Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 20(5): 3819-3827, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32271587

RESUMEN

Biological nanopores are emerging as powerful tools for single-molecule analysis and sequencing. Here, we engineered the two-component pleurotolysin (PlyAB) toxin to assemble into 7.2 × 10.5 nm cylindrical nanopores with a low level of electrical noise in lipid bilayers, and we addressed the nanofluidic properties of the nanopore by continuum simulations. Surprisingly, proteins such as human albumin (66.5 kDa) and human transferrin (76-81 kDa) did not enter the nanopore. We found that the precise engineering of the inner surface charge of the PlyAB induced electro-osmotic vortices that allowed the electrophoretic capture of the proteins. Once inside the nanopore, two human plasma proteins could be distinguished by the characteristics of their current blockades. This fundamental understanding of the nanofluidic properties of nanopores provides a practical method to promote the capture and analysis of folded proteins by nanopores.


Asunto(s)
Nanoporos , Ingeniería de Proteínas , Proteínas/aislamiento & purificación , Electricidad , Electroforesis , Proteínas Fúngicas , Proteínas Hemolisinas , Humanos , Membrana Dobles de Lípidos , Pliegue de Proteína
2.
Mol Biol Evol ; 37(4): 1133-1147, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873734

RESUMEN

Evolutionary trajectories are deemed largely irreversible. In a newly diverged protein, reversion of mutations that led to the functional switch typically results in loss of both the new and the ancestral functions. Nonetheless, evolutionary transitions where reversions are viable have also been described. The structural and mechanistic causes of reversion compatibility versus incompatibility therefore remain unclear. We examined two laboratory evolution trajectories of mammalian paraoxonase-1, a lactonase with promiscuous organophosphate hydrolase (OPH) activity. Both trajectories began with the same active-site mutant, His115Trp, which lost the native lactonase activity and acquired higher OPH activity. A neo-functionalization trajectory amplified the promiscuous OPH activity, whereas the re-functionalization trajectory restored the native activity, thus generating a new lactonase that lacks His115. The His115 revertants of these trajectories indicated opposite trends. Revertants of the neo-functionalization trajectory lost both the evolved OPH and the original lactonase activity. Revertants of the trajectory that restored the original lactonase function were, however, fully active. Crystal structures and molecular simulations show that in the newly diverged OPH, the reverted His115 and other catalytic residues are displaced, thus causing loss of both the original and the new activity. In contrast, in the re-functionalization trajectory, reversion compatibility of the original lactonase activity derives from mechanistic versatility whereby multiple residues can fulfill the same task. This versatility enables unique sequence-reversible compositions that are inaccessible when the active site was repurposed toward a new function.


Asunto(s)
Arildialquilfosfatasa/genética , Evolución Molecular Dirigida , Arildialquilfosfatasa/metabolismo , Epistasis Genética , Evolución Molecular , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo
3.
ACS Nano ; 13(2): 2398-2409, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30715850

RESUMEN

Ion channels form the basis of information processing in living cells by facilitating the exchange of electrical signals across and along cellular membranes. Applying the same principles to man-made systems requires the development of synthetic ion channels that can alter their conductance in response to a variety of external manipulations. By combining single-molecule electrical recordings with all-atom molecular dynamics simulations, we here demonstrate a hybrid nanopore system that allows for both a stepwise change of its conductance and a nonlinear current-voltage dependence. The conductance modulation is realized by using a short flexible peptide gate that carries opposite electric charge at its ends. We show that a constant transmembrane bias can position (and, in a later stage, remove) the peptide gate right at the most-sensitive sensing region of a biological nanopore FraC, thus partially blocking its channel and producing a stepwise change in the conductance. Increasing or decreasing the bias while having the peptide gate trapped in the pore stretches or compresses the peptide within the nanopore, thus modulating its conductance in a nonlinear but reproducible manner. We envision a range of applications of this removable-gate nanopore system, e.g. from an element of biological computing circuits to a test bed for probing the elasticity of intrinsically disordered proteins.


Asunto(s)
Activación del Canal Iónico , Nanoporos , Péptidos/química , Conductividad Eléctrica , Fenómenos Mecánicos , Simulación de Dinámica Molecular
4.
Nat Commun ; 9(1): 4085, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291230

RESUMEN

Crucial steps in the miniaturisation of biosensors are the conversion of a biological signal into an electrical current as well as the direct sampling of bodily fluids. Here we show that protein sensors in combination with a nanopore, acting as an electrical transducer, can accurately quantify metabolites in real time directly from nanoliter amounts of blood and other bodily fluids. Incorporation of the nanopore into portable electronic devices will allow developing sensitive, continuous, and non-invasive sensors for metabolites for point-of-care and home diagnostics.


Asunto(s)
Asparagina/análisis , Técnicas Biosensibles , Glucosa/análisis , Nanoporos , Líquidos Corporales/química , Escherichia coli , Transducción de Señal , Sudor/química
5.
ACS Chem Biol ; 13(11): 3153-3160, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30278129

RESUMEN

Immunotoxins are proteins containing a cell-targeting element linked to a toxin that are under investigation for next-generation cancer treatment. However, these agents are difficult to synthesize, chemically heterogeneous, expensive, and show toxicity toward healthy cells. In this work, we describe the synthesis and characterization of a new type of immunotoxin that showed exquisite selectivity toward targeted cells. In our construct, targeting molecules were covalently attached or genetically fused to oligomeric pore-forming toxins. The activity of the immunotoxin was then caged by fusing a soluble protein to the transmembrane domain and activated via cleavage with furin, which is a protease that is overexpressed in many cancer cells. During the several coupling steps, directed evolution allowed the efficient synthesis of the molecules in E. coli cells, as well as selection for further specificity toward targeted cells. The final construct showed no off-target activity, while acquiring an additional degree of specificity toward the targeted cells upon activation. The pore-forming toxins described here do not require internalization to operate, while the many protomeric subunits can be individually modified to refine target specificity.


Asunto(s)
Venenos de Cnidarios/farmacología , Inmunotoxinas/farmacología , Proteínas Citotóxicas Formadoras de Poros/farmacología , Proteínas Recombinantes de Fusión/farmacología , Tetrahidrofolato Deshidrogenasa/farmacología , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Venenos de Cnidarios/genética , Evolución Molecular Dirigida/métodos , Diseño de Fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Fólico/química , Furina/metabolismo , Humanos , Inmunotoxinas/química , Inmunotoxinas/genética , Inmunotoxinas/metabolismo , Mutagénesis , Proteínas Citotóxicas Formadoras de Poros/genética , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Salmonella typhi/química , Anémonas de Mar/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
6.
J Am Chem Soc ; 139(51): 18640-18646, 2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29206456

RESUMEN

Protein conformations play crucial roles in most, if not all, biological processes. Here we show that the current carried through a nanopore by ions allows monitoring conformational changes of single and native substrate-binding domains (SBD) of an ATP-Binding Cassette importer in real-time. Comparison with single-molecule Förster Resonance Energy Transfer and ensemble measurements revealed that proteins trapped inside the nanopore have bulk-like properties. Two ligand-free and two ligand-bound conformations of SBD proteins were inferred and their kinetic constants were determined. Remarkably, internalized proteins aligned with the applied voltage bias, and their orientation could be controlled by the addition of a single charge to the protein surface. Nanopores can thus be used to immobilize proteins on a surface with a specific orientation, and will be employed as nanoreactors for single-molecule studies of native proteins. Moreover, nanopores with internal protein adaptors might find further practical applications in multianalyte sensing devices.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Nanoporos , Nanotecnología/métodos , Transferencia Resonante de Energía de Fluorescencia , Proteínas Inmovilizadas/química , Cinética , Ligandos , Conformación Proteica , Imagen Individual de Molécula
7.
Nat Commun ; 8(1): 935, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038539

RESUMEN

Biological nanopores are nanoscale sensors employed for high-throughput, low-cost, and long read-length DNA sequencing applications. The analysis and sequencing of proteins, however, is complicated by their folded structure and non-uniform charge. Here we show that an electro-osmotic flow through Fragaceatoxin C (FraC) nanopores can be engineered to allow the entry of polypeptides at a fixed potential regardless of the charge composition of the polypeptide. We further use the nanopore currents to discriminate peptide and protein biomarkers from 25 kDa down to 1.3 kDa including polypeptides differing by one amino acid. On the road to nanopore proteomics, our findings represent a rationale for amino-acid analysis of folded and unfolded polypeptides with nanopores.Biological nanopore-based protein sequencing and recognition is challenging due to the folded structure or non-uniform charge of peptides. Here the authors show that engineered FraC nanopores can overcome these problems and recognize biomarkers in the form of oligopeptides, polypeptides and folded proteins.


Asunto(s)
Biomarcadores/química , Venenos de Cnidarios/química , Nanoporos , Péptidos/química , Proteínas/química , ADN/química , Ósmosis
8.
Angew Chem Int Ed Engl ; 55(40): 12494-8, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27608188

RESUMEN

Nanopores are used in single-molecule DNA analysis and sequencing. Herein, we show that Fragaceatoxin C (FraC), an α-helical pore-forming toxin from an actinoporin protein family, can be reconstituted in sphingomyelin-free standard planar lipid bilayers. We engineered FraC for DNA analysis and show that the funnel-shaped geometry allows tight wrapping around single-stranded DNA (ssDNA), resolving between homopolymeric C, T, and A polynucleotide stretches. Remarkably, despite the 1.2 nm internal constriction of FraC, double-stranded DNA (dsDNA) can translocate through the nanopore at high applied potentials, presumably through the deformation of the α-helical transmembrane region of the pore. Therefore, FraC nanopores might be used in DNA sequencing and dsDNA analysis.


Asunto(s)
Técnicas Biosensibles , Venenos de Cnidarios/química , ADN de Cadena Simple/análisis , ADN/análisis , Nanoporos , Venenos de Cnidarios/genética , Venenos de Cnidarios/metabolismo , Técnicas Electroquímicas , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Análisis de Secuencia de ADN
9.
Nano Lett ; 15(9): 6076-6081, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26243210

RESUMEN

Rotaxanes, pseudorotaxanes, and catenanes are supramolecular complexes with potential use in nanomachinery, molecular computing, and single-molecule studies. Here we constructed a protein rotaxane in which a polypeptide thread is encircled by a Cytolysin A (ClyA) nanopore and capped by two protein stoppers. The rotaxane could be switched between two states. At low negative applied potentials (<-50 mV) one of the protein stoppers resided inside the nanopore indefinitely. Under this configuration the rotaxane prevents the diffusion of protein molecules across the lipid bilayer and provides a useful platform for single-molecule analysis. High negative applied potentials (-100 mV) dismantled the interlocked rotaxane system by the forceful translocation of the protein stopper, allowing new proteins to be trapped inside or transported across the nanopore. The observed voltage threshold for the translocation of the protein stopper through the nanopore related well to the biphasic voltage dependence of the residence time measured for the freely diffusing protein stopper. We propose a model in which molecules translocate through a nanopore when the average dwell time decreases with the applied potential.


Asunto(s)
Escherichia coli/enzimología , Nanoporos , Perforina/metabolismo , Rotaxanos/metabolismo , Salmonella typhi/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Modelos Moleculares , Nanoporos/ultraestructura , Perforina/química , Transporte de Proteínas , Rotaxanos/química , Salmonella typhi/química , Tetrahidrofolato Deshidrogenasa/química
10.
J Am Chem Soc ; 137(17): 5793-5797, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25871548

RESUMEN

Nanopores have been used to detect molecules, to sequence DNA, or to investigate chemical reactions at the single-molecule level. Because they approach the absolute limit of sensor miniaturization, nanopores are amenable to parallelization and could be used in single-cell measurements. Here we show that single enzymes can be functionally and reversibly trapped inside the confined space of a ClyA nanopore. Remarkably, the binding of ligands to the internalized proteins is mirrored by specific changes to the nanopore conductance. Conveniently, the manipulation of the charge of the protein allowed increasing of the residence time of the protein inside the nanopore. Nanopores with internalized protein adaptors can be used to study proteins in real time or can be incorporated into inexpensive portable devices for the detection of analytes with high selectivity.


Asunto(s)
Citotoxinas/química , Proteínas de Escherichia coli/análisis , Oxigenasas de Función Mixta/análisis , Nanoporos , Tetrahidrofolato Deshidrogenasa/análisis , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Ligandos , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Tetrahidrofolato Deshidrogenasa/metabolismo
11.
ACS Nano ; 8(12): 12826-35, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25493908

RESUMEN

Protein-DNA interactions play critical roles in biological systems, and they often involve complex mechanisms and dynamics that are not easily measured by ensemble experiments. Recently, we showed that folded proteins can be internalized inside ClyA nanopores and studied by ionic current recordings at the single-molecule level. Here, we use ClyA nanopores to sample the interaction between the G-quadruplex fold of the thrombin binding aptamer (TBA) and human thrombin (HT). Surprisingly, the internalization of the HT:TBA complex inside the nanopore induced two types of current blockades with distinguished residual current and lifetime. Using single nucleobase substitutions to TBA we showed that these two types of blockades originate from TBA binding to thrombin with two isomeric orientations. Voltage dependencies and the use of ClyA nanopores with two different diameters allowed assessing the effect of the applied potential and confinement and revealed that the two binding configurations of TBA to HT display different lifetimes. These results show that the ClyA nanopores can be used to probe conformational heterogeneity in protein:DNA interactions.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Nanoporos , Nanotecnología/métodos , Trombina/metabolismo , Humanos , Isomerismo , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Trombina/química
12.
Nat Commun ; 4: 2415, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24026014

RESUMEN

The transport of nucleic acids through membrane pores is a fundamental biological process that occurs in all living organisms. It occurs, for example, during the import of viral DNA into the host cell or during the nuclear pore complex-mediated transport of mRNA in and out the cell nucleus and has implications in nucleic acid drug delivery and gene therapy. Here we describe an engineered DNA transporter that is able to recognize and chaperone a specific DNA molecule across a biological membrane under a fixed transmembrane potential. The transported DNA strand is then released by a simple mechanism based on DNA strand displacement. This nanopore machine might be used to separate or concentrate nucleic acids or to transport genetic information across biological membranes.


Asunto(s)
Membrana Celular/metabolismo , ADN/metabolismo , Nanoporos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Transporte Biológico , Cinética , Rotaxanos/metabolismo , Termodinámica
13.
J Am Chem Soc ; 135(36): 13456-63, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23919630

RESUMEN

Nanopores have recently emerged as powerful tools in single-molecule investigations. Biological nanopores, however, have drawbacks, including a fixed size and limited stability in lipid bilayers. Inspired by the great success of directed evolution approaches in tailoring enzyme properties, in this work we evolved Cytolysin A from Salmonella typhi (ClyA) to a high level of soluble expression and desired electrical properties in lipid bilayers. Evolved ClyA nanopores remained open up to -150 mV applied potential, which allowed the detailed characterization of folded proteins by ionic current recordings. Remarkably, we also found that ClyA forms several nanopore species; among which we could isolate and characterize three nanopore types most likely corresponding to the 12mer, 13mer, and 14mer oligomeric forms of ClyA. Protein current blockades to the three ClyA nanopores showed that subnanometer variations in the diameter of nanopores greatly affect the recognition of analyte proteins.


Asunto(s)
Proteínas Bacterianas/química , Citotoxinas/química , Nanoporos , Salmonella typhi/química , Proteínas Bacterianas/aislamiento & purificación , Citotoxinas/aislamiento & purificación , Modelos Moleculares , Tamaño de la Partícula , Proteínas/química , Propiedades de Superficie
14.
Nano Lett ; 12(9): 4895-900, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22849517

RESUMEN

Nanopores have been used in label-free single-molecule studies, including investigations of chemical reactions, nucleic acid analysis, and applications in sensing. Biological nanopores generally perform better than artificial nanopores as sensors, but they have disadvantages including a fixed diameter. Here we introduce a biological nanopore ClyA that is wide enough to sample and distinguish large analyte proteins, which enter the pore lumen. Remarkably, human and bovine thrombins, despite 86% sequence identity, elicit characteristic ionic current blockades, which at -50 mV differ in their main current levels by 26 ± 1 pA. The use of DNA aptamers or hirudin as ligands further distinguished the protein analytes. Finally, we constructed ClyA nanopores decorated with covalently attached aptamers. These nanopores selectively captured and internalized cognate protein analytes but excluded noncognate analytes, in a process that resembles transport by nuclear pores.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Proteínas Hemolisinas/química , Proteínas Hemolisinas/ultraestructura , Nanoestructuras/química , Nanoestructuras/ultraestructura , Ingeniería de Proteínas/métodos , Mapeo de Interacción de Proteínas/métodos , Sitios de Unión , Tamaño de la Partícula , Porosidad , Unión Proteica
15.
Nat Rev Genet ; 11(8): 572-82, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20634811

RESUMEN

The divergence of new genes and proteins occurs through mutations that modulate protein function. However, mutations are pleiotropic and can have different effects on organismal fitness depending on the environment, as well as opposite effects on protein function and dosage. We review the pleiotropic effects of mutations. We discuss how they affect the evolution of gene and protein function, and how these complex mutational effects dictate the likelihood and mechanism of gene duplication and divergence. We propose several factors that can affect the divergence of new protein functions, including mutational trade-offs and hidden, or apparently neutral, variation.


Asunto(s)
Evolución Molecular , Mutación , Proteínas/genética , Proteínas/fisiología , Duplicación de Gen , Variación Genética , Modelos Genéticos , Selección Genética
16.
EMBO J ; 27(1): 17-26, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18059473

RESUMEN

EmrE is a small H+-coupled multidrug transporter in Escherichia coli. Claims have been made for an antiparallel topology of this homodimeric protein. However, our own biochemical studies performed with detergent-solubilized purified protein support a parallel topology of the protomers. We developed an alternative approach to constrain the relative topology of the protomers within the dimer so that their activity can be assayed also in vivo before biochemical handling. Tandem EmrE was built with two identical monomers genetically fused tail to head (C-terminus of the first to N-terminus of the second monomer) with hydrophilic linkers of varying length. All the constructs conferred resistance to ethidium by actively removing it from the cytoplasm. The purified proteins bound substrate and transported methyl viologen into proteoliposomes by a proton-dependent mechanism. A tandem where one of the essential glutamates was replaced with glutamine transported only monovalent substrates and displayed a modified stoichiometry. The results support a parallel topology of the protomers in the functional dimer. The implications regarding insertion and evolution of membrane proteins are discussed.


Asunto(s)
Antiportadores/química , Antiportadores/genética , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Recombinantes de Fusión/síntesis química , Proteínas Recombinantes de Fusión/genética , Secuencia de Aminoácidos , Transporte Biológico Activo/genética , Citoplasma/química , Citoplasma/genética , Dimerización , Transporte de Electrón/genética , Escherichia coli/química , Etidio/química , Etidio/farmacocinética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína/genética , Proteínas Recombinantes de Fusión/química , Especificidad por Sustrato/genética , Termodinámica
17.
J Biol Chem ; 281(47): 36205-12, 2006 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-17003034

RESUMEN

The recently suggested antiparallel topology of EmrE has intriguing implications for many aspects of the biology of ion-coupled transporters. However, it is at odds with biochemical data that demonstrated the same topology for all protomers in the intact cell and with extensive cross-linking studies. To examine this apparent contradiction we chemically cross-linked dimers with a rigid bifunctional maleimide using Cys replacements at positions not permissible by an antiparallel topology. A purified cross-linked dimer binds substrate and transports it in proteoliposomes with kinetic constants similar to those of the non-cross-linked dimer. The cross-linked dimers do not interact with non-cross-linked dimers as judged from the fact that inactive mutants do not affect their activity (negative dominance). The results support the contention that EmrE with parallel topology is fully functional. We show that the detergents used in crystallization increase the fraction of monomers in solution. We suggest that the antiparallel orientation observed is a result of the arrangement of the monomers in the crystal. Functionality of EmrE with the suggested antiparallel orientation of the monomers remains to be characterized.


Asunto(s)
Antiportadores/química , Resistencia a Múltiples Medicamentos , Proteínas de Escherichia coli/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Antiportadores/fisiología , Reactivos de Enlaces Cruzados/farmacología , Cisteína/química , Detergentes/farmacología , Dimerización , Proteínas de Escherichia coli/fisiología , Calor , Cinética , Maleimidas/farmacología , Modelos Moleculares , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutagénesis Sitio-Dirigida , Paraquat/farmacología , Unión Proteica , Conformación Proteica
18.
J Biol Chem ; 280(9): 7487-92, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15623511

RESUMEN

EmrE is a small multidrug transporter in Escherichia coli that extrudes various positively charged drugs across the plasma membrane in exchange with protons, thereby rendering cells resistant to these compounds. Biochemical experiments indicate that the basic functional unit of EmrE is a dimer where the common binding site for protons and substrate is formed by the interaction of an essential charged residue (Glu-14) from both EmrE monomers. Carbodiimide modification of EmrE has been studied using functional assays, and the evidence suggests that Glu-14 is the target of the reaction. Here we exploited electrospray ionization mass spectrometry to directly monitor the reaction with each monomer rather than following inactivation of the functional unit. A cyanogen bromide peptide containing Glu-14 allows the extent of modification by the carboxyl-specific modification reagent diisopropylcarbodiimide (DiPC) to be monitored and reveals that peptide 2NPYIYLGGAILAEVIGTTLM(21) is approximately 80% modified in a time-dependent fashion, indicating that each Glu-14 residue in the oligomer is accessible to DiPC. Furthermore, preincubation with tetraphenylphosphonium reduces the reaction of Glu-14 with DiPC by up to 80%. Taken together with other biochemical data, the findings support a "time sharing" mechanism in which both Glu-14 residues in a dimer are involved in tetraphenylphosphonium and H(+) binding.


Asunto(s)
Antiportadores/química , Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Antiportadores/ultraestructura , Sitios de Unión , Transporte Biológico , Carbodiimidas/farmacología , Bromuro de Cianógeno/química , Dimerización , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Ácido Glutámico/química , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/ultraestructura , Modelos Biológicos , Modelos Químicos , Compuestos Onio/química , Compuestos Organofosforados/química , Péptidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Protones , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo
19.
Biophys J ; 86(6): 3335-48, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15189838

RESUMEN

Using a recently reported computational method, we describe an approach to model the structure of EmrE, a proton coupled multi-drug transporter of Escherichia coli. EmrE is the smallest ion-coupled transporter known; it functions as an oligomer and each monomer comprises four transmembrane segments. Because of its size, EmrE provides a unique experimental paradigm. The computational method does not afford a unique solution for the monomer. The experimental constraints available were used to select the most likely structure and to dock two monomers together to yield a dimer. The model is further validated by modeling of Hsmr, an EmrE homolog with a remarkable amino acid composition with over 40% of Ala and Val. The Hsmr model is similar to that of EmrE, with the majority of the Ala or Val residues facing the lipid. In addition, the model of EmrE features a putative substrate-binding site very similar to that observed in BmrR, a transcription activator of multi-drug transporters, with a similar substrate profile. The two crucial residues that couple proton fluxes with substrate binding in the homo-dimer of EmrE, Glu-14, have a spatial arrangement that agrees with proposed molecular mechanisms of transport.


Asunto(s)
Antiportadores/química , Simulación por Computador , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/química , Modelos Estructurales , Subunidades de Proteína/química , Alanina/química , Secuencia de Aminoácidos , Antiportadores/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli/química , Proteínas de Escherichia coli , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Subunidades de Proteína/genética , Homología de Secuencia de Aminoácido , Transactivadores/química , Transactivadores/genética , Valina/química
20.
J Biol Chem ; 279(11): 9951-5, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-14701800

RESUMEN

A novel approach to study coupling of substrate and ion fluxes is presented. EmrE is an H(+)-coupled multidrug transporter from Escherichia coli. Detergent-solubilized EmrE binds substrate with high affinity in a pH-dependent mode. Here we show, for the first time in an ion-coupled transporter, substrate-induced release of protons in a detergent-solubilized preparation. The direct measurements allow for an important quantitation of the phenomenon. Thus, stoichiometry of the release in the wild type and a mutant with a single carboxyl at position 14 is very similar and about 0.8 protons/monomer. The findings demonstrate that the only residue involved in proton release is a highly conserved membrane-embedded glutamate (Glu-14) and that all the Glu-14 residues in the EmrE functional oligomer participate in proton release. Furthermore, from the pH dependence of the release we determined the pK of Glu-14 as 8.5 and for an aspartate replacement at the same position as 6.7. The high pK of the carboxyl at position 14 is essential for coupling of fluxes of protons and substrates.


Asunto(s)
Antiportadores/química , Detergentes/farmacología , Proteínas de la Membrana/química , Protones , Antiportadores/metabolismo , Ácido Aspártico/química , Transporte Biológico , Membrana Celular/metabolismo , Diciclohexilcarbodiimida/farmacología , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Ácido Glutámico/química , Hidrógeno/química , Concentración de Iones de Hidrógeno , Iones , Cinética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Plásmidos/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...