Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 404(Pt B): 134649, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36288673

ABSTRACT

60 MHz proton NMR spectroscopy was used to analyse extracts from saffron spice and a range of potential adulterants and mixtures. Using a simple extraction procedure, good quality spectra were obtained which contain peaks from the characteristic metabolites picrocrocin and crocins, fatty acids and kaempferol. The spectra of samples from trusted suppliers were used to train one-class classification models by SIMCA, nearest neighbour and isolation forest methods. Applying these to spectra of saffron samples purchased from the online marketplace, it was found that 7 out of 33 samples were highly anomalous. From comparison with the spectra of known mixtures and confirmatory spectral analysis using 600 MHz NMR, it is probable that these contain considerable amounts of undisclosed foreign matter.


Subject(s)
Crocus , Crocus/chemistry , Protons , Magnetic Resonance Spectroscopy/methods , Plant Extracts/chemistry
2.
Food Chem ; 370: 131333, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34788960

ABSTRACT

Low field (60 MHz) 1H NMR spectroscopy was used to analyse a large (n = 410) collection of edible oils, including olive and argan, in an authenticity screening scenario. Experimental work was carried out on multiple spectrometers at two different laboratories, aiming to explore multivariate model stability and transfer between instruments. Three modelling methods were employed: Partial Least Squares Discriminant Analysis, Random Forests, and a One Class Classification approach. Clear inter-instrument differences were observed between replicated data collections, sufficient to compromise effective transfer of models based on raw data between instruments. As mitigations to this issue, various data pre-treatments were investigated: Piecewise Direct Standardisation, Standard Normal Variates, and Rank Transformation. Datasets comprised both phase corrected and magnitude spectra, and it was found that that the latter spectral form may offer some advantages in the context of pattern recognition and classification modelling, particularly when used in combination with the Rank Transformation pre-treatment.


Subject(s)
Plant Oils , Discriminant Analysis , Least-Squares Analysis , Magnetic Resonance Spectroscopy , Olive Oil/analysis
3.
Magn Reson Chem ; 58(12): 1177-1186, 2020 12.
Article in English | MEDLINE | ID: mdl-32220087

ABSTRACT

We use 60-MHz benchtop nuclear magnetic resonance (NMR) to acquire 1 H spectra from argan oils of assured origin. We show that the low-field NMR spectrum of neat oil contains sufficient information to make estimates of compositional parameters and to inform on the presence of minor compounds. A screening method for quality and authenticity is presented based on nearest-neighbour outlier detection. A variety of oil types are used to challenge the method. In a survey of retail-purchased oils, several instances of fraud were found.

4.
Food Chem ; 248: 52-60, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29329870

ABSTRACT

High-field and low-field proton NMR spectroscopy were used to analyse lipophilic extracts from ground roast coffees. Using a sample preparation method that produced concentrated extracts, a small marker peak at 3.16 ppm was observed in 30 Arabica coffees of assured origin. This signal has previously been believed absent from Arabicas, and has been used as a marker for detecting adulteration with robusta. Via 2D 600 MHz NMR and LC-MS, 16-O-methylcafestol and 16-O-methylkahweol were detected for the first time in Arabica roast coffee and shown to be responsible for the marker peak. Using low-field NMR, robusta in Arabica could be detected at levels of the order of 1-2% w/w. A surveillance study of retail purchased "100% Arabica" coffees found that 6 out of 60 samples displayed the 3.16 ppm marker signal to a degree commensurate with adulteration at levels of 3-30% w/w.


Subject(s)
Coffee/chemistry , Diterpenes/analysis , Food Analysis/methods , Magnetic Resonance Spectroscopy/methods , Coffea/chemistry , Food Contamination/analysis , Limit of Detection , Reproducibility of Results
5.
Food Chem ; 216: 106-13, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27596398

ABSTRACT

This work reports a new screening protocol for addressing issues of coffee authenticity using low-field (60MHz) bench-top (1)H NMR spectroscopy. Using a simple chloroform-based extraction, useful spectra were obtained from the lipophilic fraction of ground roast coffees. It was found that 16-O-methylcafestol (16-OMC, a recognized marker compound for robusta beans) gives rise to an isolated peak in the 60MHz spectrum, which can be used as an indicator of the presence of robusta beans in the sample. A total of 81 extracts from authenticated coffees and mixtures were analysed, from which the detection limit of robusta in arabica was estimated to be between 10% and 20% w/w. Using the established protocol, a surveillance exercise was conducted of 27 retail samples of ground roast coffees which were labelled as "100% arabica". None were found to contain undeclared robusta content above the estimated detection limit.


Subject(s)
Coffee/chemistry , Diterpenes/analysis , Magnetic Resonance Spectroscopy/methods , Seeds/chemistry , Coffee/classification , Food Analysis , Seeds/classification
6.
J Vis Exp ; (115)2016 09 20.
Article in English | MEDLINE | ID: mdl-27685654

ABSTRACT

We describe a simple protocol for identifying and quantifying the two components in binary mixtures of species possessing one or more similar proteins. Central to the method is the identification of 'corresponding proteins' in the species of interest, in other words proteins that are nominally the same but possess species-specific sequence differences. When subject to proteolysis, corresponding proteins will give rise to some peptides which are likewise similar but with species-specific variants. These are 'corresponding peptides'. Species-specific peptides can be used as markers for species determination, while pairs of corresponding peptides permit relative quantitation of two species in a mixture. The peptides are detected using multiple reaction monitoring (MRM) mass spectrometry, a highly specific technique that enables peptide-based species determination even in complex systems. In addition, the ratio of MRM peak areas deriving from corresponding peptides supports relative quantitation. Since corresponding proteins and peptides will, in the main, behave similarly in both processing and in experimental extraction and sample preparation, the relative quantitation should remain comparatively robust. In addition, this approach does not need the standards and calibrations required by absolute quantitation methods. The protocol is described in the context of red meats, which have convenient corresponding proteins in the form of their respective myoglobins. This application is relevant to food fraud detection: the method can detect 1% weight for weight of horse meat in beef. The corresponding protein, corresponding peptide (CPCP) relative quantitation using MRM peak area ratios gives good estimates of the weight for weight composition of a horse plus beef mixture.


Subject(s)
Mass Spectrometry , Meat , Peptides , Animals , Calibration , Horses , Proteins , Species Specificity , Tandem Mass Spectrometry
7.
Anal Chem ; 87(20): 10315-22, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26366801

ABSTRACT

A rapid multiple reaction monitoring (MRM) mass spectrometric method for the detection and relative quantitation of the adulteration of meat with that of an undeclared species is presented. Our approach uses corresponding proteins from the different species under investigation and corresponding peptides from those proteins, or CPCP. Selected peptide markers can be used for species detection. The use of ratios of MRM transition peak areas for corresponding peptides is proposed for relative quantitation. The approach is introduced by use of myoglobin from four meats: beef, pork, horse and lamb. Focusing in the present work on species identification, by use of predictive tools, we determine peptide markers that allow the identification of all four meats and detection of one meat added to another at levels of 1% (w/w). Candidate corresponding peptide pairs to be used for the relative quantification of one meat added to another have been observed. Preliminary quantitation data presented here are encouraging.


Subject(s)
Meat/analysis , Myoglobin/analysis , Peptides/analysis , Animals , Cattle , Horses , Mass Spectrometry , Sheep , Swine
8.
J Agric Food Chem ; 52(20): 6075-85, 2004 Oct 06.
Article in English | MEDLINE | ID: mdl-15453669

ABSTRACT

Metabolite profiling has been carried out to assess the compositional changes occurring in potato tubers after genetic modifications have been made to different metabolic pathways. Most major features in the (1)H NMR and HPLC-UV profiles of tuber extracts have been assigned. About 40 GM lines and controls belonging to 4 groups of samples (derived from cv. Record or cv. Desirée and modified in primary carbon metabolism, starch synthesis, glycoprotein processing, or polyamine/ethylene metabolism) were analyzed. Differences were assessed at the level of whole profiles (by PCA) or individual compounds (by ANOVA). The most obvious differences seen in both NMR and HPLC-UV profiles were between the two varieties. There were also significant differences between two of the four Desirée GM lines with modified polyamine metabolism and their controls. Compounds notably affected were proline, trigonelline, and numerous phenolics. However, that modification gave rise to a very abnormal phenotype. Certain lines from the other groups had several compounds present in significantly higher or lower amounts compared to the control, but the differences in mean values amounted to no more than a 2-3-fold change: in the context of variability in the whole data set, such changes did not appear to be important.


Subject(s)
Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Plants, Genetically Modified/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Analysis of Variance , Phenols/metabolism , Plant Roots/metabolism , Polyamines/metabolism , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...