Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.225
Filtrar
1.
Food Chem ; 462: 140996, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39213962

RESUMO

The mechanisms of trypsin hydrolysis time on the structure of soy protein hydrolysate fibril aggregates (SPHFAs) and the stability of SPHFAs-high internal phase Pickering emulsions (HIPPEs) were investigated. SPHFAs were prepared using soy protein hydrolysate (SPH) with different trypsin hydrolysis time (0 min-120 min) to stabilize SPHFAs-HIPPEs. The results showed that moderate trypsin hydrolysis (30 min, hydrolysis degree of 2.31 %) induced SPH unfolding and increased the surface hydrophobicity of SPH, thereby promoting the formation of flexible SPHFAs with maximal thioflavin T intensity and ζ-potential. Moreover, moderate trypsin hydrolysis improved the viscoelasticity of SPHFAs-HIPPEs, and SPHFAs-HIPPEs remained stable after storage at 25 °C for 80 d and heating at 100 °C for 1 h. Excessive trypsin hydrolysis (> 30 min) decreased the stability of SPHFAs-HIPPEs. In conclusion, moderate trypsin hydrolysis promoted the formation of flexible SPHFAs with high surface charge by inducing SPH unfolding, thereby promoting the stability of SPHFAs-HIPPEs.


Assuntos
Emulsões , Interações Hidrofóbicas e Hidrofílicas , Hidrolisados de Proteína , Proteínas de Soja , Tripsina , Tripsina/química , Hidrólise , Emulsões/química , Proteínas de Soja/química , Hidrolisados de Proteína/química , Agregados Proteicos
2.
Protein Expr Purif ; 225: 106597, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39233018

RESUMO

A trypsin affinity material was prepared by covalently immobilizing buckwheat trypsin inhibitor (BTI) on epichlorohydrin-activated cross-linked agarose gel (Selfinose CL 6 B). The optimal conditions for activating Selfinose CL 6 B were 15 % epichlorohydrin and 0.8 M NaOH at 40 °C for 2 h. The optimal pH for immobilizing BTI was 9.5. BTI-Sefinose CL 6 B showed a maximum adsorption capacity of 2.25 mg trypsin/(g support). The material also displayed good reusability, retaining over 90 % of its initial adsorption capacity after 30 cycles. High-purity trypsin was obtained from locust homogenate using BTI-Selfinose CL 6 B through one-step affinity chromatography. The molecular mass and Km value of locust trypsin were determined as 27 kDa and 0.241 mM using N-benzoyl-DL-arginine-nitroanilide as substrate. The optimal temperature and pH of trypsin activity were 55 °C and 9.0, respectively. The enzyme exhibited good stability in the temperature range of 30-50 °C and pH range of 4.0-10.0. BTI-Selfinose CL 6 B demonstrates potential application in the preparation of high-purity trypsin and the discovery of more novel trypsin from various species.


Assuntos
Cromatografia de Afinidade , Proteínas Recombinantes , Inibidores da Tripsina , Tripsina , Tripsina/química , Tripsina/metabolismo , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Cromatografia de Afinidade/métodos , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química , Concentração de Íons de Hidrogênio , Fagopyrum/química , Temperatura , Sefarose/química , Estabilidade Enzimática
3.
J Am Chem Soc ; 146(36): 24754-24758, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39225120

RESUMO

Hyperpolarization derived from water protons enhances the NMR signal of 15N nuclei in a small molecule, enabling the sensitive detection of a protein-ligand interaction. The water hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) acts as a universal signal enhancement agent. The 15N signal of benzamidine was increased by 1480-fold through continuous polarization transfer by J-coupling-mediated cross-polarization (J-CP) via the exchangeable protons. The signal enhancement factor favorably compares to factors of 110- or 17-fold using non-CP-based polarization transfer mechanisms. The hyperpolarization enabled detection of the binding of benzamidine to the target protein trypsin with a single-scan measurement of 15N R2 relaxation. J-CP provides an efficient polarization mechanism for 15N or other low-frequency nuclei near an exchangeable proton. The hyperpolarization transfer sustained within the relaxation time limit of water protons additionally can be applied for the study of macromolecular structure and biological processes.


Assuntos
Prótons , Água , Água/química , Ligantes , Ligação Proteica , Benzamidinas/química , Ressonância Magnética Nuclear Biomolecular , Tripsina/química , Tripsina/metabolismo , Isótopos de Nitrogênio/química
4.
Langmuir ; 40(37): 19357-19369, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39241011

RESUMO

The accurate detection of Protamine and Trypsin, two biomolecules with significant clinical and biological relevance, presents a substantial challenge because of their structural peculiarities, low abundance in physiological fluids, and potential interference from other substances. Protamine, a cationic protein, is crucial for counteracting heparin overdoses, whereas Trypsin, a serine protease, is integral to protein digestion and enzyme activation. This study introduces a novel fluorescence sensor based on a (4-(1,2,2-tris(4-phosphonophenyl)vinyl)phenyl)phosphonic acid octasodium salt (TPPE), leveraging aggregation-induced emission (AIE) characteristics and electrostatic interactions to achieve selective and sensitive detection of these biomolecules. Through comprehensive optical characterization, including ground-state absorption, steady-state, and time-resolved emission spectroscopy, the interaction mechanisms and aggregation dynamics of TPPE with Protamine and Trypsin were elucidated. The sensor exhibits very high sensitivity (LOD: 1.45 nM for Protamine and 32 pM for Trypsin), selectivity, and stability, successfully operating in complex biological matrices, such as human serum and urine. Importantly, this sensor design underscores the synergy between the AIE phenomena and biomolecular interactions, offering a promising alternative for analytical applications in biomedical research and clinical diagnostics. The principles outlined herein open new avenues for the development of other AIE-based sensors, expanding the toolkit available for detecting a wide range of biomolecules using similar design strategies.


Assuntos
Corantes Fluorescentes , Protaminas , Espectrometria de Fluorescência , Eletricidade Estática , Estilbenos , Tripsina , Protaminas/química , Estilbenos/química , Tripsina/química , Tripsina/metabolismo , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Humanos
5.
Biomacromolecules ; 25(9): 5873-5888, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39177359

RESUMO

Metal-organic frameworks and hydrogen-organic frameworks (MOFs and HOFs) are attractive hosts for enzyme immobilization, but they are limited to immobilizing the purified enzymes, making industrial upscaling unattractive. Herein, aptamer-modified dual thermoresponsive polymeric micelles with switchable self-assembly and core-shell structure are constructed, which enable selective immobilization of trypsin directly from complex biological systems through a cascade operation of separation and immobilization. Their steric self-assembly provides a large amount of adsorption sites on the soluble micellar shell, resulting in high adsorption capacity and excellent selectivity. Meanwhile, their aptamer affinity ligand and cavity maintain the native conformations of trypsin and offer protective effects even in harsh conditions. The maximum adsorption capacity of the polymeric micelles for trypsin was determined to be 197 mg/g at 60 min, superior to those of MOFs and HOFs. 67.2 and 86.6% of its original activity was retained for trypsin immobilized in the cavity under strong alkaline and acidic conditions, respectively.


Assuntos
Enzimas Imobilizadas , Micelas , Polímeros , Tripsina , Tripsina/química , Tripsina/metabolismo , Enzimas Imobilizadas/química , Polímeros/química , Estruturas Metalorgânicas/química , Adsorção , Aptâmeros de Nucleotídeos/química
7.
Nat Commun ; 15(1): 7235, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174548

RESUMO

A variety of therapeutic possibilities have emerged for skillfully regulating protein function or conformation through intermolecular interaction modulation to rectify abnormal biochemical reactions in diseases. Herein, a devised strategy of enzyme coordinators has been employed to alleviate postoperative pancreatic fistula (POPF), which is characterized by the leakage of digestive enzymes including trypsin, chymotrypsin, and lipase. The development of a dextrorotary (D)-peptide supramolecular gel (CP-CNDS) under this notion showcases its propensity for forming gels driven by intermolecular interaction. Upon POPF, CP-CNDS not only captures enzymes from solution into hydrogel, but also effectively entraps them within the internal gel, preventing their exchange with counterparts in the external milieu. As a result, CP-CNDS completely suppresses the activity of digestive enzymes, effectively alleviating POPF. Remarkably, rats with POPF treated with CP-CNDS not only survived but also made a recovery within a mere 3-day period, while mock-treated POPF rats had a survival rate of less than 5 days when experiencing postoperative pancreatic fistula, leak or abscess. Collectively, the reported CP-CNDS provides promising avenues for preventing and treating POPF, while exemplifying precision medicine-guided regulation of protein activity that effectively targets specific pathogenic molecules across multiple diseases.


Assuntos
Hidrogéis , Fístula Pancreática , Peptídeos , Fístula Pancreática/prevenção & controle , Animais , Ratos , Hidrogéis/química , Masculino , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Quimotripsina/metabolismo , Complicações Pós-Operatórias/prevenção & controle , Tripsina/metabolismo , Tripsina/química , Lipase/metabolismo , Humanos , Ratos Sprague-Dawley , Modelos Animais de Doenças , Pâncreas/enzimologia , Pâncreas/patologia
8.
Biomacromolecules ; 25(9): 6082-6092, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39116325

RESUMO

The presence of Ca2+ ions is known to facilitate the activity of trypsin-like serine proteases via structural stabilization against thermal denaturation and autolysis. Herein, we report a new and hidden regulatory role of Ca2+ in the catalytic pathways of trypsin and α-chymotrypsin under physiological conditions. We discovered that macromolecular crowding promotes spontaneous homotypic condensation of trypsin via liquid-liquid phase separation to yield membraneless condensates over a broad range of concentrations, pH, and temperature, which are stabilized by multivalent hydrophobic interactions. Interestingly, we found that Ca2+ binding in the calcium binding loop reversibly regulates the condensation of trypsin and α-chymotrypsin. Spontaneous condensation effectively prevents autolysis of trypsin and preserves its native-like esterase activity for a prolonged period of time. It has also been found that phase-separated trypsin responds to Ca2+-dependent activation of its esterase activity even after 14 days of storage while free trypsin failed to do so. The present study highlights an important physiological aspect by which cells can spatiotemporally regulate the biocatalytic efficacy of trypsin-like serine proteases via Ca2+-signaling.


Assuntos
Cálcio , Quimotripsina , Esterases , Tripsina , Tripsina/metabolismo , Tripsina/química , Cálcio/metabolismo , Quimotripsina/metabolismo , Quimotripsina/química , Esterases/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Autólise , Concentração de Íons de Hidrogênio
9.
Int J Biol Macromol ; 278(Pt 2): 134677, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142478

RESUMO

Complex and stubborn bacterial biofilm infections significantly hinder diabetic wound healing and threaten public health. Therefore, a dressing material that effectively clears biofilms and promotes wound healing is urgently required. Herein, we introduce a novel strategy for simultaneously dispersing extracellular polymeric substances and eradicating drug-resistant bacteria. We prepared an ultrabroad-spectrum and injectable quaternized chitosan (QCS) hydrogel loaded with trypsin, which degrades biofilm extracellular proteins. Increased temperature initiated QCS gelation to form the hydrogel, enabling the sustained release of trypsin and effective adherence of the hydrogel to irregularly shaped wounds. To reproduce clinical scenarios, biofilms formed by a mixture of Staphylococcus aureus (S. aureus), Methicillin-resistant S. aureus, and Pseudomonas aeruginosa were administered to the wounds of rats with streptozotocin-induced diabetes. Under these severe infection conditions, the hydrogel efficiently suppressed inflammation, promoted angiogenesis, and enhanced collagen deposition, resulting in accelerated healing of diabetic wounds. Notably, the hydrogel demonstrates excellent biocompatibility without cytotoxicity. In summary, we present a trypsin-loaded QCS hydrogel with tremendous clinical applications potential for the treatment of chronic infected wounds.


Assuntos
Biofilmes , Quitosana , Diabetes Mellitus Experimental , Hidrogéis , Tripsina , Cicatrização , Biofilmes/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Ratos , Tripsina/química , Tripsina/metabolismo , Diabetes Mellitus Experimental/complicações , Antibacterianos/farmacologia , Antibacterianos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Masculino , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Matriz Extracelular de Substâncias Poliméricas/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos
10.
Talanta ; 280: 126745, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39180874

RESUMO

The effective method for trypsin purification should be established because trypsin has important economic value. In this work, a novel and simple strategy was proposed for fabricating micron-sized magnetic Fe3O4@agarose-benzamidine beads (MABB) with benzamidine as a ligand, which can efficiently and selectively capture trypsin. The micro-sized MABB, with clear spherical core-shell structure and average particle size of 6.6 µm, showed excellent suspension ability and magnetic responsiveness in aqueous solution. The adsorption capacity and selectivity of MABB towards target trypsin were significantly better than those of non-target lysozyme. According to the Langmuir equation, the maximum adsorption capacity of MABB for trypsin was 1946 mg g-1 at 25 °C, and the adsorption should be a physical sorption process. Furthermore, the initial adsorption rate and half equilibrium time of MABB toward trypsin were 787.4 mg g-1 min-1 and 0.71 min, respectively. To prove the practicability, MABB-based magnetic solid-phase extraction (MSPE) was proposed, and the related parameters were optimized in detail to improve the purification efficiency. With Tris-HCl buffer (50 mM, 10 mM CaCl2, pH 8.0) as extraction buffer, Tris-HCl buffer (50 mM, 100 mM CaCl2, pH 8.0) as rinsing buffer, acidic eluent (0.01 M HCl, 0.5 M NaCl, pH 2.0) as eluent buffer and alkaline buffer (1 M Tris-HCl buffer, pH 10.0) as neutralization solution, the MABB-based MSPE was successfully used for trypsin purification from the viscera of grass carp (Ctenopharyngodon idella). The molecular weight of purified trypsin was determined as approximate 23 kDa through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The purified trypsin was highly active from 30 °C to 60 °C, with an optimum temperature of 50 °C, and was tolerant to pH variation, exhibiting 85 % of maximum enzyme activity from pH 7.0 to 10.0. The results demonstrated that the proposed MABB-based MSPE could effectively purify trypsin and ensure the biological activity of purified trypsin. Therefore, we believe that the novel MABB could be applicable for efficient purification of trypsin from complex biological systems.


Assuntos
Benzamidinas , Sefarose , Tripsina , Animais , Tripsina/química , Tripsina/metabolismo , Sefarose/química , Benzamidinas/química , Benzamidinas/isolamento & purificação , Adsorção , Peixes , Tamanho da Partícula , Extração em Fase Sólida/métodos , Concentração de Íons de Hidrogênio
11.
Anal Chem ; 96(36): 14393-14404, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39186690

RESUMO

BACKGROUND: Bile's potential to reflect the health of the biliary system has led to increased attention, with proteomic analysis offering deeper understanding of biliary diseases and potential biomarkers. With the emergence of normothermic machine perfusion (NMP), bile can be easily collected and analyzed. However, the composition of bile can make the application of proteomics challenging. This study systematically evaluated various trypsin digestion methods to optimize proteomics of bile from human NMP livers. METHODS: Bile was collected from 12 human donor livers that were accepted for transplantation after the NMP viability assessment. We performed tryptic digestion using six different methods: in-gel, in-solution, S-Trap, SMART, EasyPep, and filter-aided sample purification, with or without additional precipitation before digestion. Proteins were analyzed using untargeted proteomics. Methods were assessed for total protein IDs, variation, and protein characteristics to determine the most optimal method. RESULTS: Methods involving precipitation surpassed crude methods in protein identifications (4500 vs 3815) except for in-gel digestion. Filtered data (40%) resulted in 3192 versus 2469 for precipitated and crude methods, respectively. We found minimal differences in mass, cellular components, or hydrophobicity of proteins between methods. Intermethod variability was notably diverse, with in-gel, in-solution, and EasyPep outperforming others. Age-related biological comparisons revealed upregulation of metabolic-related processes in younger donors and immune response and cell cycle-related processes in older donors. CONCLUSIONS: Variability between methods emphasizes the importance of cross-validation across multiple analytical approaches to ensure robust analysis. We recommend the in-gel crude method for its simplicity and efficiency, avoiding additional precipitation steps. Sample processing speed, cost, cleanliness, and reproducibility should be considered when a digestion method is selected for bile proteomics.


Assuntos
Bile , Biomarcadores , Proteômica , Humanos , Proteômica/métodos , Bile/química , Bile/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Tripsina/metabolismo , Tripsina/química , Pessoa de Meia-Idade , Masculino
12.
Int J Biol Macromol ; 278(Pt 1): 134649, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128763

RESUMO

Immunoglobulin G (IgG) exhibits potent antiviral, antibacterial, and immunological activities. The digestion process and bioavailability of IgG are often a concern. Dietary hydrocolloids are crucial for regulating healthy digestion and the bioavailability of protein as functional components. Understanding the effects of dietary hydrocolloids on the digestive kinetics of IgG is requisite. Herein, the pepsin and trypsin digestion of IgG was investigated using ordered porous layer interferometry (OPLI). The real-time variation in the interference spectral shift reflected by OPLI can be converted into changes in the optical thickness (OT) to obtain a degradation kinetics curve. The impact of dietary hydrocolloids, including alginic acid sodium salt (ALG), polydextrose (PD), and konjac glucomannan (KG), on IgG degradation was evaluated using OPLI. The results demonstrated that ALG significantly inhibited the degradation of IgG by pepsin under acidic conditions, whereas the addition of PD increased the Michaelis-Menten constant for IgG degradation by trypsin. Notably, this dependence is not based on the hydrocolloid viscosity, but relies more on the electrical properties. The study enhances our understanding of how hydrocolloids affect IgG digestion and could provide valuable insights into preserving IgG activity and facilitating the development of oral drugs or health products related to IgG.


Assuntos
Coloides , Imunoglobulina G , Pepsina A , Proteólise , Tripsina , Imunoglobulina G/química , Tripsina/química , Tripsina/metabolismo , Coloides/química , Pepsina A/metabolismo , Pepsina A/química , Cinética , Humanos , Animais
13.
Int J Biol Macromol ; 278(Pt 3): 135017, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182867

RESUMO

Proteases play a crucial role in industrial enzyme formulations, with activity fluctuations significantly impacting product quality and yield. Therefore, developing a method for precise and rapid detection of protease activity is paramount. This study aimed to develop a rapid and accurate method for quantifying trypsin activity using integrated infrared (IR) and ultraviolet (UV) spectroscopy combined with data fusion techniques. The developed method evaluates the enzymatic activity of trypsin under varying conditions, including temperature, pH, and ionic strength. By comparing different data fusion methods, the study identifies the optimal model for accurate enzyme activity prediction. The results demonstrated significant improvements in predictive performance using the feature-level data fusion approach. Additionally, substituting the spectral data of the samples in the validation sets into the best prediction model resulted in a minimal residual difference between predicted and true values, further verifying the model's accuracy and reliability. This innovative approach offers a practical solution for the efficient and precise quantification of enzyme activity, with broad applications in industrial processes.


Assuntos
Espectrofotometria Ultravioleta , Tripsina , Tripsina/química , Tripsina/metabolismo , Espectrofotometria Ultravioleta/métodos , Concentração de Íons de Hidrogênio , Temperatura , Espectrofotometria Infravermelho/métodos , Concentração Osmolar
14.
Food Chem ; 460(Pt 2): 140574, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089028

RESUMO

Creating molecules capable of inhibiting ice recrystallization is an active research area aiming to improve the freeze-thaw characteristics of foods and biomedical materials. Peptide mixtures have shown promise in preventing freezing-induced damage, but less is known about the relationship between their amino acid compositions and ice recrystallization inhibition (IRI) activities. In this article, we used Ni2+ immobilized metal affinity chromatography (IMAC) to fractionate pulse protein hydrolysates, created by Alcalase and trypsin, into mixtures lacking and enriched in His, and Cys residues. The aim of this study was to fractionate pulse protein hydrolysates based on their amino acid compositions and evaluate their resulting physicochemical and IRI characteristics. Ni2+ IMAC fractionation induced IRI activity in all of the evaluated soy, chickpea, and pea protein hydrolysates regardless of their amino acid composition. Ni2+ IMAC fractionation produced chemically distinct fractions of peptides, differing by their molecular weights, amino acid composition, and IRI activities. The resulting peptide mixtures' molecular weight, amino acid composition, secondary structure, and sodium ion levels were found to have no correlation with their IRI activities. Thus, we demonstrate for the first time the ability of Ni2+ IMAC fractionation to induce IRI activity in hydrolyzed pulse proteins.


Assuntos
Cromatografia de Afinidade , Cristalização , Gelo , Níquel , Hidrolisados de Proteína , Hidrolisados de Proteína/química , Níquel/química , Pisum sativum/química , Proteínas de Plantas/química , Cicer/química , Peptídeos/química , Tripsina/química , Peso Molecular , Aminoácidos/química
15.
J Pharm Biomed Anal ; 250: 116400, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39126811

RESUMO

Development of monoclonal and bispecific antibody-based protein therapeutics requires detailed characterization of native disulfide linkages, which is commonly achieved through peptide mapping under non-reducing conditions followed by liquid chromatography-mass spectrometry (LC-MS) analysis. One major challenge of this method is incomplete protein digestion due to insufficient denaturation of antibodies under non-reducing conditions. For a long time, researchers have explored various strategies with the aim of efficiently digesting antibody drugs when the disulfide bonds remain intact, but few could achieve this by using a simple and generic approach with well controlled disulfide scrambling artifacts. Here, we report a simple method for fast and efficient mapping of native disulfides of monoclonal and bispecific antibody-based protein therapeutics. The method was optimized to achieve optimal digestion efficiency by denaturing proteins with 8 M urea plus 0-1.25 M guanidine-HCl at elevated temperature (50 °C), followed by two-step digestion with trypsin/Lys-C mix using a one-pot reaction. The only parameter that needs to be optimized for different proteins is the concentration of guanidine-HCl present. This simplified sample preparation eliminated buffer exchange and can be completed within three hours. By using this new method, all native disulfide bonds were confirmed for these monoclonal and bispecific antibodies with high confidence. When compared with a commercial kit utilizing low-pH digestion condition, the new method demonstrated higher digestion efficiency and shorter sample preparation time. These results suggest this new one-pot-two-step digestion method is suitable for the characterization of antibody disulfide bonds, particularly for those antibodies with digestion-resistant domains under typical digestion conditions.


Assuntos
Anticorpos Biespecíficos , Anticorpos Monoclonais , Dissulfetos , Mapeamento de Peptídeos , Tripsina , Anticorpos Biespecíficos/química , Dissulfetos/química , Mapeamento de Peptídeos/métodos , Anticorpos Monoclonais/química , Tripsina/química , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas/métodos , Desnaturação Proteica , Guanidina/química , Metaloendopeptidases
16.
Food Chem ; 460(Pt 2): 140547, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39068792

RESUMO

Chilling injury (CI) in green pepper fruits during low-temperature storage causes a significant decline in quality. The present study utilized physiological, transcriptomic, and metabolomic analyses to idneitfy the mechanisms by which trypsin mitigates CI in green peppers stored at 4 °C for 8 days, followed by 3 days of shelf life. Results indicated that the trypsin treatment significantly reduced electrolyte leakage and the CI index in peppers, effectively extending their shelf life and preserving postharvest quality. After 4 days of storage, comparative -omic analyses identified 2514 differentially expressed genes (DEGs) and 397 differentially abundant metabolites (DAMs) between trypsin-treated and control peppers. The trypsin treatment induced changes in sugar metabolism, modulating the expression of HK, SUS, INV, and GLGC, which affected the abundance of metabolites such as CDP-glucose and α-D-p-glucose. Trypsin also enhanced carotenoid metabolism, altering the abundance of rhodopinal glucoside, 1'-hydroxyl-γ-carotene glucoside, and farnesyl 1-PP, and influencing the expression of PDS, CRTH, CRTB, and LUT5. Notably, the trypsin treatment activated the mitogen-activated protein kinase (MAPK) pathway that plays an integral role in the signal transduction of abiotic stress. Differential expression of FLS2, ELF18, PTO, PR1, PTI5, WPKY, MEKK1, and MPK6 genes in the MAPK pathway was observed, which was correlated with CI mitigation in green peppers during cold storage. In conclusion, trypsin is an effective treatment for reducing CI in green peppers during cold storage. The present study provides valuable insights into its physiological and molecular impact on green pepper fruit.


Assuntos
Capsicum , Temperatura Baixa , Frutas , Proteínas de Plantas , Tripsina , Capsicum/genética , Capsicum/química , Capsicum/metabolismo , Capsicum/crescimento & desenvolvimento , Frutas/química , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tripsina/metabolismo , Tripsina/genética , Tripsina/química , Armazenamento de Alimentos , Conservação de Alimentos/métodos , Regulação da Expressão Gênica de Plantas , Metabolômica
17.
Talanta ; 279: 126611, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067202

RESUMO

Peptidyl arginine deiminase 4 (PAD4) plays a critical role in many autoimmune diseases including rheumatoid arthritis. Herein, a trypsin assisted highly immunoassay method was established to determine PAD4 activity and screen potent inhibitors from herbal plants extracts and purified natural products. The method was applied to determine endogenous PAD4 activity in both cell and tissue lysates, as well as the inhibitory effects of 20 herbal plants and 50 purified natural products. The Cinnamomi ramulus extract showed strongest inhibitory potency with IC50 value lower than 5 µg/mL. Meanwhile, pyrroloquinoline quinone (PQQ), widely used as a dietary supplement, was discovered as a promising PAD4 inhibitor with an IC50 value lower than 4 µM. The inhibition kinetic analysis, drug affinity response target stability (DARTS) and molecular docking were performed to confirm the interaction between PQQ and PAD4. This method has great potential for researchers to monitor activities and discover potential inhibitors of PAD4.


Assuntos
Simulação de Acoplamento Molecular , Extratos Vegetais , Proteína-Arginina Desiminase do Tipo 4 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Imunoensaio/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/análise , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Tripsina/metabolismo , Tripsina/química , Avaliação Pré-Clínica de Medicamentos , Animais
18.
Chem Commun (Camb) ; 60(67): 8856-8859, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39081146

RESUMO

An electrophilic arginine mimetic, 2-chloroacetamidine (CAM), was deployed to enable trypsin-mediated proteolysis at cysteine residues and to enhance mass spectrometry-based proteomic detection of cysteine-containing peptides. Illustrating the value of the CAM-capping strategy, proteogenomic analysis using a two-stage false discovery rate (FDR) search revealed >50% enhanced coverage of missense variants, when compared to established workflows.


Assuntos
Cisteína , Tripsina , Cisteína/química , Tripsina/metabolismo , Tripsina/química , Acetamidas/química , Proteólise , Proteômica , Peptídeos/química , Humanos
19.
J Biomech Eng ; 146(11)2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39073485

RESUMO

Intradiscal injection is required to deliver therapeutic agents to the intervertebral disc (IVD) nucleus pulposus (NP). However, injectate leakage following needle retraction may result in decreased treatment efficacy and adverse side effects. While enzymatic digestion is a common research approach for simulating degeneration in healthy animal IVDs, contributions to the leakage phenomenon are unknown. In this study, bovine caudal discs were treated with injection into the NP of either a tris buffer control, collagenase (to primarily target collagen), or trypsin (to primarily target proteoglycans) and then injected with fluorescent saline using a through-puncture defect protocol. Pressure-volume records during injection were used to determine volume and pressure at leakage. Discs were then frozen, transected, and photographed to visualize injectate dispersion. Collagenase treatment resulted in a large increase in injectate dispersion, along with a decrease in injection pressure relative to control. Trypsin treatment resulted in a moderate increase in dispersion, with no associated effect on pressure. This study concludes that care should be taken when employing enzymatic digestion to simulate IVD degeneration, as NP tissue disruption may affect both retention and dispersion of subsequent therapeutic injections.


Assuntos
Colagenases , Disco Intervertebral , Tripsina , Animais , Bovinos , Tripsina/metabolismo , Disco Intervertebral/metabolismo , Colagenases/metabolismo , Fenômenos Biomecânicos , Fenômenos Mecânicos , Injeções , Pressão , Núcleo Pulposo/metabolismo
20.
Am J Physiol Gastrointest Liver Physiol ; 327(3): G333-G344, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981616

RESUMO

The serine protease chymotrypsin protects the pancreas against pancreatitis by degrading trypsinogen, the precursor to the digestive protease trypsin. Taking advantage of previously generated mouse models with either the Ctrb1 gene (encoding chymotrypsin B1) or the Ctrl gene (encoding chymotrypsin-like protease) disrupted, here we generated the novel Ctrb1-del × Ctrl-KO strain in the C57BL/6N genetic background, which harbors a naturally inactivated Ctrc gene (encoding chymotrypsin C). The newly created mice are devoid of chymotrypsin, yet the animals develop normally, breed well, and show no spontaneous phenotype, indicating that chymotrypsin is dispensable under laboratory conditions. When given cerulein, the Ctrb1-del × Ctrl-KO strain exhibited markedly increased intrapancreatic trypsin activation and more severe acute pancreatitis, relative to wild-type C57BL/6N mice. After the acute episode, Ctrb1-del × Ctrl-KO mice spontaneously progressed to chronic pancreatitis, whereas C57BL/6N mice recovered rapidly. The cerulein-induced pancreas pathology in Ctrb1-del × Ctrl-KO mice was highly similar to that previously observed in Ctrb1-del mice; however, trypsin activation was more robust and pancreatitis severity was increased. Taken together, the results confirm and extend prior observations demonstrating that chymotrypsin safeguards the pancreas against pancreatitis by limiting pathologic trypsin activity. In mice, the CTRB1 isoform, which constitutes about 90% of the total chymotrypsin content, is responsible primarily for the anti-trypsin defenses and protection against pancreatitis; however, the minor isoform CTRL also contributes to an appreciable extent.NEW & NOTEWORTHY Chymotrypsins defend the pancreas against the inflammatory disorder pancreatitis by degrading harmful trypsinogen. This study demonstrates that mice devoid of pancreatic chymotrypsins are phenotypically normal but become sensitized to secretagogue hyperstimulation and exhibit increased intrapancreatic trypsin activation, more severe acute pancreatitis, and rapid progression to chronic pancreatitis. The observations confirm and extend the essential role of chymotrypsins in pancreas health.


Assuntos
Ceruletídeo , Quimotripsina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pancreatite , Tripsina , Animais , Quimotripsina/metabolismo , Quimotripsina/genética , Ceruletídeo/toxicidade , Pancreatite/induzido quimicamente , Pancreatite/patologia , Pancreatite/metabolismo , Pancreatite/genética , Camundongos , Tripsina/metabolismo , Secretagogos/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Modelos Animais de Doenças , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA