aged adaptive immune system is characterized by progressive dysfunction as well as increased autoimmunity. This decline is responsible for elevated susceptibility to infection and cancer, as well as decreased vaccination efficacy. Recent evidence indicates that CD4+ T cell-intrinsic alteratins contribute to chronic inflammation and are sufficient to accelerate an organism-wide aging phenotype, supporting the idea that T cell aging plays a major role in body-wide deterioration. In this Review, we propose ten molecular hallmarks to represent common denominators of T cell aging. These hallmarks are grouped into four primary hallmarks (thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, and loss of proteostasis) and four secondary hallmarks (reduction of the TCR repertoire, naive-memory imbalance, T cell senescence, and lack of effector plasticity), and together they explain the manifestation of the two integrative hallmarks (immunodeficiency and inflammaging). A major challenge now is weighing the relative impact of these hallmarks on T cell aging and understanding their interconnections, with the final goal of defining molecular targets for interventions in the aging process.
Asunto(s)
Envejecimiento/inmunología , Inmunidad Celular , Linfocitos T/inmunología , Envejecimiento/genética , Autoinmunidad/genética , Plasticidad de la Célula/genética , Plasticidad de la Célula/inmunología , Senescencia Celular/genética , Senescencia Celular/inmunología , Susceptibilidad a Enfermedades/inmunología , Epigénesis Genética/inmunología , Regulación de la Expresión Génica/inmunología , Humanos , Inflamación/genética , Inflamación/inmunología , Proteostasis/genética , Proteostasis/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Timo/inmunología , Timo/fisiopatologíaRESUMEN
Type 2 innate lymphoid cells (ILC2) contribute to immune homeostasis, protective immunity and tissue repair. Here we demonstrate that functional ILC2 cells can arise in the embryonic thymus from shared T cell precursors, preceding the emergence of CD4+CD8+ (double-positive) T cells. Thymic ILC2 cells migrated to mucosal tissues, with colonization of the intestinal lamina propria. Expression of the transcription factor RORα repressed T cell development while promoting ILC2 development in the thymus. From RNA-seq, assay for transposase-accessible chromatin sequencing (ATAC-seq) and chromatin immunoprecipitation followed by sequencing (ChIP-seq) data, we propose a revised transcriptional circuit to explain the co-development of T cells and ILC2 cells from common progenitors in the thymus. When Notch signaling is present, BCL11B dampens Nfil3 and Id2 expression, permitting E protein-directed T cell commitment. However, concomitant expression of RORα overrides the repression of Nfil3 and Id2 repression, allowing ID2 to repress E proteins and promote ILC2 differentiation. Thus, we demonstrate that RORα expression represents a critical checkpoint at the bifurcation of the T cell and ILC2 lineages in the embryonic thymus.
Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Linaje de la Célula , Inmunidad Innata , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Timocitos/metabolismo , Timo/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Movimiento Celular , Células Cultivadas , Técnicas de Cocultivo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteína 2 Inhibidora de la Diferenciación/genética , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Técnicas de Cultivo de Órganos , Fenotipo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Timocitos/inmunología , Timo/embriología , Timo/inmunología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Metabolic programming controls immune cell lineages and functions, but little is known about γδ T cell metabolism. Here, we found that γδ T cell subsets making either interferon-γ (IFN-γ) or interleukin (IL)-17 have intrinsically distinct metabolic requirements. Whereas IFN-γ+ γδ T cells were almost exclusively dependent on glycolysis, IL-17+ γδ T cells strongly engaged oxidative metabolism, with increased mitochondrial mass and activity. These distinct metabolic signatures were surprisingly imprinted early during thymic development and were stably maintained in the periphery and within tumors. Moreover, pro-tumoral IL-17+ γδ T cells selectively showed high lipid uptake and intracellular lipid storage and were expanded in obesity and in tumors of obese mice. Conversely, glucose supplementation enhanced the antitumor functions of IFN-γ+ γδ T cells and reduced tumor growth upon adoptive transfer. These findings have important implications for the differentiation of effector γδ T cells and their manipulation in cancer immunotherapy.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias del Colon/metabolismo , Metabolismo Energético , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Subgrupos de Linfocitos T/metabolismo , Timo/metabolismo , Microambiente Tumoral , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Linaje de la Célula , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Femenino , Glucosa/metabolismo , Glucólisis , Humanos , Inmunoterapia Adoptiva , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Metabolismo de los Lípidos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/trasplante , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/terapia , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Obesidad/inmunología , Obesidad/metabolismo , Técnicas de Cultivo de Órganos , Fenotipo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/trasplante , Timo/inmunología , Carga TumoralRESUMEN
Thymic involution is a key factor in human immune aging, leading to reduced thymic output and a decline in recent thymic emigrant (RTE) naive T cells in circulation. Currently, the precise definition of human RTEs and their corresponding cell surface markers lacks clarity. Analysis of single-cell RNA-seq/ATAC-seq data distinguished RTEs by the expression of SOX4, IKZF2, and TOX and CD38 protein, whereby surface CD38hi expression universally identified CD8+ and CD4+ RTEs. We further determined the dynamics of RTEs and mature cells in a cohort of 158 individuals, including age-associated transcriptional reprogramming and shifts in cytokine production. Spectral cytometry profiling revealed two axes of aging common to naive CD8+ and CD4+ T cells: (1) a decrease in CD38++ cells (RTEs) and (2) an increase in CXCR3hi cells. Identification of RTEs enables direct assessment of thymic health. Furthermore, resolving the dynamics of naive T cell remodeling yields insight into vaccination and infection responsiveness throughout aging.
Asunto(s)
ADP-Ribosil Ciclasa 1 , Envejecimiento , Linfocitos T CD8-positivos , Timo , Humanos , ADP-Ribosil Ciclasa 1/metabolismo , Timo/inmunología , Timo/metabolismo , Envejecimiento/inmunología , Linfocitos T CD8-positivos/inmunología , Adulto , Persona de Mediana Edad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Anciano , Receptores CXCR3/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Femenino , Masculino , Adulto Joven , Análisis de la Célula Individual , Perfilación de la Expresión Génica , Anciano de 80 o más AñosRESUMEN
Millions of T cells are produced in the thymus, each expressing a unique alpha/beta T cell receptor (TCR) capable of binding to a foreign peptide in the binding groove of a host major histocompatibility complex (MHC) molecule. T cell-mediated immunity to infection is due to the proliferation and differentiation of rare clones in the preimmune repertoire that by chance express TCRs specific for peptide-MHC (pMHC) ligands derived from the microorganism. Here we review recent findings that have altered our understanding of how the preimmune repertoire is established. Recent structural studies indicate that a germline-encoded tendency of TCRs to bind MHC molecules contributes to the MHC bias of T cell repertoires. It has also become clear that the preimmune repertoire contains functionally heterogeneous subsets including recent thymic emigrants, mature naive phenotype cells, memory phenotype cells, and natural regulatory T cells. In addition, sensitive new detection methods have revealed that the repertoire of naive phenotype T cells consists of distinct pMHC-specific populations that consistently vary in size in different individuals. The implications of these new findings for the clonal selection theory, self-tolerance, and immunodominance are discussed.
Asunto(s)
Complejo Mayor de Histocompatibilidad/inmunología , Péptidos/inmunología , Linfocitos T/inmunología , Animales , Humanos , Ligandos , Receptores de Antígenos de Linfocitos T/inmunología , Timo/inmunologíaRESUMEN
The intestine and skin are distinct microenvironments with unique physiological functions and are continually exposed to diverse environmental challenges. Host adaptation at these sites is an active process that involves interaction between immune cells and tissue cells. Regulatory T cells (Treg cells) play a pivotal role in enforcing homeostasis at barrier surfaces, illustrated by the development of intestinal and skin inflammation in diseases caused by primary deficiency in Treg cells. Treg cells at barrier sites are phenotypically distinct from their lymphoid-organ counterparts, and these 'tissue' signatures often reflect their tissue-adapted function. We discuss current understanding of Treg cell adaptation in the intestine and skin, including unique phenotypes, functions and metabolic demands, and how increased knowledge of Treg cells at barrier sites might guide precision medicine therapies.