Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Colloid Interface Sci ; 673: 312-320, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38878366

RESUMEN

Silicon is considered as a promising alternative to traditional graphite anode for lithium-ion batteries. Due to the dramatic volume expansion of silicon anode generated from the insertion of Li+ ions, the binder which can suppress the severe volume change and repeated massive stress impact during cycling is required greatly. Herein, we design a gradient-distributed two-component binder (GE-PAA) to achieve excellent cyclic stability, and reveal the mechanism of high energy dissipative binder stabilized silicon electrodes. The inner layer of the electrode is the polyacrylic acid polymer (PAA) with high Young's modulus, which is used as the skeleton binder to stabilize the silicon particle interface and the electrode structure. The outer layer is the gel electrolyte polymer (GE) with lower Young's modulus, which releases the stress generated during the lithiation and de-lithiation process effectively, achieving the high structural stability at the molecular level and silicon particles. Due to the synergistic effect of the gradient binder design, the silicon electrode retains a reversible capacity of 1557.4 mAh g-1 after 200 cycles at the current density of 0.5 C and 1539.2 mAh g-1 at a high rate of 1.8 C. This work provides a novel binder design strategy for Si anode with long cycle stability.

2.
Stem Cell Rev Rep ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656478

RESUMEN

Stem cell transplantation is a promising therapeutic strategy for myocardial infarction (MI). However, engraftment, survival and differentiation of the transplanted stem cells in ischemic and inflammatory microenvironment are poor. We designed a novel self-assembly peptide (SAP) by modifying the peptide RADA16 with cell-adhesive motif and BMP-2 (bone morphogenetic protein-2)-binding motif. Effects of the functionalized SAP on adhesion, survival and differentiation of c-kit+ MSCs (mesenchymal stem cells) were examined. Myocardial regeneration, neovascularization and cardiac function were assessed after transplantation of the SAP loading c-kit+ MSCs and BMP-2 in rat MI models. The SAP could spontaneously assemble into well-ordered nanofibrous scaffolds. The cells adhered to the SAP scaffolds and spread well. The SAP protected the cells in the condition of hypoxia and serum deprivation. Following degradation of the SAP, BMP-2 was released sustainedly and induced c-kit+ MSCs to differentiate into cardiomyocytes. At four weeks after transplantation of the SAP loading c-kit+ MSCs and BMP-2, myocardial regeneration and angiogenesis were enhanced, and cardiac function was improved significantly. The cardiomyocytes differentiated from the engrafted c-kit+ MSCs were increased markedly. The differentiated cells connected with recipient cardiomyocytes to form gap junctions. Collagen volume was decreased dramatically. These results suggest that the functionalized SAP promotes engraftment, survival and differentiation of stem cells effectively. Local sustained release of BMP-2 with SAP is a viable strategy to enhance differentiation of the engrafted stem cells and repair of the infarcted myocardium.

3.
J Environ Manage ; 358: 120922, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657413

RESUMEN

In order to deal with the environmental problems such as pollution emissions and climate change, sustainable development in the field of transportation has gradually become a hot topic to all sectors of society. In addition, promoting the green and low-carbon transformation of China's transportation is also an important issue in the new era. Thus, it is particularly important to correctly identify the green effect of high-speed rail. However, the traditional causal reasoning model faces several challenges such as 'dimensional curse' and multicollinearity. Based on the panel data of 283 prefecture-level cities in China from 2003 to 2019, this study uses the double machine learning model to explore the impact of transportation infrastructure upgrading on the efficiency of urban green development in China. The research shows that the upgrading of transportation infrastructure can effectively improve the efficiency of urban green development by 4%. Service industry agglomeration and green innovation are verified as two mediating channels. Moreover, the synthetic difference in difference model is employed to evaluate the regional impact of high-speed rail, and finds that the regional impact of transportation policies often exceeds the impact of individual cities. We further apply the conclusions of this paper to the research at the micro enterprise level. Goodman-Bacon decomposition and a variety of robustness tests confirm the validity of our conclusions. The study's comprehensive empirical analysis not only validates the positive effects of transportation upgrades on green development, but also offers novel insights into the underlying mechanisms and policy implications of transportation upgrading.


Asunto(s)
Ciudades , Aprendizaje Automático , Desarrollo Sostenible , Transportes , China , Modelos Teóricos , Cambio Climático
4.
Math Biosci Eng ; 21(3): 3498-3518, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38549293

RESUMEN

Aspect-level sentiment analysis can provide a fine-grain sentiment classification for inferring the sentiment polarity of specific aspects. Graph convolutional network (GCN) becomes increasingly popular because its graph structure can characterize the words' correlation for extracting more sentiment information. However, the word distance is often ignored and cause the cross-misclassification of different aspects. To address the problem, we propose a novel dual GCN structure to take advantage of word distance, syntactic information, and sentiment knowledge in a joint way. The word distance is not only used to enhance the syntactic dependency tree, but also to construct a new graph with semantic knowledge. Then, the two kinds of word distance assisted graphs are fed into two GCNs for further classification. The comprehensive results on two self-collected Chinese datasets (MOOC comments and Douban book reviews) as well as five open-source English datasets, demonstrate that our proposed approach achieves higher classification accuracy than the state-of-the-art methods with up to 1.81x training acceleration.

5.
Br J Radiol ; 97(1157): 954-963, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38538868

RESUMEN

OBJECTIVES: We aimed to differentiate endometrial cancer (EC) between TP53mutation (P53abn) and Non-P53abn subtypes using radiological-clinical nomogram on EC body volume MRI. METHODS: We retrospectively recruited 227 patients with pathologically proven EC from our institution. All these patients have undergone molecular pathology diagnosis based on the Cancer Genome Atlas. Clinical characteristics and histological diagnosis were recorded from the hospital information system. Radiomics features were extracted from online Pyradiomics processors. The diagnostic performance across different acquisition protocols was calculated and compared. The radiological-clinical nomogram was established to determine the nonendometrioid, high-risk, and P53abn EC group. RESULTS: The best MRI sequence for differentiation P53abn from the non-P53abn group was contrast-enhanced T1WI (test AUC: 0.8). The best MRI sequence both for differentiation endometrioid cancer from nonendometrioid cancer and high-risk from low- and intermediate-risk groups was apparent diffusion coefficient map (test AUC: 0.665 and 0.690). For all 3 tasks, the combined model incorporating all the best discriminative features from each sequence yielded the best performance. The combined model achieved an AUC of 0.845 in the testing cohorts for P53abn cancer identification. The MR-based radiomics diagnostic model performed better than the clinical-based model in determining P53abn EC (AUC: 0.834 vs 0.682). CONCLUSION: In the present study, the diagnostic model based on the combination of both radiomics and clinical features yielded a higher performance in differentiating nonendometrioid and P53abn cancer from other EC molecular subgroups, which might help design a tailed treatment, especially for patients with high-risk EC. ADVANCES IN KNOWLEDGE: (1) The contrast-enhanced T1WI was the best MRI sequence for differentiation P53abn from the non-P53abn group (test AUC: 0.8). (2) The radiomics-based diagnostic model performed better than the clinical-based model in determining P53abn EC (AUC: 0.834 vs 0.682). (3) The proposed model derived from multi-parametric MRI images achieved a higher accuracy in P53abn EC identification (AUC: 0.845).


Asunto(s)
Neoplasias Endometriales , Imagen por Resonancia Magnética , Nomogramas , Proteína p53 Supresora de Tumor , Humanos , Femenino , Neoplasias Endometriales/diagnóstico por imagen , Estudios Retrospectivos , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Proteína p53 Supresora de Tumor/genética , Anciano , Mutación , Adulto
6.
J Magn Reson Imaging ; 59(2): 483-493, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37177832

RESUMEN

BACKGROUND: The diagnosis of prenatal placenta accreta spectrum (PAS) with magnetic resonance imaging (MRI) is highly dependent on radiologists' experience. A deep learning (DL) method using the prior knowledge that PAS-related signs are generally found along the utero-placental borderline (UPB) may help radiologists, especially those with less experience, to mitigate this issue. PURPOSE: To develop a DL tool for antenatal diagnosis of PAS using T2-weighted MR images. STUDY TYPE: Retrospective. SUBJECTS: Five hundred and forty pregnant women with clinically suspected PAS disorders from two institutions, divided into training (409), internal test (103), and external test (28) datasets. FIELD STRENGTH/SEQUENCE: Sagittal T2-weighted fast spin echo sequence at 1.5 T and 3 T. ASSESSMENT: An nnU-Net was trained for placenta segmentation. The UPB straightening approach was used to extract the utero-placental boundary region. The UPB image was then fed into DenseNet-PAS for PAS diagnosis. DenseNet-PP learnt placental position information to improve the PAS diagnosis performance. Three radiologists with 8, 10, and 12 years of experience independently evaluated the images. Two radiologists marked the placenta tissue. Histopathological findings were the reference standard. STATISTICAL TESTS: Area under the curve (AUC) was used to evaluate the classification. Dice coefficient evaluated the segmentation between radiologists and the model performance. The Mann-Whitney U-test or the chi-squared test assessed the significance of differences. Decision curve analysis was used to determine clinical effectiveness. DeLong's test was used to compare AUCs. RESULTS: Of the 540 patients, 170 had PAS disorders confirmed by histopathology. The DL model using UPB images and placental position yielded the highest AUC of 0.860 and 0.897 in internal test and external test cohorts, respectively, significantly exceeding the performance of three radiologists (internal test AUC, 0.737-0.770). DATA CONCLUSION: By extracting the UPB image, this fully automatic DL pipeline achieved high accuracy and may assist radiologists in PAS diagnosis using MRI. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Aprendizaje Profundo , Placenta Accreta , Femenino , Embarazo , Humanos , Placenta , Placenta Accreta/diagnóstico por imagen , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos
8.
Food Chem X ; 19: 100833, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780237

RESUMEN

This comprehensive review focuses on heterocyclic aromatic amines (HAAs), a class of chemicals that commonly form during the cooking or processing of protein-rich foods. The International Agency for Research on Cancer (IARC) has categorized certain HAAs as probable human carcinogens, highlighting the significance of studying their formation and control in food safety research. The main objective of this review is to address the knowledge gaps regarding HAAs formation and propose approaches to reduce their potential toxicity during thermal processing. By summarizing the mechanisms involved in HAAs formation and inhibition, the review encompasses both conventional and recent detection methods. Furthermore, it explores the distribution of HAAs in thermally processed meats prepared through various cooking techniques and examines their relative toxicity. Additionally, considering that the Maillard reaction, responsible for HAAs formation, also contributes to the unique flavors and aromas of cooked meat products, this review investigates the potential effects of inhibiting HAAs formation on flavor substances. A thorough understanding of these complex interactions provides a foundation for developing targeted interventions to minimize the formation of HAAs and other harmful compounds during food processing.

9.
Arch Microbiol ; 205(10): 343, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37755612

RESUMEN

The present study was carried out to clarify the taxonomic position of Bacillus massiliigorillae and Bacillus sinesaloumensis. The 16S rRNA gene sequences extracted from the Bacillus sinesaloumensis Marseille-P3516T (FTOX00000000) and Bacillus massiliigorillae G2T (CAVL000000000) genomes showed 98.5 and 99.1% similarity with the type strains of Ferdinandcohnia humi and Peribacillus endoradicis, respectively. The amino acid identity (AAI) values of Bacillus sinesaloumensis Marseille-P3516T were higher with Ferdinandcohnia members, while Bacillus massiliigorillae G2T with Peribacillus members. In phylogenomic and phylogenetic trees, Bacillus sinesaloumensis Marseille-P3516T and Bacillus massiliigorillae G2T clade with members of the genera Ferdinandcohnia and Peribacillus, respectively. Based on the above results, we propose to transfer Bacillus massiliigorillae to the genus Peribacillus as Peribacillus massiliigorillae comb. nov., and Bacillus sinesaloumensis to the genus Ferdinandcohnia as Ferdinandcohnia sinesaloumensis comb. nov.

10.
Anal Chem ; 95(45): 16531-16538, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37747740

RESUMEN

Various vacuum ultraviolet (VUV) lamps are simple and convenient VUV light sources for mass spectrometry and other research fields. However, the strong absorption of high-energy photons by window materials limits the application of an extreme ultraviolet (EUV) light. In this study, a novel high-flux EUV light source is developed using a microchannel plate (MCP) window to transmit 73.6 nm (16.9 eV) EUV light generated via the radio frequency (RF) inductive discharge of neon. The MCP used is a 0.5 mm thick glass plate with a regular array of microtubes (12 µm i.d.). The photon fluxes of the EUV light source with the MCP window (12 mm i.d.) and an aperture (1.8 mm i.d.) are ∼1.31 × 1014 and ∼9.80 × 1012 photons s-1, respectively, while their corresponding leakage flow rates of the discharge gas are 0.062 and 0.046 cm3 atom s-1, according to the contrast experiments. The transmission efficiency of the MCP to the EUV light is 30.2%, with a 1.2% deviation. An EUV photoionization time-of-flight mass spectrometer (EUV-PI-TOFMS) is built to validate the practicality of the MCP-windowed EUV light source further. The detection sensitivities in 30 s measurements for methyl chloride (CH3Cl), methylene chloride (CH2Cl2), trichloromethane (CHCl3), and carbon tetrachloride (CCl4) in synthetic air are 4366, 4120, 5854, and 4095 counts ppbv-1, respectively. The corresponding 3σ limits of detection (LODs) are 42, 34, 24, and 15 pptv. This study develops a new feasible method for efficiently utilizing high-energy EUV light, with many application prospects in scientific research.

11.
Sci Total Environ ; 898: 166353, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37597565

RESUMEN

The secondary organic aerosol (SOA) yield of toluene photooxidation was reported to substantially higher than that of trimethylbenzene due to the effect of the number of methyl substituents. However, the intrinsic mechanism for this disparity is not clear enough. In this study, a highly-sensitive thermal-desorption photoinduced associative ionization mass spectrometer (TD-PAI-MS) was used to real-time characterize the molecular composition and its evolution of the SOA generated from the photooxidation of toluene and 1,2,3-trimethylbenzene (1,2,3-TMB) in a smog chamber. In the new particle formation (NPF) stage, toluene generated more variety of nucleation precursors, such as benzaldehyde (MW 106) and benzoic acid (MW 122), resulting in a much higher nucleation rate and SOA number concentration. In the SOA growth/aging stage, the key SOA components of toluene were mainly dialdehydes, e.g., 2-oxopropanedial (MW 86) and 4-oxopent-2-enedial (MW 112), which played an important role in the formation of highly oxidized species (HOS) through oligomerization or cyclization reactions. In contrast, due to the presence of more methyl groups, 1,2,3-TMB was inclined to produce ketones, e.g., 2,3-butanedione (MW 86) and 3-methyl-4-oxopent-2-enal (MW 112), which would be cleaved into high-volatility low molecular compounds, e.g., acetic acid, through fragmentation. Taken together, relative to 1,2,3-TMB, the higher nucleation rate during NPF and the significant oligomerization/functionalization process during SOA growth are thought to be the major reasons resulting in the higher SOA yield of toluene. This work provides a reference for the insight into the different SOA yields of monocyclic aromatic hydrocarbons (MAHs) through further revealing the SOA formation mechanism during toluene and 1,2,3-TMB photooxidation.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123158, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37478761

RESUMEN

H2O2 is an important signaling molecule in the body, and its levels fluctuate in many pathological sites, therefore, it can be used as a biomarker for early diagnosis of disease. Since the environment in vivo is extremely complex, it is of great significance to develop a probe that can accurately monitor the fluctuation of H2O2 level without interference from other physiological processes. Based on this, we designed and synthesized two new near-infrared H2O2 fluorescent probes, LTA and LTQ, based on the ICT mechanism. Both of them have good responses to H2O2, but LTA has a faster response speed. In addition, the probe LTA has good biocompatibility, good water solubility, and a large Stokes shift (95 nm). The detection limit is 4.525 µM. The probe was successfully used to visually detect H2O2 in living cells and zebrafish and was successfully used to monitor the changes in H2O2 levels in zebrafish due to APAP-induced liver injury.


Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Humanos , Animales , Peróxido de Hidrógeno , Células HeLa
13.
Environ Sci Pollut Res Int ; 30(41): 93617-93628, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37516703

RESUMEN

Volatile organic compounds (VOCs) released along with soil disturbance during the remediation of abandoned industrial sites have attracted great attention due to their possible toxicity and odour. However, the real-time emission characteristics of these VOCs and their subsequent effects on health and olfaction are less understood. In this study, the gaseous VOCs released from soil disturbance by excavators and drilling rigs at an abandoned chemical pesticide plant were monitored online with a laboratory-built single photoionization time-of-flight mass spectrometer (SPI-TOFMS). Twelve main VOCs with total mean concentrations ranging from 2350 to 3410 µg m-3 were observed, with dichloromethane (DCM) having a significant contribution. The total concentrations of the remaining 11 VOCs increased substantially during soil disturbance, with the total mean concentrations increasing from 18.65-39.05 to 37.95-297.94 µg m-3 and those of peak concentrations increasing from 28.46-58.97 to 88.38-839.13 µg m-3. This increase in VOC concentrations during soil disturbance leads to an enhanced heath risk for on-site workers. The distinctive difference between the mean and peak concentrations of VOCs indicates the importance of using mean and peak concentrations, respectively, for risk and olfactory evaluation due to the rapid response of the human nose to odours. As a result, the cumulative noncarcinogenic risk at the relatively high pollutant plot was higher than the occupational safety limit, while the total carcinogenic risks at all monitored scenarios exceeded the acceptable limit. Among the VOCs investigated, DCM and trichloroethylene (TCE) were determined to be crucial pollutants for both noncarcinogenic and carcinogenic risks of VOCs. With regard to olfactory effects, organic sulphides, including dimethyl disulphide (DMDS), dimethyl sulphide (DMS), and dimethyl trisulphide (DMTS) were identified as dominant odour contributors (78.28-92.11%) during soil disturbance.


Asunto(s)
Contaminantes Atmosféricos , Plaguicidas , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Suelo , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , Olfato , Medición de Riesgo , China
14.
Anal Chem ; 95(32): 11859-11867, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37474253

RESUMEN

Single-photon ionization (SPI) is a unique soft ionization technique for organic analysis. A convenient high-flux vacuum ultraviolet (VUV) light source is a key precondition for wide application of SPI techniques. In this study, we present a novel VUV lamp by simply modifying an ordinary electrodeless fluorescent lamp. By replacing the glass bulb with a stainless steel bulb and introducing 5% Kr/He (v/v) as the excitation gas, an excellent VUV photon flux over 4.0 × 1014 photons s-1 was obtained. Due to its rapid glow characteristics, the VUV lamp can be switched on and off instantly as required by detection, ensuring the stability and service life of the lamp. To demonstrate the performance of the new lamp, the switchable VUV lamp was coupled with an SPI-mass spectrometer, which could be changed to photoinduced associative ionization (PAI) mode by doping gaseous CH2Cl2 to initiate an associative ionization reaction. Two types of volatile organic compounds sensitive to SPI and PAI, typically benzene series and oxygenated organics, respectively, were selected as samples. The instrument exhibited a high detection sensitivity for the tested compounds. With a measurement time of 11 s, the 3σ limits of detection ranged from 0.33 to 0.75 pptv in SPI mode and from 0.03 to 0.12 pptv in PAI mode. This study provides an extremely simple method to assemble a VUV lamp with many merits, e.g., portability, robustness, durability, low cost, and high flux. The VUV lamp may contribute to the development of SPI-related highly sensitive detection technologies.

15.
Anal Chim Acta ; 1272: 341482, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37355329

RESUMEN

ß-galactosidase (ß-Gal) is an important biomarker of cell senescence and primary ovarian cancer. Therefore, it is of great significance to construct a near-infrared fluorescent probe with deep tissue penetration and a high signal-to-noise ratio for visualization of ß-galactosidase in biological systems. However, most near-infrared probes tend to have small Stokes shifts and low signal-to-noise ratios due to crosstalk between excitation and emission spectra. Using d-galactose residues as specific recognition units and near-infrared dye TJ730 as fluorophores, a near-infrared fluorescence probe SN-CR with asymmetric structure was developed for the detection of ß-Gal. The probe has a fast reaction equilibrium time (<12 min) with ß-Gal, excellent biocompatibility, near-infrared emission (738 nm), low detection limit (0.0029 U/mL), and no crosstalk between the excitation spectrum and emission spectrum (Stokes shifts 142 nm) of the probe. Cell imaging studies have shown that SN-CR can visually trace ß-Gal in different cells and distinguish ovarian cancer cells from other cells.


Asunto(s)
Sondas Moleculares , beta-Galactosidasa , Células HeLa , Línea Celular , Humanos , Animales , Perros , beta-Galactosidasa/análisis , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Fluorescencia
16.
J Pharm Anal ; 13(3): 223-238, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37102109

RESUMEN

Ensuring food safety is paramount worldwide. Developing effective detection methods to ensure food safety can be challenging owing to trace hazards, long detection time, and resource-poor sites, in addition to the matrix effects of food. Personal glucose meter (PGM), a classic point-of-care testing device, possesses unique application advantages, demonstrating promise in food safety. Currently, many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards. Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors, which is crucial for solving the challenges associated with the use of PGMs for food safety analysis. This review introduces the basic detection principle of a PGM-based sensing strategy, which consists of three key factors: target recognition, signal transduction, and signal output. Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies (nanomaterial-loaded multienzyme labeling, nucleic acid reaction, DNAzyme catalysis, responsive nanomaterial encapsulation, and others) in the field of food safety detection are reviewed. Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed. Despite the need for complex sample preparation and the lack of standardization in the field, using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.

17.
Mikrochim Acta ; 190(4): 121, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890258

RESUMEN

Screening for persistent organic pollutants (POPs) in food is a complex and challenging process, as POPs can be present in very low levels and can be difficult to detect. Herein, we developed an ultrasensitive biosensor based on a rolling circle amplification (RCA) platform using a glucometer to determine POP. The biosensor was constructed using gold nanoparticle probes modified with antibodies and dozens of primers, magnetic microparticle probes conjugated with haptens, and targets. After competition, RCA reactions are triggered, numerous RCA products hybridize with the ssDNA-invertase, and the target is successfully transformed into glucose. Using ractopamine as a model analyte, this strategy obtained a linear detection range of 0.038-5.00 ng mL-1 and a detection limit of 0.0158 ng mL-1, which was preliminarily verified by screening in real samples. Compared with conventional immunoassays, this biosensor utilizes the high efficiency of RCA and the portable properties of a glucometer, which effectively improves the sensitivity and simplifies the procedures using magnetic separation technology. Moreover, it has been successfully applied to ractopamine determination in animal-derived foods, revealing its potential as a promising tool for POP screening.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Animales , Oro , Técnicas Biosensibles/métodos , Fenetilaminas
18.
J Biosci Bioeng ; 135(4): 298-305, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36781353

RESUMEN

Chinese baijiu, an ancient fermented alcoholic beverage, contains ethanol and a variety of compounds. One of the most popular types of Chinese baijiu is Jiang-flavor baijiu. To investigate the effects of Jiang-flavor baijiu on organ function and gut microbiota, we developed a moderate drinking mouse model and studied its effects on the liver, kidney biomarkers, memory function, and gut microbiota. The results showed that ethanol caused more hepatic steatosis, liver and kidney damage, and memory impairment than Jiang-flavour baijiu consumption. Furthermore, Jiang-flavor baijiu altered the gut microbiota by increasing the abundance of beneficial taxa such as Lactobacillus and Akkermansia, whereas ethanol increased the abundance of harmful bacteria such as Prevotella and Mucispirillum. Our findings provide preliminary evidence that moderate dose Jiang-flavor baijiu regulates gut microbiota and organ function and provide a theoretical foundation for future research on the positive health effects of particular varieties of Chinese baijiu.


Asunto(s)
Microbioma Gastrointestinal , Animales , Ratones , Fermentación , Bebidas Alcohólicas/análisis , Etanol , Bacterias
19.
Anal Methods ; 15(3): 368-376, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36597774

RESUMEN

Photoionization mass spectrometry (PI-MS) has become a versatile tool in the real-time analysis of volatile organic compounds (VOCs) from the atmosphere or exhaled breath. However, some key species, e.g., acetonitrile, are hard to measure due to their higher ionization energies than photon energy. In this study, the direct and sensitive detection of gaseous acetonitrile based on a photoinduced associative ionization (PAI) reaction was investigated with a laboratory-built PAI time-of-flight mass spectrometer (PAI-TOFMS). By doping CH2Cl2 in the photoionization ion source, the mass signal of acetonitrile that cannot be effectively obtained by photoionization appeared with an extremely high intensity through the PAI reaction between acetonitrile, CH2Cl2, and residual H2O in the system. Though the moisture in the sample gas has an evident impact on the detection efficiency of acetonitrile, with a relative signal intensity decreasing from 100% under dry conditions to 60% at saturated relative humidity, excellent detection sensitivity was still obtained for gaseous acetonitrile in different matrixes. The sensitivity calibration experiment showed that the detection sensitivities of acetonitrile in N2 buffer gas, exhaled gas, and outdoor air were 682.4 ± 5.2, 17.0 ± 0.7, and 23.9 ± 0.2 counts pptv-1, respectively, with an analysis time of 10 s. The corresponding 3σ LODs reached 0.22, 8.82, and 6.28 pptv, which are equivalent to 0.40, 16.0, and 11.4 ng m-3. The performance of the PAI-TOFMS was first demonstrated by analyzing exhaled acetonitrile from healthy non-smokers and smokers and continuous monitoring of acetonitrile in outdoor air. In summary, this study provides a new and highly sensitive method for the real-time detection of acetonitrile through mass spectrometry.


Asunto(s)
Espiración , Compuestos Orgánicos Volátiles , Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Fenómenos Químicos , Gases
20.
Angew Chem Int Ed Engl ; 62(7): e202217195, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36542446

RESUMEN

Thermally activated delayed fluorescence (TADF) from linear two-coordinate coinage metal complexes is sensitive to the geometric arrangement of the ligands. Herein we realize the tuning of configuration from coplanar to orthogonal gradually by variation of substituents. In a complex with confined twist configuration, its blue emission peaking at 458 nm presents a high ΦPL of 0.74 and a short τTADF of 1.9 µs, which indicates a fast enough kr,TADF of 3.9×105  s-1 and a depressed knr of 1.4×105  s-1 . Such outstanding luminescent properties are attributed to the proper overlap of HOMO and LUMO on CuI d orbitals that guarantees not only small ΔEST but also sufficient transition oscillator strength for fast k r , S 1 ${{k}_{{\rm r},{{\rm S}}_{1}}}$ . Vacuum-deposited blue OLEDs with either doped or host-free emissive layer present external quantum efficiencies over 20 % and 10 %, respectively, demonstrating the practicality of the configurationally confined strategy for efficient linear CuI TADF emitters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...