Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886055

RESUMEN

During nervous system development, Sonic hedgehog (Shh) guides developing commissural axons toward the floor plate of the spinal cord. To guide axons, Shh binds to its receptor Boc and activates downstream effectors such as Smoothened (Smo) and Src-family-kinases (SFKs). SFK activation requires Smo activity and is also required for Shh-mediated axon guidance. Here we report that ß-arrestin1 and ß-arrestin2 (ß-arrestins) serve as scaffolding proteins that link Smo and SFKs in Shh-mediated axon guidance. We found that ß-arrestins are expressed in rat commissural neurons. We also found that Smo, ß-arrestins and SFKs form a tripartite complex, with the complex formation dependent on ß-arrestins. ß-arrestin knockdown blocked the Shh-mediated increase in Src phosphorylation, demonstrating that ß-arrestins are required to activate Src kinase downstream of Shh. ß-arrestin knockdown also led to the loss of Shh-mediated attraction of rat commissural axons in axon turning assays. Expression of two different dominant negative ß-arrestins, ß-arrestin1 V53D which blocks the internalization of Smo and ß-arrestin1 P91G-P121E which blocks its interaction with SFKs, also led to the loss of Shh-mediated attraction of commissural axons. In vivo, the expression of these dominant negative ß-arrestins caused defects in commissural axon guidance in the spinal cord of chick embryos of mixed sexes. Thus we show that ß-arrestins are essential scaffolding proteins that connect Smo to SFKs and are required for Shh-mediated axon guidance.Significance Statement The correct guidance of axons is important for the formation of the nervous system. Sonic hedgehog (Shh)-mediated axon guidance relies on the activation of Src family kinases (SFKs) downstream of the atypical G protein-coupled receptor (GPCR) Smoothened (Smo). How SFKs are activated downstream of Smo was unknown. In this study, we found that ß-arrestin1 and 2 (ß-arrestins) serve as scaffolding proteins between Smo and SFKs. We also found that ß-arrestins are required for the activation of SFKs. Knocking down ß-arrestins or expressing dominant negative ß-arrestins caused loss of Shh-mediated attraction of commissural axons. In vivo, the expression of dominant negative ß-arrestins caused commissural axon guidance defects. Our work identifies for the first time a role for ß-arrestins in axon guidance.

2.
Nat Commun ; 15(1): 3365, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664376

RESUMEN

Hedgehog (Hh) signaling relies on the primary cilium, a cell surface organelle that serves as a signaling hub for the cell. Using proximity labeling and quantitative proteomics, we identify Numb as a ciliary protein that positively regulates Hh signaling. Numb localizes to the ciliary pocket and acts as an endocytic adaptor to incorporate Ptch1 into clathrin-coated vesicles, thereby promoting Ptch1 exit from the cilium, a key step in Hh signaling activation. Numb loss impedes Sonic hedgehog (Shh)-induced Ptch1 exit from the cilium, resulting in reduced Hh signaling. Numb loss in spinal neural progenitors reduces Shh-induced differentiation into cell fates reliant on high Hh activity. Genetic ablation of Numb in the developing cerebellum impairs the proliferation of granule cell precursors, a Hh-dependent process, resulting in reduced cerebellar size. This study highlights Numb as a regulator of ciliary Ptch1 levels during Hh signal activation and demonstrates the key role of ciliary pocket-mediated endocytosis in cell signaling.


Asunto(s)
Cerebelo , Cilios , Proteínas Hedgehog , Proteínas del Tejido Nervioso , Receptor Patched-1 , Transducción de Señal , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Cilios/metabolismo , Animales , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Cerebelo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Humanos , Endocitosis , Diferenciación Celular , Proliferación Celular , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones Noqueados
3.
Sci Adv ; 9(19): eadd5501, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37172092

RESUMEN

Mirror movements (MM) disorder is characterized by involuntary movements on one side of the body that mirror intentional movements on the opposite side. We performed genetic characterization of a family with autosomal dominant MM and identified ARHGEF7, a RhoGEF, as a candidate MM gene. We found that Arhgef7 and its partner Git1 bind directly to Dcc. Dcc is the receptor for Netrin-1, an axon guidance cue that attracts commissural axons to the midline, promoting the midline crossing of axon tracts. We show that Arhgef7 and Git1 are required for Netrin-1-mediated axon guidance and act as a multifunctional effector complex. Arhgef7/Git1 activates Rac1 and Cdc42 and inhibits Arf1 downstream of Netrin-1. Furthermore, Arhgef7/Git1, via Arf1, mediates the Netrin-1-induced increase in cell surface Dcc. Mice heterozygous for Arhgef7 have defects in commissural axon trajectories and increased symmetrical paw placements during skilled walking, a MM-like phenotype. Thus, we have delineated how ARHGEF7 mutation causes MM.


Asunto(s)
Factores de Crecimiento Nervioso , Proteínas Supresoras de Tumor , Ratones , Animales , Receptor DCC/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Netrina-1/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Axones/metabolismo
4.
Cell Rep ; 29(11): 3356-3366.e3, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31825820

RESUMEN

The small GTPase Arl13b is enriched in primary cilia and regulates Sonic hedgehog (Shh) signaling. During neural development, Shh controls patterning and proliferation through a canonical, transcription-dependent pathway that requires the primary cilium. Additionally, Shh controls axon guidance through a non-canonical, transcription-independent pathway whose connection to the primary cilium is unknown. Here we show that inactivation of Arl13b results in defective commissural axon guidance in vivo. In vitro, we demonstrate that Arl13b functions autonomously in neurons for their Shh-dependent guidance response. We detect Arl13b protein in axons and growth cones, far from its well-established ciliary enrichment. To test whether Arl13b plays a non-ciliary function, we used an engineered, cilia-localization-deficient Arl13b variant and found that it was sufficient to mediate Shh axon guidance in vitro and in vivo. Together, these results indicate that, in addition to its ciliary role in canonical Shh signaling, Arl13b plays a cilia-independent role in Shh-mediated axon guidance.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Orientación del Axón , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Animales , Células Cultivadas , Conos de Crecimiento/metabolismo , Ratones , Transducción de Señal
6.
Am J Hum Genet ; 105(4): 854-868, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585109

RESUMEN

Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).


Asunto(s)
Axones/patología , Cadherinas/genética , Cuerpo Calloso/patología , Ojo/patología , Genitales/patología , Cardiopatías Congénitas/genética , Trastornos del Neurodesarrollo/genética , Mutación del Sistema de Lectura , Heterocigoto , Humanos , Trastornos del Neurodesarrollo/patología
7.
Neuron ; 102(6): 1157-1171.e5, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31054872

RESUMEN

During development, Shh attracts commissural axons toward the floor plate through a non-canonical, transcription-independent signaling pathway that requires the receptor Boc. Here, we find that Shh induces Boc internalization into early endosomes and that endocytosis is required for Shh-mediated growth-cone turning. Numb, an endocytic adaptor, binds to Boc and is required for Boc internalization, Shh-mediated growth-cone turning in vitro, and commissural axon guidance in vivo. Similar to Boc, Ptch1 is also internalized by Shh in a Numb-dependent manner; however, the binding of Shh to Ptch1 alone is not sufficient to induce Ptch1 internalization nor growth-cone turning. Therefore, the binding of Shh to Boc is required for Ptch1 internalization and growth-cone turning. Our data support a model where Boc endocytosis via Numb is required for Ptch1 internalization and Shh signaling in axon guidance. Thus, Boc acts as a Shh-dependent endocytic platform gating Ptch1 internalization and Shh signaling.


Asunto(s)
Orientación del Axón/genética , Endocitosis/genética , Conos de Crecimiento/metabolismo , Proteínas Hedgehog/metabolismo , Inmunoglobulina G/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Receptor Patched-1/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo
8.
Neuron ; 101(4): 635-647.e4, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30661738

RESUMEN

An important model for axon pathfinding is provided by guidance of embryonic commissural axons from dorsal spinal cord to ventral midline floor plate (FP). FP cells produce a chemoattractive activity, comprised largely of netrin1 (FP-netrin1) and Sonic hedgehog (Shh), that can attract the axons at a distance in vitro. netrin1 is also produced by ventricular zone (VZ) progenitors along the axons' route (VZ-netrin1). Recent studies using region-specific netrin1 deletion suggested that FP-netrin1 is dispensable and VZ-netrin1 sufficient for netrin guidance activity in vivo. We show that removing FP-netrin1 actually causes guidance defects in spinal cord consistent with long-range action (i.e., over hundreds of micrometers), and double mutant analysis supports that FP-netrin1 and Shh collaborate to attract at long range. We further provide evidence that netrin1 may guide via chemotaxis or haptotaxis. These results support the model that netrin1 signals at both short and long range to guide commissural axons in spinal cord.


Asunto(s)
Orientación del Axón , Ventrículos Cerebrales/embriología , Proteínas Hedgehog/metabolismo , Netrina-1/metabolismo , Neuronas/metabolismo , Médula Espinal/embriología , Animales , Células Cultivadas , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/metabolismo , Femenino , Proteínas Hedgehog/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Netrina-1/genética , Neuronas/citología , Ratas , Ratas Sprague-Dawley , Rombencéfalo/citología , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo
9.
Dev Cell ; 46(4): 410-425.e7, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30078728

RESUMEN

In the developing spinal cord, Sonic hedgehog (Shh) attracts commissural axons toward the floorplate. How Shh regulates the cytoskeletal remodeling that underlies growth cone turning is unknown. We found that Shh-mediated growth cone turning requires the activity of Docks, which are unconventional GEFs. Knockdown of Dock3 and 4, or their binding partner ELMO1 and 2, abolished commissural axon attraction by Shh in vitro. Dock3/4 and ELMO1/2 were also required for correct commissural axon guidance in vivo. Polarized Dock activity was sufficient to induce axon turning, indicating that Docks are instructive for axon guidance. Mechanistically, we show that Dock and ELMO interact with Boc, the Shh receptor, and that this interaction is reduced upon Shh stimulation. Furthermore, Shh stimulation translocates ELMO to the growth cone periphery and activates Rac1. This identifies Dock/ELMO as an effector complex of non-canonical Shh signaling and demonstrates the instructive role of GEFs in axon guidance.


Asunto(s)
Orientación del Axón/efectos de los fármacos , Axones/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Hedgehog/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Portadoras/genética , Células Cultivadas , Proteínas del Citoesqueleto/genética , Embrión de Mamíferos/metabolismo , Proteínas Activadoras de GTPasa/genética , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Proteínas Hedgehog/metabolismo , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Médula Espinal/metabolismo
10.
J Neurosci ; 37(49): 11993-12005, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29118110

RESUMEN

The gene patched domain containing 1 (PTCHD1) is mutated in patients with autism spectrum disorders and intellectual disabilities and has been hypothesized to contribute to Sonic hedgehog (Shh) signaling and synapse formation. We identify a panel of Ptchd1-interacting proteins that include postsynaptic density proteins and the retromer complex, revealing a link to critical regulators of dendritic and postsynaptic trafficking. Ptchd1 knock-out (KO) male mice exhibit cognitive alterations, including defects in a novel object recognition task. To test whether Ptchd1 is required for Shh-dependent signaling, we examined two Shh-dependent cell populations that express high levels of Ptchd1 mRNA: cerebellar granule cell precursors and dentate granule cells in the hippocampus. We found that proliferation of these neuronal precursors was not altered significantly in Ptchd1 KO male mice. We used whole-cell electrophysiology and anatomical methods to assess synaptic function in Ptchd1-deficient dentate granule cells. In the absence of Ptchd1, we observed profound disruption in excitatory/inhibitory balance despite normal dendritic spine density on dentate granule cells. These findings support a critical role of the Ptchd1 protein in the dentate gyrus, but indicate that it is not required for structural synapse formation in dentate granule cells or for Shh-dependent neuronal precursor proliferation.SIGNIFICANCE STATEMENT The mechanisms underlying neuronal and cellular alterations resulting from patched domain containing 1 (Ptchd1) gene mutations are unknown. The results from this study support an association with dendritic trafficking complexes of Ptchd1. Loss-of-function experiments do not support a role in sonic hedgehog-dependent signaling, but reveal a disruption of synaptic transmission in the mouse dentate gyrus. The findings will help to guide ongoing efforts to understand the etiology of neurodevelopmental disorders arising from Ptchd1 deficiency.


Asunto(s)
Trastorno Autístico/metabolismo , Dendritas/metabolismo , Giro Dentado/metabolismo , Proteínas de la Membrana/deficiencia , Neurogénesis/fisiología , Animales , Trastorno Autístico/genética , Trastorno Autístico/patología , Dendritas/patología , Giro Dentado/patología , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas/fisiología , Factores de Riesgo
11.
J Neurosci ; 37(7): 1685-1695, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28073938

RESUMEN

Sonic hedgehog (Shh) attracts spinal cord commissural axons toward the floorplate. How Shh elicits changes in the growth cone cytoskeleton that drive growth cone turning is unknown. We find that the turning of rat commissural axons up a Shh gradient requires protein synthesis. In particular, Shh stimulation increases ß-actin protein at the growth cone even when the cell bodies have been removed. Therefore, Shh induces the local translation of ß-actin at the growth cone. We hypothesized that this requires zipcode binding protein 1 (ZBP1), an mRNA-binding protein that transports ß-actin mRNA and releases it for local translation upon phosphorylation. We found that Shh stimulation increases phospho-ZBP1 levels in the growth cone. Disruption of ZBP1 phosphorylation in vitro abolished the turning of commissural axons toward a Shh gradient. Disruption of ZBP1 function in vivo in mouse and chick resulted in commissural axon guidance errors. Therefore, ZBP1 is required for Shh to guide commissural axons. This identifies ZBP1 as a new mediator of noncanonical Shh signaling in axon guidance.SIGNIFICANCE STATEMENT Sonic hedgehog (Shh) guides axons via a noncanonical signaling pathway that is distinct from the canonical Hedgehog signaling pathway that specifies cell fate and morphogenesis. Axon guidance is driven by changes in the growth cone in response to gradients of guidance molecules. Little is known about the molecular mechanism of how Shh orchestrates changes in the growth cone cytoskeleton that are required for growth cone turning. Here, we show that the guidance of axons by Shh requires protein synthesis. Zipcode binding protein 1 (ZBP1) is an mRNA-binding protein that regulates the local translation of proteins, including actin, in the growth cone. We demonstrate that ZBP1 is required for Shh-mediated axon guidance, identifying a new member of the noncanonical Shh signaling pathway.


Asunto(s)
Axones/fisiología , Proteínas Hedgehog/metabolismo , Neuronas/citología , Biosíntesis de Proteínas/fisiología , Actinas/genética , Actinas/metabolismo , Animales , Encéfalo/citología , Células Cultivadas , Pollos , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Técnicas de Cultivo de Órganos , Embarazo , Biosíntesis de Proteínas/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/citología
12.
PLoS Biol ; 13(3): e1002119, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25826604

RESUMEN

During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.


Asunto(s)
Conos de Crecimiento/efectos de los fármacos , Proteínas Hedgehog/farmacología , Factores de Crecimiento Nervioso/farmacología , Médula Espinal/efectos de los fármacos , Proteínas Supresoras de Tumor/farmacología , Familia-src Quinasas/genética , Animales , Quimiotaxis/fisiología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Dispositivos Laboratorio en un Chip , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Molecular , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/genética , Netrina-1 , Cultivo Primario de Células , Transducción de Señal , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Médula Espinal/ultraestructura , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Familia-src Quinasas/metabolismo
13.
Curr Opin Neurobiol ; 23(6): 965-73, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24183376

RESUMEN

During nervous system development, axons, led by the growth cone, must navigate to their destinations. Axon guidance cues are molecules in the extracellular environment that attract or repel axons to guide them along their correct trajectory. The non-conventional axon guidance cues include morphogens of the Hedgehog, TGF-ß/BMP, and Wnt/Wgl families. Canonical signaling by morphogens regulates transcription in the nucleus to specify cell fate. Recent studies have begun to elucidate how these morphogens can also direct growth cone turning, using signaling mechanisms that diverge from their canonical signaling pathways. Furthermore, in addition to directly guiding axons, some non-conventional guidance cues such as Sonic hedgehog also modulate the response of axons to other guidance cues, adding another level of regulation to axon guidance.


Asunto(s)
Axones/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Hedgehog/metabolismo , Neurogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Humanos
14.
PLoS One ; 8(11): e79679, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223993

RESUMEN

N-cadherin is a cell adhesion molecule which is enriched at synapses. Binding of N-cadherin molecules to each other across the synaptic cleft has been postulated to stabilize adhesion between the presynaptic bouton and the postsynaptic terminal. N-cadherin is also required for activity-induced changes at synapses, including hippocampal long term potentiation and activity-induced spine expansion and stabilization. We hypothesized that these activity-dependent changes might involve changes in N-cadherin localization within synapses. To determine whether synaptic activity changes the localization of N-cadherin, we used structured illumination microscopy, a super-resolution approach which overcomes the conventional resolution limits of light microscopy, to visualize the localization of N-cadherin within synapses of hippocampal neurons. We found that synaptic N-cadherin exhibits a spectrum of localization patterns, ranging from puncta at the periphery of the synapse adjacent to the active zone to an even distribution along the synaptic cleft. Furthermore, the N-cadherin localization pattern within synapses changes during KCl depolarization and after transient synaptic stimulation. During KCl depolarization, N-cadherin relocalizes away from the central region of the synaptic cleft to the periphery of the synapse. In contrast, after transient synaptic stimulation with KCl followed by a period of rest in normal media, fewer synapses have N-cadherin present as puncta at the periphery and more synapses have N-cadherin present more centrally and uniformly along the synapse compared to unstimulated cells. This indicates that transient synaptic stimulation modulates N-cadherin localization within the synapse. These results bring new information to the structural organization and activity-induced changes occurring at synapses, and suggest that N-cadherin relocalization may contribute to activity dependent changes at synapses.


Asunto(s)
Cadherinas/metabolismo , Hipocampo/citología , Neuronas/citología , Sinapsis/metabolismo , Animales , Femenino , Microscopía , Embarazo , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
15.
BMC Biotechnol ; 13: 86, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24119185

RESUMEN

BACKGROUND: Normal development and the response to injury both require cell growth, migration and morphological remodeling, guided by a complex local landscape of permissive and inhibitory cues. A standard approach for studying by such cues is to culture cells on uniform substrates containing known concentrations of these molecules, however this method fails to represent the molecular complexity of the natural growth environment. RESULTS: To mimic the local complexity of environmental conditions in vitro, we used a contact micropatterning technique to examine cell growth and differentiation on patterned substrates printed with the commonly studied growth permissive and inhibitory substrates, poly-L-lysine (PLL) and myelin, respectively. We show that micropatterning of PLL can be used to direct adherence and axonal outgrowth of hippocampal and cortical neurons as well as other cells with diverse morphologies like Oli-neu oligodendrocyte progenitor cell lines and fibroblast-like COS7 cells in culture. Surprisingly, COS7 cells exhibited a preference for low concentration (1 pg/mL) PLL zones over adjacent zones printed with high concentrations (1 mg/mL). We demonstrate that micropatterning is also useful for studying factors that inhibit growth as it can direct cells to grow along straight lines that are easy to quantify. Furthermore, we provide the first demonstration of microcontact printing of myelin-associated proteins and show that they impair process outgrowth from Oli-neu oligodendrocyte precursor cells. CONCLUSION: We conclude that microcontact printing is an efficient and reproducible method for patterning proteins and brain-derived myelin on glass surfaces in order to study the effects of the microenvironment on cell growth and morphogenesis.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Proliferación Celular , Vaina de Mielina/química , Polilisina/química , Animales , Células COS , Adhesión Celular , Línea Celular , Chlorocebus aethiops , Neuronas/citología , Ratas , Ratas Sprague-Dawley , Células Madre/metabolismo
16.
Neuron ; 76(4): 735-49, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23177959

RESUMEN

Axons must switch responsiveness to guidance cues during development for correct pathfinding. Sonic Hedgehog (Shh) attracts spinal cord commissural axons ventrally toward the floorplate. We show that after crossing the floorplate, commissural axons switch their response to Shh from attraction to repulsion, so that they are repelled anteriorly by a posterior-high/anterior-low Shh gradient along the longitudinal axis. This switch is recapitulated in vitro with dissociated commissural neurons as they age, indicating that the switch is intrinsic and time dependent. 14-3-3 protein inhibition converted Shh-mediated repulsion of aged dissociated neurons to attraction and prevented the correct anterior turn of postcrossing commissural axons in vivo, an effect mediated through PKA. Conversely, overexpression of 14-3-3 proteins was sufficient to drive the switch from Shh-mediated attraction to repulsion both in vitro and in vivo. Therefore, we identify a 14-3-3 protein-dependent mechanism for a cell-intrinsic temporal switch in the polarity of axon turning responses.


Asunto(s)
Proteínas 14-3-3/metabolismo , Axones/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Neuronas/citología , Traumatismos de la Médula Espinal/patología , Proteínas 14-3-3/genética , Aminoácidos , Análisis de Varianza , Animales , Axones/efectos de los fármacos , Proteínas Bacterianas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carbazoles/farmacología , Células Cultivadas , Quimiotaxis , Pollos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Electroporación , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/farmacología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Neuronas/clasificación , Neuronas/metabolismo , Piperazinas/farmacología , Embarazo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirazoles/farmacología , Pirroles/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Simplexvirus/genética , Factores de Tiempo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteína Gli2 con Dedos de Zinc , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
17.
ACS Chem Neurosci ; 2(12): 700-4, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22860164

RESUMEN

The ultrastructural details of presynapses formed between artificial substrates of submicrometer silica beads and hippocampal neurons are visualized via cryo-electron microscopy (cryo-EM). The silica beads are derivatized by poly-d-lysine or lipid bilayers. Molecular features known to exist at presynapses are clearly present at these artificial synapses, as visualized by cryo-EM. Key synaptic features such as the membrane contact area at synaptic junctions, the presynaptic bouton containing presynaptic vesicles, as well as microtubular structures can be identified. This is the first report of the direct, label-free observation of ultrastructural details of artificial synapses.


Asunto(s)
Microscopía por Crioelectrón/métodos , Sinapsis/ultraestructura , Marcadores de Afinidad , Animales , Células Cultivadas , Hipocampo/ultraestructura , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley
18.
J Neurosci ; 30(42): 14059-67, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20962227

RESUMEN

Growth cones regulate the speed and direction of neuronal outgrowth during development and regeneration. How the growth cone spatially and temporally regulates signals from guidance cues is poorly understood. Through a proteomic analysis of purified growth cones we identified isoforms of the 14-3-3 family of adaptor proteins as major constituents of the growth cone. Disruption of 14-3-3 via the R18 antagonist or knockdown of individual 14-3-3 isoforms switches nerve growth factor- and myelin-associated glycoprotein-dependent repulsion to attraction in embryonic day 13 chick and postnatal day 5 rat DRG neurons. These effects are reminiscent of switching responses observed in response to elevated cAMP. Intriguingly, R18-dependent switching is blocked by inhibitors of protein kinase A (PKA), suggesting that 14-3-3 proteins regulate PKA. Consistently, 14-3-3 proteins interact with PKA and R18 activates PKA by dissociating its regulatory and catalytic subunits. Thus, 14-3-3 heterodimers regulate the PKA holoenzyme and this activity plays a critical role in modulating neuronal responses to repellent cues.


Asunto(s)
Proteínas 14-3-3/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Conos de Crecimiento/fisiología , Proteínas 14-3-3/genética , Animales , Western Blotting , Embrión de Pollo , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Inmunoprecipitación , Glicoproteína Asociada a Mielina/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Proteómica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
J Vis Exp ; (39)2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20505653

RESUMEN

Commissural neurons have been widely used to investigate the mechanisms underlying axon guidance during embryonic spinal cord development. The cell bodies of these neurons are located in the dorsal spinal cord and their axons follow stereotyped trajectories during embryonic development. Commissural axons initially project ventrally towards the floorplate. After crossing the midline, these axons turn anteriorly and project towards the brain. Each of these steps is regulated by the action of several guidance cues. Cultures highly enriched in commissural neurons are ideally suited for many experiments addressing the mechanisms of axon pathfinding, including turning assays, immunochemistry and biochemistry. Here, we describe a method to dissect and culture commissural neurons from E13 rat dorsal spinal cord. First, the spinal cord is isolated and dorsal strips are dissected out. The dorsal tissue is then dissociated into a cell suspension by trypsinization and mechanical disruption. Neurons are plated onto poly-L-lysine-coated glass coverslips or tissue-culture dishes. After 30 hours in vitro, most neurons have extended an axon. The purity of the culture (Yam et al. 2009), typically over 90%, can be assessed by immunolabeling with the commissural neuron markers DCC, LH2 and TAG1 (Helms and Johnson, 1998). This neuronal preparation is a useful tool for in vitro studies of the cellular and molecular mechanisms of commissural axon growth and guidance during spinal cord development.


Asunto(s)
Técnicas Citológicas/métodos , Disección/métodos , Neuronas/citología , Médula Espinal/citología , Médula Espinal/embriología , Animales , Axones/fisiología , Ratas
20.
Nature ; 465(7296): 373-7, 2010 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-20485438

RESUMEN

Crawling locomotion of eukaryotic cells is achieved by a process dependent on the actin cytoskeleton: protrusion of the leading edge requires assembly of a network of actin filaments, which must be disassembled at the cell rear for sustained motility. Although ADF/cofilin proteins have been shown to contribute to actin disassembly, it is not clear how activity of these locally acting proteins could be coordinated over the distance scale of the whole cell. Here we show that non-muscle myosin II has a direct role in actin network disassembly in crawling cells. In fish keratocytes undergoing motility, myosin II is concentrated in regions at the rear with high rates of network disassembly. Activation of myosin II by ATP in detergent-extracted cytoskeletons results in rear-localized disassembly of the actin network. Inhibition of myosin II activity and stabilization of actin filaments synergistically impede cell motility, suggesting the existence of two disassembly pathways, one of which requires myosin II activity. Our results establish the importance of myosin II as an enzyme for actin network disassembly; we propose that gradual formation and reorganization of an actomyosin network provides an intrinsic destruction timer, enabling long-range coordination of actin network treadmilling in motile cells.


Asunto(s)
Actinas/química , Actinas/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Miosina Tipo II/metabolismo , Adenosina Trifosfato/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Cíclidos , Citoesqueleto/química , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Depsipéptidos/farmacología , Detergentes , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Miosina Tipo II/antagonistas & inhibidores , Unión Proteica/efectos de los fármacos , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...