Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Med Chem ; 67(3): 1758-1782, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38241614

ABSTRACT

New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)-5a-v, (±)-6a-j, and (±)-7a-d) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-5d, (±)-5l, and (±)-5r. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. 5v was identified as selective for MAGL when compared with other serine hydrolases. Solubility, in vitro metabolic stability, cytotoxicity, and absence of mutagenicity were determined for selected analogues. The most promising compounds ((±)-5c, (±)-5d, and (±)-5v) were used for in vivo studies in mice, showing a decrease in MAGL activity and increased 2-arachidonoyl-sn-glycerol levels in forebrain tissue. In particular, 5v is characterized by a high eudysmic ratio and (3R,4S)-5v is one of the most potent irreversible inhibitors of h/mMAGL identified thus far. These results suggest that the new MAGL inhibitors have therapeutic potential for different central and peripheral pathologies.


Subject(s)
Enzyme Inhibitors , Monoacylglycerol Lipases , Mice , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Monoglycerides , Ligands
2.
Methods Mol Biol ; 2576: 145-153, 2023.
Article in English | MEDLINE | ID: mdl-36152183

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) have been exploited as drug targets for combating multiple diseases. Several activators with different selectivity for the PPAR α, γ, and δ subtypes have been introduced into the market or have reached advanced clinical trials. Binding assays are of utmost importance for the discovery and profiling of such PPAR ligands. Binding assays are often based on radioligands, in particular, tritiated molecules are applied. We developed synthetic procedures for tritiating various PPAR agonists and applied these radioligands for setting up a scintillation proximity assay (SPA) for PPAR α, γ, and δ. These SPAs allow to assess the binding affinities of PPAR α, γ, and δ ligands, along with their respective subtype selectivity profiles. Therefore, SPA is an important tool for hit discovery and lead optimization campaigns aimed at identifying next-generation PPAR ligands.


Subject(s)
PPAR alpha , PPAR delta , Hypoglycemic Agents , Ligands , PPAR alpha/agonists , PPAR alpha/metabolism , PPAR delta/agonists , PPAR delta/metabolism , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptors
3.
Methods Mol Biol ; 2576: 155-169, 2023.
Article in English | MEDLINE | ID: mdl-36152184

ABSTRACT

Peroxisome proliferator-activated receptors are a family of nuclear hormone receptors that control the expression of genes involved in a variety of physiologic processes, through heterodimerization with retinoid X receptor and complex formation with various cofactors. The specific cofactors recruited to PPAR-RXR complexes in response to different ligands lead to major differences in the transactivation of target genes. We developed a cofactor recruitment assay that is based on an europium-labeled anti-GST antibody and streptavidin-APC leading to a fluorescence resonance energy transfer signal. This assay allows for the determination of unique agonistic profiles in terms of potency and co-activator motif. Hence, it is a valuable drug discovery tool to support hit finding and lead optimization campaigns, enabling the characterization of next generation PPAR agonists.


Subject(s)
PPAR alpha , PPAR gamma , Europium , Fluorescence Resonance Energy Transfer , PPAR alpha/agonists , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR gamma/metabolism , Retinoid X Receptors , Streptavidin
4.
PLoS One ; 17(9): e0268590, 2022.
Article in English | MEDLINE | ID: mdl-36084029

ABSTRACT

Chronic inflammation and blood-brain barrier dysfunction are key pathological hallmarks of neurological disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Major drivers of these pathologies include pro-inflammatory stimuli such as prostaglandins, which are produced in the central nervous system by the oxidation of arachidonic acid in a reaction catalyzed by the cyclooxygenases COX1 and COX2. Monoacylglycerol lipase hydrolyzes the endocannabinoid signaling lipid 2-arachidonyl glycerol, enhancing local pools of arachidonic acid in the brain and leading to cyclooxygenase-mediated prostaglandin production and neuroinflammation. Monoacylglycerol lipase inhibitors were recently shown to act as effective anti-inflammatory modulators, increasing 2-arachidonyl glycerol levels while reducing levels of arachidonic acid and prostaglandins, including PGE2 and PGD2. In this study, we characterized a novel, highly selective, potent and reversible monoacylglycerol lipase inhibitor (MAGLi 432) in a mouse model of lipopolysaccharide-induced blood-brain barrier permeability and in both human and mouse cells of the neurovascular unit: brain microvascular endothelial cells, pericytes and astrocytes. We confirmed the expression of monoacylglycerol lipase in specific neurovascular unit cells in vitro, with pericytes showing the highest expression level and activity. However, MAGLi 432 did not ameliorate lipopolysaccharide-induced blood-brain barrier permeability in vivo or reduce the production of pro-inflammatory cytokines in the brain. Our data confirm monoacylglycerol lipase expression in mouse and human cells of the neurovascular unit and provide the basis for further cell-specific analysis of MAGLi 432 in the context of blood-brain barrier dysfunction caused by inflammatory insults.


Subject(s)
Lipopolysaccharides , Monoacylglycerol Lipases , Animals , Arachidonic Acid/metabolism , Cyclooxygenase 2 , Endocannabinoids/metabolism , Endothelial Cells/metabolism , Enzyme Inhibitors/pharmacology , Glycerol/metabolism , Humans , Lipopolysaccharides/pharmacology , Mice , Monoacylglycerol Lipases/metabolism , Monoglycerides , Prostaglandins/metabolism
5.
Nucl Med Biol ; 108-109: 24-32, 2022.
Article in English | MEDLINE | ID: mdl-35248850

ABSTRACT

Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays an important role in the endocannabinoid degradation in the brain. It has recently emerged as a promising therapeutic target in the treatment of neuroinflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Development of MAGL-specific radioligands for non-invasive imaging by positron-emission tomography (PET) would deepen our knowledge on the relevant pathological changes in diseased states and accelerate drug discovery. In this study, we report the selection and synthesis of two morpholine-3-one derivatives as potential reversible MAGL PET tracer candidates based on their multiparameter optimization scores. Both compounds ([11C]1, [11C]2) were radiolabeled by direct [11C]CO2 fixation and the in vitro autoradiographic studies demonstrated their specificity and selectivity towards MAGL. Dynamic PET imaging using MAGL knockout and wild-type mice confirmed the in vivo specificity of [11C]2. Our preliminary results indicate that morpholine-3-one derivative [11C]2 ([11C]RO7279991) binds to MAGL in vivo, and this molecular scaffold could serve as an alternative lead structure to image MAGL in the central nervous system.


Subject(s)
Monoacylglycerol Lipases , Positron-Emission Tomography , Animals , Brain/diagnostic imaging , Brain/metabolism , Endocannabinoids/metabolism , Enzyme Inhibitors/metabolism , Mice , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/metabolism , Morpholines/metabolism , Positron-Emission Tomography/methods
6.
Biol Chem ; 403(5-6): 495-508, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35073465

ABSTRACT

Driven by the potential to broaden the target space of conventional monospecific antibodies, the field of multi-specific antibody derivatives is growing rapidly. The production and screening of these artificial proteins entails a high combinatorial complexity. Antibody-domain exchange was previously shown to be a versatile strategy to produce bispecific antibodies in a robust and efficient manner. Here, we show that the domain exchange reaction to generate hybrid antibodies also functions under physiological conditions. Accordingly, we modified the exchange partners for use in therapeutic applications, in which two inactive prodrugs convert into a product with additional functionalities. We exemplarily show the feasibility for generating active T cell bispecific antibodies from two inactive prodrugs, which per se do not activate T cells alone. The two complementary prodrugs harbor antigen-targeting Fabs and non-functional anti-CD3 Fvs fused to IgG-CH3 domains engineered to drive chain-exchange reactions between them. Importantly, Prodrug-Activating Chain Exchange (PACE) could be an attractive option to conditionally activate therapeutics at the target site. Several examples are provided that demonstrate the efficacy of PACE as a new principle of cancer immunotherapy in vitro and in a human xenograft model.


Subject(s)
Antibodies, Bispecific , Prodrugs , Humans , Immunotherapy , Prodrugs/pharmacology , T-Lymphocytes
7.
J Med Chem ; 65(3): 2191-2207, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35089028

ABSTRACT

Monoacylglycerol lipase (MAGL) is one of the key enzymes in the endocannabinoid system. Inhibition of MAGL has been proposed as an attractive approach for the treatment of various diseases. In this study, we designed and successfully synthesized two series of piperazinyl pyrrolidin-2-one derivatives as novel reversible MAGL inhibitors. (R)-[18F]13 was identified through the preliminary evaluation of two carbon-11-labeled racemic structures [11C]11 and [11C]16. In dynamic positron-emission tomography (PET) scans, (R)-[18F]13 showed a heterogeneous distribution and matched the MAGL expression pattern in the mouse brain. High brain uptake and brain-to-blood ratio were achieved by (R)-[18F]13 in comparison with previously reported reversible MAGL PET radiotracers. Target occupancy studies with a therapeutic MAGL inhibitor revealed a dose-dependent reduction of (R)-[18F]13 accumulation in the mouse brain. These findings indicate that (R)-[18F]13 ([18F]YH149) is a highly promising PET probe for visualizing MAGL non-invasively in vivo and holds great potential to support drug development.


Subject(s)
Brain/diagnostic imaging , Enzyme Inhibitors/chemistry , Monoacylglycerol Lipases/metabolism , Neuroimaging/methods , Radiopharmaceuticals/chemistry , Animals , Brain/metabolism , Carbon Radioisotopes/chemistry , Crystallography, X-Ray , Drug Stability , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Mice , Molecular Conformation , Monoacylglycerol Lipases/chemistry , Positron-Emission Tomography , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Wistar , Structure-Activity Relationship , Tissue Distribution
8.
Blood ; 138(25): 2655-2669, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34280257

ABSTRACT

Antibody-based immunotherapy is a promising strategy for targeting chemoresistant leukemic cells. However, classical antibody-based approaches are restricted to targeting lineage-specific cell surface antigens. By targeting intracellular antigens, a large number of other leukemia-associated targets would become accessible. In this study, we evaluated a novel T-cell bispecific (TCB) antibody, generated by using CrossMAb and knob-into-holes technology, containing a bivalent T-cell receptor-like binding domain that recognizes the RMFPNAPYL peptide derived from the intracellular tumor antigen Wilms tumor protein (WT1) in the context of HLA-A*02. Binding to CD3ε recruits T cells irrespective of their T-cell receptor specificity. WT1-TCB elicited antibody-mediated T-cell cytotoxicity against AML cell lines in a WT1- and HLA-restricted manner. Specific lysis of primary acute myeloid leukemia (AML) cells was mediated in ex vivo long-term cocultures by using allogeneic (mean ± standard error of the mean [SEM] specific lysis, 67 ± 6% after 13-14 days; n = 18) or autologous, patient-derived T cells (mean ± SEM specific lysis, 54 ± 12% after 11-14 days; n = 8). WT1-TCB-treated T cells exhibited higher cytotoxicity against primary AML cells than an HLA-A*02 RMF-specific T-cell clone. Combining WT1-TCB with the immunomodulatory drug lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean ± SEM specific lysis on days 3-4, 45.4 ± 9.0% vs 70.8 ± 8.3%; P = .015; n = 9-10). In vivo, WT1-TCB-treated humanized mice bearing SKM-1 tumors exhibited a significant and dose-dependent reduction in tumor growth. In summary, we show that WT1-TCB facilitates potent in vitro, ex vivo, and in vivo killing of AML cell lines and primary AML cells; these results led to the initiation of a phase 1 trial in patients with relapsed/refractory AML (#NCT04580121).


Subject(s)
Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Peptides/therapeutic use , WT1 Proteins/immunology , Animals , Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , HLA-A2 Antigen/immunology , Humans , Leukemia, Myeloid, Acute/immunology , Mice , Peptides/pharmacology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Tumor Cells, Cultured
9.
Comput Struct Biotechnol J ; 18: 1210-1220, 2020.
Article in English | MEDLINE | ID: mdl-32542107

ABSTRACT

The careful design of the antibody architecture is becoming more and more important, especially when the purpose is agonism. We present the design of a novel antibody format that is able to promote receptor dimerization and induce signal transduction resulting in cell proliferation. Mono-specific bivalent Y-shape IgGs made of two light chains and two heavy chains are engineered into single chain dimers of two modified heavy chains, resulting in the fixation of the two Fab fragments along the Fc dimerizing moiety. By this, an antagonist of the Her-receptor family, Trastuzumab, is re-formatted into an agonist by simply incorporating the original binding motif into a different geometrically and sterically constrained conformation. This novel format, named Contorsbody, retains antigen binding properties of the parental IgGs and can be produced by standard technologies established for recombinant IgGs. Structural analyses using molecular dynamics and electron microscopy are described to guide the initial design and to confirm the Contorsbody as a very compact molecule, respectively. Contorsbodies show increased rigidity compared to IgGs and their Fab moieties are positioned parallel and adjacent to each other. This geometry has an increased potential to trigger cell surface antigen or receptor 'cis'-dimerization without 'trans'-bridging of cells or mere receptor blockade.

10.
J Med Chem ; 63(13): 6876-6897, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32530624

ABSTRACT

Aldosterone synthase (CYP11B2) inhibitors have been explored in recent years as an alternative therapeutic option to mineralocorticoid receptor (MR) antagonists to reduce elevated aldosterone levels, which are associated with deleterious effects on various organ systems including the heart, vasculature, kidney, and central nervous system (CNS). A benzamide pyridine hit derived from a focused screen was successfully developed into a series of potent and selective 3-pyridyl isoindolin-1-ones CYP11B2 inhibitors. Our systematic structure-activity relationship study enabled us to identify unique structural features that result in high selectivity against the closely homologous cortisol synthase (CYP11B1). We evaluated advanced lead molecules, exemplified by compound 52, in an in vivo cynomolgus monkey acute adrenocorticotropic hormone (ACTH) challenge model and demonstrated a superior 100-fold in vivo selectivity against CYP11B1.


Subject(s)
Cytochrome P-450 CYP11B2/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Drug Design , Isoindoles/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Administration, Oral , Animals , Cytochrome P-450 Enzyme Inhibitors/administration & dosage , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Drug Stability , Humans , Models, Molecular , Molecular Conformation , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats , Structure-Activity Relationship , Tissue Distribution
11.
Protein Eng Des Sel ; 32(5): 207-218, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31504896

ABSTRACT

Monoclonal antibody-based therapeutics are an integral part of treatment of different human diseases, and the selection of suitable antibody candidates during the discovery phase is essential. Here, we describe a novel, cellular screening approach for the identification and characterization of therapeutic antibodies suitable for conversion into T cell bispecific antibodies using chimeric antigen receptor (CAR) transduced Jurkat-NFAT-luciferase reporter cells (CAR-J). For that purpose, we equipped a Jurkat-NFAT reporter cell line with a universal CAR, based on a monoclonal antibody recognizing the P329G mutation in the Fc-part of effector-silenced human IgG1-antibodies. In addition to scFv-based second generation CARs, Fab-based CARs employing the P329G-binder were generated. Using these anti-P329G-CAR-J cells together with the respective P329G-mutated IgG1-antibodies, we established a system, which facilitates the rapid testing of therapeutic antibody candidates in a flexible, high throughput setting during early stage discovery. We show that both, scFv- and Fab-based anti-P329G-CAR-J cells elicit a robust and dose-dependent luciferase signal if the respective antibody acts as an adaptor between tumor target and P329G-CAR-J cells. Importantly, we could demonstrate that functional characteristics of the antibody candidates, derived from the anti-P329G-CAR-J screening assay, are predictive for the functionality of these antibodies in the T cell bispecific antibody format.


Subject(s)
Antibodies, Bispecific , Immunoglobulin G , Mutation, Missense , Receptors, Chimeric Antigen , Amino Acid Substitution , Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Jurkat Cells , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology
12.
Sci Transl Med ; 11(496)2019 06 12.
Article in English | MEDLINE | ID: mdl-31189721

ABSTRACT

Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti-4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor-mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP-4-1BBL (RG7826) and CD19-4-1BBL. In the presence of a T cell receptor signal, they provide potent T cell costimulation strictly dependent on tumor antigen-mediated hyperclustering without systemic activation by FcγR binding. We could show targeting of FAP-4-1BBL to FAP-expressing tumor stroma and lymph nodes in a colorectal cancer-bearing rhesus monkey. Combination of FAP-4-1BBL with tumor antigen-targeted T cell bispecific (TCB) molecules in human tumor samples led to increased IFN-γ and granzyme B secretion. Further, combination of FAP- or CD19-4-1BBL with CEA-TCB (RG7802) or CD20-TCB (RG6026), respectively, resulted in tumor remission in mouse models, accompanied by intratumoral accumulation of activated effector CD8+ T cells. FAP- and CD19-4-1BBL thus represent an off-the-shelf combination immunotherapy without requiring genetic modification of effector cells for the treatment of solid and hematological malignancies.


Subject(s)
Antibodies, Bispecific/metabolism , CD8-Positive T-Lymphocytes/metabolism , Antibodies, Bispecific/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cell Proliferation/physiology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Humans , Immunotherapy , Lymph Nodes/immunology , Lymph Nodes/metabolism , Neoplasms/immunology , Neoplasms/therapy
13.
J Med Chem ; 61(8): 3350-3369, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29590750

ABSTRACT

Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( Ki < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.


Subject(s)
Cathepsin L/antagonists & inhibitors , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Lactams, Macrocyclic/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei rhodesiense/drug effects , Animals , Binding Sites , Blood-Brain Barrier/metabolism , Cell Line , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacokinetics , Drug Repositioning , Humans , Lactams, Macrocyclic/chemical synthesis , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/pharmacokinetics , Ligands , Male , Mice, Inbred C57BL , Molecular Structure , Rats , Structure-Activity Relationship , Swine , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacokinetics
14.
EBioMedicine ; 24: 76-92, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28923680

ABSTRACT

Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidß (Aß) antibodies and secretase inhibitors. However, the blood-brain barrier (BBB) limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS) technology is capable of shuttling large molecules into the brain. This allows for new types of therapeutic modalities engineered for optimal efficacy on the molecular target in the brain independent of brain penetrating properties. To this end, we designed BACE1 peptide inhibitors with varying lipid modifications with single-digit picomolar cellular potency. Secondly, we generated active-exosite peptides with structurally confirmed dual binding mode and improved potency. When fused to the BS via sortase coupling, these BACE1 inhibitors significantly reduced brain Aß levels in mice after intravenous administration. In plasma, both BS and non-BS BACE1 inhibitor peptides induced a significant time- and dose-dependent decrease of Aß. Our results demonstrate that the BS is essential for BACE1 peptide inhibitors to be efficacious in the brain and active-exosite design of BACE1 peptide inhibitors together with lipid modification may be of therapeutic relevance.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/metabolism , Peptide Fragments/administration & dosage , Administration, Intravenous , Amyloid Precursor Protein Secretases/chemistry , Animals , Aspartic Acid Endopeptidases/chemistry , Blood-Brain Barrier/metabolism , Catalytic Domain/drug effects , Dose-Response Relationship, Drug , Humans , Mice , Peptide Fragments/pharmacology , Receptors, Transferrin/metabolism
15.
J Biol Chem ; 292(38): 15622-15635, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28751378

ABSTRACT

Microbial transglutaminases (MTGs) catalyze the formation of Gln-Lys isopeptide bonds and are widely used for the cross-linking of proteins and peptides in food and biotechnological applications (e.g. to improve the texture of protein-rich foods or in generating antibody-drug conjugates). Currently used MTGs have low substrate specificity, impeding their biotechnological use as enzymes that do not cross-react with nontarget substrates (i.e. as bio-orthogonal labeling systems). Here, we report the discovery of an MTG from Kutzneria albida (KalbTG), which exhibited no cross-reactivity with known MTG substrates or commonly used target proteins, such as antibodies. KalbTG was produced in Escherichia coli as soluble and active enzyme in the presence of its natural inhibitor ammonium to prevent potentially toxic cross-linking activity. The crystal structure of KalbTG revealed a conserved core similar to other MTGs but very short surface loops, making it the smallest MTG characterized to date. Ultra-dense peptide array technology involving a pool of 1.4 million unique peptides identified specific recognition motifs for KalbTG in these peptides. We determined that the motifs YRYRQ and RYESK are the best Gln and Lys substrates of KalbTG, respectively. By first reacting a bifunctionalized peptide with the more specific KalbTG and in a second step with the less specific MTG from Streptomyces mobaraensis, a successful bio-orthogonal labeling system was demonstrated. Fusing the KalbTG recognition motif to an antibody allowed for site-specific and ratio-controlled labeling using low label excess. Its site specificity, favorable kinetics, ease of use, and cost-effective production render KalbTG an attractive tool for a broad range of applications, including production of therapeutic antibody-drug conjugates.


Subject(s)
Actinomycetales/enzymology , Proteins/chemistry , Proteins/metabolism , Transglutaminases/metabolism , Binding Sites , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Conformation , Staining and Labeling , Substrate Specificity , Transglutaminases/chemistry
16.
Oncoimmunology ; 6(3): e1277306, 2017.
Article in English | MEDLINE | ID: mdl-28405498

ABSTRACT

We developed cergutuzumab amunaleukin (CEA-IL2v, RG7813), a novel monomeric CEA-targeted immunocytokine, that comprises a single IL-2 variant (IL2v) moiety with abolished CD25 binding, fused to the C-terminus of a high affinity, bivalent carcinoembryonic antigen (CEA)-specific antibody devoid of Fc-mediated effector functions. Its molecular design aims to (i) avoid preferential activation of regulatory T-cells vs. immune effector cells by removing CD25 binding; (ii) increase the therapeutic index of IL-2 therapy by (a) preferential retention at the tumor by having a lower dissociation rate from CEA-expressing cancer cells vs. IL-2R-expressing cells, (b) avoiding any FcγR-binding and Fc effector functions and (c) reduced binding to endothelial cells expressing CD25; and (iii) improve the pharmacokinetics, and thus convenience of administration, of IL-2. The crystal structure of the IL2v-IL-2Rßγ complex was determined and CEA-IL2v activity was assessed using human immune effector cells. Tumor targeting was investigated in tumor-bearing mice using 89Zr-labeled CEA-IL2v. Efficacy studies were performed in (a) syngeneic mouse models as monotherapy and combined with anti-PD-L1, and in (b) xenograft mouse models in combination with ADCC-mediating antibodies. CEA-IL2v binds to CEA with pM avidity but not to CD25, and consequently did not preferentially activate Tregs. In vivo, CEA-IL2v demonstrated superior pharmacokinetics and tumor targeting compared with a wild-type IL-2-based CEA immunocytokine (CEA-IL2wt). CEA-IL2v strongly expanded NK and CD8+ T cells, skewing the CD8+:CD4+ ratio toward CD8+ T cells both in the periphery and in the tumor, and mediated single agent efficacy in syngeneic MC38-CEA and PancO2-CEA models. Combination with trastuzumab, cetuximab and imgatuzumab, all of human IgG1 isotype, resulted in superior efficacy compared with the monotherapies alone. Combined with anti-PD-L1, CEA-IL2v mediated superior efficacy over the respective monotherapies, and over the combination with an untargeted control immunocytokine. These preclinical data support the ongoing clinical investigation of the cergutuzumab amunaleukin immunocytokine with abolished CD25 binding for the treatment of CEA-positive solid tumors in combination with PD-L1 checkpoint blockade and ADCC competent antibodies.

17.
J Med Chem ; 60(6): 2485-2497, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28287264

ABSTRACT

Improving the binding affinity of a chemical series by systematically probing one of its exit vectors is a medicinal chemistry activity that can benefit from molecular modeling input. Herein, we compare the effectiveness of four approaches in prioritizing building blocks with better potency: selection by a medicinal chemist, manual modeling, docking followed by manual filtering, and free energy calculations (FEP). Our study focused on identifying novel substituents for the apolar S2 pocket of cathepsin L and was conducted entirely in a prospective manner with synthesis and activity determination of 36 novel compounds. We found that FEP selected compounds with improved affinity for 8 out of 10 picks compared to 1 out of 10 for the other approaches. From this result and other additional analyses, we conclude that FEP can be a useful approach to guide this type of medicinal chemistry optimization once it has been validated for the system under consideration.


Subject(s)
Cathepsin L/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Thermodynamics , Binding Sites , Cathepsin L/chemistry , Cathepsin L/metabolism , Halogenation , Humans , Molecular Docking Simulation , Protein Binding , Pyrimidines/chemistry , Pyrimidines/pharmacology
18.
ChemMedChem ; 12(3): 257-270, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27992115

ABSTRACT

We report an extensive "heteroarene scan" of triazine nitrile ligands of the cysteine protease human cathepsin L (hCatL) to investigate π-stacking on the peptide amide bond Gly67-Gly68 at the entrance of the S3 pocket. This heteroarene⋅⋅⋅peptide bond stacking was supported by a co-crystal structure of an imidazopyridine ligand with hCatL. Inhibitory constants (Ki ) are strongly influenced by the diverse nature of the heterocycles and specific interactions with the local environment of the S3 pocket. Binding affinities vary by three orders of magnitude. All heteroaromatic ligands feature enhanced binding by comparison with hydrocarbon analogues. Predicted energetic contributions from the orientation of the local dipole moments of heteroarene and peptide bond could not be confirmed. Binding of benzothienyl (Ki =4 nm) and benzothiazolyl (Ki =17 nm) ligands was enhanced by intermolecular C-S⋅⋅⋅O=C interactions (chalcogen bonding) with the backbone C=O of Asn66 in the S3 pocket. The ligands were also tested for the related enzyme rhodesain.


Subject(s)
Cathepsin L/metabolism , Chalcogens/chemistry , Nitriles/metabolism , Triazines/chemistry , Amides/chemistry , Binding Sites , Cathepsin L/antagonists & inhibitors , Crystallography, X-Ray , Humans , Ligands , Molecular Dynamics Simulation , Nitriles/chemical synthesis , Nitriles/chemistry , Protein Binding , Protein Structure, Tertiary , Quantum Theory
19.
J Biol Chem ; 291(31): 16292-306, 2016 07 29.
Article in English | MEDLINE | ID: mdl-27226599

ABSTRACT

Doublecortin is a microtubule-associated protein produced during neurogenesis. The protein stabilizes microtubules and stimulates their polymerization, which allows migration of immature neurons to their designated location in the brain. Mutations in the gene that impair doublecortin function and cause severe brain formation disorders are located on a tandem repeat of two doublecortin domains. The molecular mechanism of action of doublecortin is only incompletely understood. Anti-doublecortin antibodies, such as the rabbit polyclonal Abcam 18732, are widely used as neurogenesis markers. Here, we report the generation and characterization of antibodies that bind to single doublecortin domains. The antibodies were used as tools to obtain structures of both domains. Four independent crystal structures of the N-terminal domain reveal several distinct open and closed conformations of the peptide linking N- and C-terminal domains, which can be related to doublecortin function. An NMR assignment and a crystal structure in complex with a camelid antibody fragment show that the doublecortin C-terminal domain adopts the same well defined ubiquitin-like fold as the N-terminal domain, despite its reported aggregation and molten globule-like properties. The antibodies' unique domain specificity also renders them ideal research tools to better understand the role of individual domains in doublecortin function. A single chain camelid antibody fragment specific for the C-terminal doublecortin domain affected microtubule binding, whereas a monoclonal mouse antibody specific for the N-terminal domain did not. Together with steric considerations, this suggests that the microtubule-interacting doublecortin domain observed in cryo-electron micrographs is the C-terminal domain rather than the N-terminal one.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/chemistry , Microtubule-Associated Proteins/chemistry , Neuropeptides/chemistry , Single-Chain Antibodies/chemistry , Animals , Camelus , Cryoelectron Microscopy , Crystallography, X-Ray , Doublecortin Domain Proteins , Humans , Mice , Protein Domains , Protein Structure, Quaternary , Rabbits
20.
MAbs ; 8(2): 288-305, 2016.
Article in English | MEDLINE | ID: mdl-26637054

ABSTRACT

Antibody humanization describes the procedure of grafting a non-human antibody's complementarity-determining regions, i.e., the variable loop regions that mediate specific interactions with the antigen, onto a ß-sheet framework that is representative of the human variable region germline repertoire, thus reducing the number of potentially antigenic epitopes that might trigger an anti-antibody response. The selection criterion for the so-called acceptor frameworks (one for the heavy and one for the light chain variable region) is traditionally based on sequence similarity. Here, we propose a novel approach that selects acceptor frameworks such that the relative orientation of the 2 variable domains in 3D space, and thereby the geometry of the antigen-binding site, is conserved throughout the process of humanization. The methodology relies on a machine learning-based predictor of antibody variable domain orientation that has recently been shown to improve the quality of antibody homology models. Using data from 3 humanization campaigns, we demonstrate that preselecting humanization variants based on the predicted difference in variable domain orientation with regard to the original antibody leads to subsets of variants with a significant improvement in binding affinity.


Subject(s)
Antibodies, Monoclonal, Humanized/chemistry , Complementarity Determining Regions/chemistry , Machine Learning , Models, Molecular , Humans , Protein Structure, Secondary , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...