Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973125

RESUMO

Several strategies, programs and policies have long been developed and implemented to alleviate child malnutrition in sub-Saharan African countries. However, stunting and wasting still persist at an alarming rate, suggesting that alternative strategies are needed to induce faster progress toward the 2030 SDGs targets of reducing malnutrition. Gut microbiota-directed intervention is now being recognized as an unconventional powerful approach to mitigate malnutrition and improve overall child health. In an African setting, manufactured probiotic and synbiotic foods or supplements may not be successful owing to the non-affordability and high attachment of African populations to their food tradition. This review analyses the potential of indigenous fermented cereal-based products including porridges, doughs, beverages, bread- and yoghurt-like products, to be used as microbiota-directed foods for over 6 months children. The discussion includes relevant strategies to effectively enhance the beneficial effects of these products on gut microbiota composition for improved child health and nutrition in sub-Saharan Africa. Characterization of probiotic features and general safety of food processing in sub-Saharan Africa as well as randomized clinical studies are still lacking to fully ascertain the health effects and suitability of these fermented foods in preventing and treating child malnutrition and diarrhea.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39034627

RESUMO

"Food as medicine" has existed for centuries as the foundation of health for many cultures around the globe. It is a practice built on the knowledge that food and diet play important roles in disease prevention and management. Foods that claim to have therapeutic properties are often referred to as functional foods. These foods contain a number of nutritional and nonnutritional compounds that can interact with pharmacologically relevant receptors, either directly or indirectly via their metabolites, to regulate cellular biochemical processes. Although opinions are changing, the concept of food as a therapeutic intervention goes against conventional Western medicine. To provide guidance to clinicians interested in using these products, members of the Food as Medicine working group of the Nutrition Committee for the North American Society For Pediatric Gastroenterology, Hepatology & Nutrition (NASPGHAN), as part of a two-part review series, have created summaries of several frequently used nutritional products for therapeutic intent (i.e., fermented foods, fiber, and long-chain omega-3 fatty acids) that includes indications, doses, and caveats. Gaps in their use in pediatric patients are discussed. Evidence supporting their use for management of GI conditions, especially in the pediatric population, is provided when available.

3.
Biosci Biotechnol Biochem ; 88(3): 237-241, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38006236

RESUMO

The yeast Saccharomyces cerevisiae plays a pivotal role in the production of fermented foods by converting sugars in ingredients into ethanol through alcoholic fermentation. However, how accurate is our understanding of its biological significance? Although yeast is essential to produce alcoholic beverages and bioethanol, yeast does not yield ethanol for humankind. Yeast obtains energy in the form of ATP for its own vital processes through alcoholic fermentation, which generates ethanol as a byproduct. The production of ethanol may have more significance for yeast, since many other organisms do not produce ethanol, a highly toxic substance, to obtain energy. The key to address this issue has not been found using conventional microbiology, where yeasts are isolated and cultured in pure form. This review focuses on a possible novel role of yeast alcohol fermentation, which is revealed through our recent studies of microbial interactions.


Assuntos
Lactobacillales , Saccharomyces cerevisiae , Bebidas Alcoólicas/análise , Simbiose , Fermentação , Etanol
4.
Food Microbiol ; 119: 104450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225051

RESUMO

From a selection of seven traditional and 14 innovative alheiras, 491 lactic acid bacteria (LAB) were isolated and tested for their antimicrobial activity against several food-borne pathogens. Among these, six strains revealed antimicrobial activity through potential bacteriocin production against 14 Listeria monocytogenes strains, Enterococcus faecalis ATCC 29212, Clostridium sporogenes ESB050, and Clostridium perfringens ESB054. Through whole genome sequencing (WGS), these strains were identified as Lactiplantibacillus plantarum (2), Leuconostoc mesenteroides (1), and Pediococcus acidilactici (3). Furthermore, several orthologues of class II bacteriocins genes were identified, including Plantaricin E, Plantaricin F, Pediocin PA, Enterocin X, Leucocin A, and Coagulin A. No virulence or antibiotic resistance genes' orthologues were detected by WGS analysis. However, the selected LAB strains showed variable phenotypic patterns related to virulence genes and antibiotic resistance when assessed through classical methodologies. None of these strains demonstrated the production of biogenic amines, gelatinase or DNase. Additionally, no hemolytic activity or lipase enzyme production was observed. However, only Lpb. plantarum 9A3 was sensitive to all tested antibiotics and was thus chosen for further examination. The bacteriocins produced by Lpb. plantarum (9A3) exhibited stability across a broad range of conditions, including temperatures from 4 to 100 °C, pH values ranging from 2 to 8, exposure to surfactants and detergents (Tween 20 and 80, SDS, EDTA 0.1, 2 and 5 mM, urea and sodium deoxycholate), and enzymes (papain and catalase). Their maximum activity (AU/mL = 12,800) against four L. monocytogenes strains was observed between 21 and 36 h of growth of Lbp. plantarum 9A3, indicating a bacteriostatic mode of action. Therefore, this strain appears to be a robust candidate for potential application as a protective strain to be used in the food industry. Not only is it safe, but it also produces stable bacteriocins (harbouring genes encoding for the production of three) effectively inhibiting significant pathogens such as L. monocytogenes and C. perfringens.


Assuntos
Bacteriocinas , Lactobacillales , Listeria monocytogenes , Bacteriocinas/farmacologia , Antibacterianos/farmacologia , Pediocinas , Listeria monocytogenes/genética
5.
Asia Pac J Clin Nutr ; 33(1): 66-82, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494689

RESUMO

BACKGROUND AND OBJECTIVES: Fermented foods play an important role in establishing intestinal bacterial flora, and the composition of the intestinal bacterial flora might be associated with neurodevelopment. This study investigated the association between maternal intake of fermented foods during pregnancy and early neuro-development in offspring. METHODS AND STUDY DESIGN: Data were analyzed for 73,522 pregnant women participating in the Japan Environment and Children's Study. Their intake of four common fermented foods during pregnancy was assessed using a semi-quantitative FFQ. Neurodevelopment in their infants at 1 year of age was estimated using the Ages and Stages Questionnaires. RESULTS: Multivariable logistic regression analysis showed that maternal intake of miso soup and fermented soybeans was each associated with a significantly reduced risk of delay in infant communication skills. Maternal intake of fermented soybeans and cheese was each associated with a significantly reduced risk of delay in fine motor skills in the third and fourth quartiles. For problem-solving, preventive associations were observed with maternal intake of fermented soybeans in the second and third quartiles and with maternal intake of cheese in the third and fourth quartiles. Maternal intake of yogurt was associated with a significantly reduced risk of delay in personal-social skills in the third and fourth quartiles, while that of cheese was associated with a reduced risk in the third quartile. No reductions in risk were observed for gross motor skills. CONCLUSIONS: Our results suggest that fermented food intake during pregnancy may have beneficial associations with several areas of psychomotor development in children.


Assuntos
Alimentos Fermentados , Alimentos de Soja , Lactente , Criança , Humanos , Feminino , Gravidez , Dieta , Japão , Glycine max
6.
J Sci Food Agric ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299734

RESUMO

Foods prepared using microbial conversion of major and minor food components, which are otherwise known as fermented foods continue to impact human health. The live microorganisms and transformed metabolites can also have a deep influence on the gut microbiota, the multifaceted population of microorganisms dwelling inside the gut play a key role in wellbeing of an individual. The probiotic strains delivered through the consumption of fermented food and other bioactive components such as polyphenolic metabolites, bioactive peptides, short-chain fatty acids and others including those produced via gut microbiota mediated transformations have been proposed to balance the gut microbiota diversity and activity, and also to regulate the inflammation in the gut. However, little is known about such effects and only a handful of fermented foods have been explored to date. We herein review the recent knowledge on the dysbiotic gut microbiota linking to major gut inflammatory diseases. Also, evidences that fermented food consumption modulates the gut microbiota, and its impact on the gut inflammation and inflammatory diseases have been discussed. © 2024 Society of Chemical Industry.

7.
Compr Rev Food Sci Food Saf ; 23(4): e13388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865218

RESUMO

Consumers are attracted to traditional fermented foods due to their unique flavor and nutritional value. However, the traditional fermentation technique can no longer accommodate the requirements of the food industry. Traditional fermented foods produce hazardous compounds, off-odor, and anti-nutritional factors, reducing product stability. The microbial system complexity of traditional fermented foods resulting from the open fermentation process has made it challenging to regulate these problems by modifying microbial behaviors. Synthetic microbial communities (SynComs) have been shown to simplify complex microbial communities and allow for the targeted design of microbial communities, which has been applied in processing traditional fermented foods. Herein, we describe the theoretical information of SynComs, particularly microbial physiological processes and their interactions. This paper discusses current approaches to creating SynComs, including designing, building, testing, and learning, with typical applications and fundamental techniques. Based on various traditional fermented food innovation demands, the potential and application of SynComs in enhancing the quality of traditional fermented foods are highlighted. SynComs showed superior performance in regulating the quality of traditional fermented foods using the interaction of core microorganisms to reduce the hazardous compounds of traditional fermented foods and improve flavor. Additionally, we presented the current status and future perspectives of SynComs for improving the quality of traditional fermented foods.


Assuntos
Fermentação , Alimentos Fermentados , Microbiologia de Alimentos , Alimentos Fermentados/microbiologia , Microbiota , Qualidade dos Alimentos , Bactérias
8.
World J Microbiol Biotechnol ; 40(8): 235, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850338

RESUMO

Lactobacillus delbrueckii, a widely used lactic acid bacterium in the food industry, has been studied for its probiotic properties and reservoir of antibiotic-resistant genes, raising safety concerns for probiotic formulations and fermented products. This review consolidates findings from 60 articles published between 2012 and 2023, focusing on the global antibiotic resistance profile and associated genetic factors in L. delbrueckii strains. Resistance to aminoglycosides, particularly streptomycin, kanamycin, and gentamicin, as well as resistance to glycopeptides (vancomycin), fluoroquinolones (ciprofloxacin), and tetracyclines was predominant. Notably, although resistance genes have been identified, they have not been linked to mobile genetic elements, reducing the risk of dissemination. However, a significant limitation is the insufficient exploration of responsible genes or mobile elements in 80% of studies, hindering safety assessments. Additionally, most articles originated from Asian and Middle Eastern countries, with strains often isolated from fermented dairy foods. Therefore, these findings underscore the necessity for comprehensive analyses of new strains of L. delbrueckii for potential industrial and biotherapeutic applications and in combating the rise of antibiotic-resistant pathogens.


Assuntos
Antibacterianos , Lactobacillus delbrueckii , Probióticos , Probióticos/farmacologia , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Indústria Alimentícia , Microbiologia de Alimentos , Alimentos Fermentados/microbiologia
9.
BMC Oral Health ; 24(1): 849, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060941

RESUMO

BACKGROUND: Due to their modulatory effect on biofilm growth, bacterial gene expressions, and host-modulation effects, fermented foods and probiotic products could potentially have a protective role against peri-implant diseases. This cross-sectional study aimed to examine the association of consumption of fermented foods and products containing probiotics, with peri-implant health and diseases. METHODS: A total of 126 implants were included. The peri-implant health status (peri-implantitis, peri-implant mucositis, and peri-implant health) was assessed through Chicago's Classification of periodontal and peri-implant Diseases and Conditions. A questionnaire was used to evaluate the consumption patterns of fermented and probiotic foods and product. One-way ANOVA was employed to compare the 3 peri-implant conditions categories in terms of fermented food and probiotic consumption. RESULTS: There were significant differences in the daily and general consumption of yogurt, probiotic yogurt, kefir, ayran, vinegar, pomegranate syrup, whole meal bread, and homemade butter among peri-implantitis, peri-implant mucositis and peri-implant health (p < 0.05). The peri-implant health group consumed significantly more yogurt, kefir, ayran, vinegar, whole wheat bread, and homemade butter than peri-implant mucositis and peri-implantitis. CONCLUSION: A higher consumption of fermented and probiotic foods may be associated with peri-implant health. Fermented and probiotic products may be useful for prevention of peri-implant diseases in patients with implants.


Assuntos
Alimentos Fermentados , Peri-Implantite , Probióticos , Humanos , Probióticos/uso terapêutico , Estudos Transversais , Peri-Implantite/prevenção & controle , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Implantes Dentários/efeitos adversos , Mucosite/prevenção & controle , Inquéritos e Questionários , Estomatite/prevenção & controle , Estomatite/etiologia
10.
Crit Rev Microbiol ; 49(6): 693-725, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36287644

RESUMO

High-throughput DNA sequencing-based approaches continue to revolutionise our understanding of microbial ecosystems, including those associated with fermented foods. Metagenomic and metatranscriptomic approaches are state-of-the-art biological profiling methods and are employed to investigate a wide variety of characteristics of microbial communities, such as taxonomic membership, gene content and the range and level at which these genes are expressed. Individual groups and consortia of researchers are utilising these approaches to produce increasingly large and complex datasets, representing vast populations of microorganisms. There is a corresponding requirement for the development and application of appropriate bioinformatic tools and pipelines to interpret this data. This review critically analyses the tools and pipelines that have been used or that could be applied to the analysis of metagenomic and metatranscriptomic data from fermented foods. In addition, we critically analyse a number of studies of fermented foods in which these tools have previously been applied, to highlight the insights that these approaches can provide.


Assuntos
Alimentos Fermentados , Microbiota , Microbiota/genética , Metagenoma , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
11.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36564017

RESUMO

In this review, we describe the genomic and physiological features of the yeast species predominantly isolated from Nuruk, a starter for traditional Korean rice wines, and Jang, a traditional Korean fermented soy product. Nuruk and Jang have several prevalent yeast species, including Saccharomycopsis fibuligera, Hyphopichia burtonii, and Debaryomyces hansenii complex, which belong to the CUG clade showing high osmotic tolerance. Comparative genomics revealed that the interspecies hybridization within yeast species for generating heterozygous diploid genomes occurs frequently as an evolutional strategy in the fermentation environment of Nuruk and Jang. Through gene inventory analysis based on the high-quality reference genome of S. fibuligera, new genes involved in cellulose degradation and volatile aroma biosynthesis and applicable to the production of novel valuable enzymes and chemicals can be discovered. The integrated genomic and transcriptomic analysis of Hyphopichia yeasts, which exhibit strong halotolerance, provides insights into the novel mechanisms of salt and osmo-stress tolerance for survival in fermentation environments with a low-water activity and high-concentration salts. In addition, Jang yeast isolates, such as D. hansenii, show probiotic potential for the industrial application of yeast species beyond fermentation starters to diverse human health sectors.


Assuntos
Glycine max , Vinho , Humanos , Filogenia , Leveduras/genética , Fermentação , Genômica , República da Coreia
12.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36809779

RESUMO

Ethnic Indian people have been domesticating beneficial microorganisms (bacteria, yeasts, and moulds) by their wisdom of ethno-microbiological knowledge for production of flavoured and socio-culturally preferred fermented foods and alcoholic beverages for more than 8000 years. The purpose of this review is to collate the available literatures of diversity of Saccharomyces and non-Saccharomyces species associated with Indian fermented foods and alcoholic beverages. A colossal diversity of enzyme- and alcohol-producing yeasts under the phylum Ascomycota has been reported from Indian fermented foods and alcoholic beverages. The distributions of yeast species show 13.5% of Saccharomyces cerevisiae and 86.5% of some non-Saccharomyces spp. in Indian fermented foods and alcoholic beverages, based on the reported literatures available till date. There is a research gap on prospect of yeasts research in India. Hence, we suggest that validation of traditional knowledge of domestication of functional yeasts needs to be studied to develop the functional genomics platforms for Saccharomyces and non-Saccharomyces spp. in Indian fermented foods and alcoholic beverages.


Assuntos
Alimentos Fermentados , Microbiologia de Alimentos , Humanos , Bebidas Alcoólicas , Leveduras/genética , Saccharomyces cerevisiae/genética , Etanol , Fermentação , Bebidas/microbiologia
13.
Crit Rev Food Sci Nutr ; 63(26): 8066-8082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35317694

RESUMO

Fermented foods are among the traditional foods consumed for centuries. In recent years, awareness of fermented foods has been increasing due to their positive health benefits. Fermented foods contain beneficial microorganisms. Fermented foods, such as kefir, kimchi, sauerkraut, and yoghurt, contain Lactic acid bacteria (LAB), such as Lactobacilli, Bifidobacteria, and their primary metabolites (lactic acid). Although studies on the effect of consumption of fermented foods on diabetes, cardiovascular, obesity, gastrointestinal diseases on chronic diseases have been conducted, more studies are needed regarding the relationship between neurological diseases and microbiota. There are still unexplored mechanisms in the relationship between the brain and intestine. In this review, we answer how the consumption of fermented foods affects the brain and behavior of Alzheimer's disease, Parkinson's disease, multiple sclerosis disease, stroke, and gut microbiota.


Assuntos
Alimentos Fermentados , Microbioma Gastrointestinal , Kefir , Lactobacillales , Microbiota , Doenças do Sistema Nervoso , Humanos , Alimentos Fermentados/microbiologia
14.
Crit Rev Food Sci Nutr ; : 1-18, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204758

RESUMO

Several randomized controlled trials (RCTs) have investigated the effects of fermented foods on metabolic outcomes in adult patients suffering from diabetes and prediabetes. However, the results of these RCTs are conflicting. This systematic review and meta-analysis was carried out on data from RCTs to evaluate the effects of fermented foods in patients with diabetes and prediabetes. The PubMed, Web of Science, Embase, the Cochrane Library and Scopus databases were searched up to 21 June, 2022. English-language RCTs of fermented foods consumption were included which gave metabolic outcomes on body composition, glucose control, insulin sensitivity, lipid profile, as well as blood pressure. Eighteen RCTs met the inclusion criteria and 843 participants were included in the final analysis. The pooled results showed a significant reduction of fasting blood glucose (FBG), the homeostatic model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), low density lipid cholesterol (LDL-C) and diastolic blood pressure (DBP) in the intervention group versus the control group. The results of this research showed that fermented foods have the potential to improve some metabolic outcomes, including FBG, HOMA-IR, TC, LDL-C, and DBP in patients with diabetes and prediabetes.

15.
Crit Rev Food Sci Nutr ; 63(5): 569-584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35647734

RESUMO

Horizontal gene transfer (HGT) has contributed significantly to the adaptability of bacteria, yeast and mold in fermented foods, whose evidence has been found in several fermented foods. Although not every HGT has biological significance, it plays an important role in improving the quality of fermented foods. In this review, how HGT facilitated microbial domestication and adaptive evolution in fermented foods was discussed. HGT can assist in the industrial innovation of fermented foods, and this adaptive evolution strategy can improve the quality of fermented foods. Additionally, the mechanism underlying HGT in fermented foods were analyzed. Furthermore, the critical bottlenecks involved in optimizing HGT during the production of fermented foods and strategies for optimizing HGT were proposed. Finally, the prospect of HGT for promoting the industrial innovation of fermented foods was highlighted. The comprehensive report on HGT in fermented foods provides a new trend for domesticating preferable starters for food fermentation, thus optimizing the quality and improving the industrial production of fermented foods.


Assuntos
Alimentos Fermentados , Transferência Genética Horizontal , Bactérias/genética , Alimentos
16.
Crit Rev Food Sci Nutr ; 63(22): 5841-5855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35014569

RESUMO

Fermented foods are important parts of traditional food culture with a long history worldwide. Abundant nutritional materials and open fermentation contribute to the diversity of microorganisms, resulting in unique product quality and flavor. Lactic acid bacteria (LAB), as important part of traditional fermented foods, play a decisive role in the quality and safety of fermented foods. Reproduction and metabolic of microorganisms drive the food fermentation, and microbial interaction plays a major role in the fermentation process. Nowadays, LAB have attracted considerable interest due to their potentialities to add functional properties to certain foods or as supplements along with the research of gut microbiome. This review focuses on the characteristics of diversity and variability of LAB in traditional fermented foods, and describes the principal mechanisms involved in the flavor formation dominated by LAB. Moreover, microbial interactions and their mechanisms in fermented foods are presented. They provide a theoretical basis for exploiting LAB in fermented foods and improving the quality of traditional fermented foods. The traditional fermented food industry should face the challenge of equipment automation, green manufacturing, and quality control and safety in the production.


Assuntos
Alimentos Fermentados , Lactobacillales , Lactobacillales/metabolismo , Alimentos Fermentados/microbiologia , Alimentos , Fermentação , Microbiologia de Alimentos
17.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37068005

RESUMO

Fermented foods are important components of the human diet. There is increasing awareness of abundant nutritional and functional properties present in fermented foods that arise from the transformation of substrates by microbial communities. Thus, it is significant to unravel the microbial communities and mechanisms of characteristic flavor formation occurring during fermentation. There has been rapid development of high-throughput and other omics technologies, such as metaproteomics and metabolomics, and as a result, there is growing recognition of the importance of integrating these approaches. The successful applications of multi-omics approaches and bioinformatics analyses have provided a solid foundation for exploring the fermentation process. Compared with single-omics, multi-omics analyses more accurately delineate microbial and molecular features, thus they are more apt to reveal the mechanisms of fermentation. This review introduces fermented foods and an overview of single-omics technologies - including metagenomics, metatranscriptomics, metaproteomics, and metabolomics. We also discuss integrated multi-omics and bioinformatic analyses and their role in recent research progress related to fermented foods, as well as summarize the main potential pathways involved in certain fermented foods. In the future, multilayered analyses of multi-omics data should be conducted to enable better understanding of flavor formation mechanisms in fermented foods.

18.
Crit Rev Food Sci Nutr ; : 1-12, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36728916

RESUMO

Yeasts derived from fermented foods have historically been known for their organoleptic properties, enriching nutritional values, and producing bioactive metabolites with therapeutic potential. In this review, we discuss the yeast flora in fermented foods, their functional aspects in fermentation, as well as their probiotic and biotherapeutic properties. These yeasts have numerous physical and biochemical characteristics, such as larger cells as compared to bacteria, a rigid cell wall composed primarily of glucans and mannans, natural resistance to antibiotics, and the secretion of secondary metabolites that are both pleasing to the consumer and beneficial to the host's health and well-being. The review also focused on therapeutic applications of probiotic yeasts derived from fermented foods on infections associated with Candida species. These potential probiotic yeasts present an additional avenue to treat dysbiosis of the gut microbiota and prevent health complications that arise from opportunistic fungal colonization, especially drug-resistant superbugs, which are highlighted in this review.

19.
Eur J Nutr ; 62(1): 227-237, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35947163

RESUMO

PURPOSE: Evidence on the association between dairy intake and depression is conflicting. Given numerous dietary guidelines recommend the consumption of low-fat dairy products, this study examined associations between total dairy, high-fat dairy, and low-fat dairy intake and the prevalence of elevated depressive symptoms. Associations between dairy products, which differed in both fat content and fermentation status, and depressive symptoms were also explored. METHODS: This cross-sectional study included 1600 Finnish adults (mean age 63 ± 6 years; 51% female) recruited as part of the Kuopio Ischaemic Heart Disease Risk Factor Study. Dairy intake was assessed using 4-day food records. Elevated depressive symptoms were defined as having a score ≥ 5 on the Diagnostic and Statistical Manual of Mental Disorders-III Depression Scale, and/or regularly using one or more prescription drugs for depressive symptoms. RESULTS: In total, 166 participants (10.4%) reported having elevated depressive symptoms. Using multivariate logistic regression models, intake in the highest tertile of high-fat dairy products (OR 0.64, 95% CI 0.41-0.998, p trend = 0.04) and high-fat non-fermented dairy products (OR 0.60, 95% CI 0.39-0.92, p trend = 0.02) were associated with reduced odds for having elevated depressive symptoms. Whereas no significant association was observed between intake of total dairy, low-fat dairy, or other dairy products, and depressive symptoms. CONCLUSION: Higher intake of high-fat dairy and high-fat non-fermented dairy products were associated with reduced odds for having elevated depressive symptoms in middle-aged and older Finnish adults. Given the high global consumption of dairy products, and widespread burden of depression, longitudinal studies that seek to corroborate these findings are required.


Assuntos
Depressão , Gorduras na Dieta , Adulto , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , Masculino , Estudos Transversais , Depressão/epidemiologia , Laticínios , Dieta com Restrição de Gorduras , Fatores de Risco , Dieta
20.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37037774

RESUMO

AIMS: To investigate the capability, properties, and molecular mechanism of inulin fermentation by lactic acid bacteria (LAB) from Sichuan pickle. METHODS AND RESULTS: A total of 79 LAB strains were purified from 30 aged Sichuan pickle brine samples, and only 21 Lactiplantibacillus plantarum strains (26.58%, 21/79) derived from 15 samples grew well through utilizing inulin as a carbon source. The fermentation tests through using long-chain inulin (lc-inulin) as a carbon source showed that only 6 L. plantarum strains grew well, while other 15 strains could only utilize short-chain oligofructose (FOS), and thin-layer chromatography analysis evidenced a strain specificity of inulin consumption patterns. Lactiplantibacillus plantarum YT041 is a vigorous inulin fermenter, and whole genome sequencing data revealed that sacPTS1 and fosRABCDXE operons might be associated with the fermentation of FOS and lc-inulin, respectively. CONCLUSIONS: The phenotype of inulin consumption is commonly present in LAB from Sichuan pickle, which is strain-specific and largely depends on their specific ecological niche and degree of polymerization.


Assuntos
Alimentos Fermentados , Lactobacillales , Lactobacillus plantarum , Inulina/metabolismo , Lactobacillales/metabolismo , Genômica , Fenótipo , Alimentos Fermentados/microbiologia , Fermentação , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA