Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.854
Filter
1.
Thorac Cancer ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952044

ABSTRACT

BACKGROUND: Phosphoribosyl pyrophosphate synthetase 2 (PRPS2) is known as an oncogene in many types of cancers, including lung cancer. However, its role in regulating tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) remains unclear. Our study aimed to explore the involvement of PRPS2 in TAM and MDSC regulation. METHODS: Stable Lewis lung cancer (LLC) cell lines were established using a lentivirus system. These LLC lines were then used to establish tumor model in mice. The levels of target genes were determined using qPCR, western blotting, and ELISA assays. The percentage of different immune cell types was analyzed using fluorescence-activated cell sorting. The chemotaxis ability of TAM and MDSC was evaluated using an in vitro transwell chemotaxis assay. RESULTS: Notably, PRPS2 was found to regulate the chemotaxis of TAM and MDSC in tumor cells, as evidenced by the positive correlation of PRPS2 expression levels and abundance of TAM and MDSC populations. In addition, the expression of CCL2, mediated by PRPS2, was identified as a key factor in the chemotaxis of TAM and MDSC, as evidenced by a significant reduction in macrophages and MDSC numbers in the presence of the CCL2 antibody. Furthermore, in vivo experiments confirmed the involvement of PRPS2 in mediating CCL2 expression. PRPS2 was also found to regulate immune cell infiltration into tumors, whereas knockdown of CCL2 reversed the phenotype induced by PRPS2 overexpression. In tumor tissues from mice implanted with LLC-PRPS2-shCCL2 cells, a notable increase in CD4+ and CD8+ T cell percentages, alongside a marked decrease in TAMs, M-MDSC, and PMN-MDSC, was observed. CONCLUSION: Taken together, PRPS2 plays a crucial role in modulating the antitumor immune response by reprogramming CCL2-mediated TAM and MDSC.

2.
Front Aging Neurosci ; 16: 1390310, 2024.
Article in English | MEDLINE | ID: mdl-38952478

ABSTRACT

Background: N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. Methods: Single-nucleus RNA sequencing was performed in the Substantia Nigra (SN) of MPTP mice. UMAP analysis was used for the dimensionality reduction visualization of the SN in the MPTP mice. Known marker genes highly expressed genes in each cluster were used to annotate most clusters. Specific Differentially Expressed Genes (DEGs) and PD risk genes analysis were used to find MPTP-associated cells. GO, KEGG, PPI network, GSEA and CellChat analysis were used to reveal cell type-specific functional alterations and disruption of cell-cell communication networks. Subset reconstruction and pseudotime analysis were used to reveal the activation status of the cells, and to find the transcription factors with trajectory characterized. Results: Initially, we observed specific DEGs and PD risk genes enrichment in microglia. Next, We obtained the functional phenotype changes in microglia and found that IGF, AGRN and PTN pathways were reduced in MPTP mice. Finally, we analyzed the activation state of microglia and revealed a pro-inflammatory trajectory characterized by transcription factors Nfe2l2 and Runx1. Conclusion: Our work revealed alterations in microglia function, signaling pathways and key genes in the SN of MPTP mice.

3.
J Chem Inf Model ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949724

ABSTRACT

Ameliorating microglia-mediated neuroinflammation is a crucial strategy in developing new drugs for neurodegenerative diseases. Plant compounds are an important screening target for the discovery of drugs for the treatment of neurodegenerative diseases. However, due to the spatial complexity of phytochemicals, it becomes particularly important to evaluate the effectiveness of compounds while avoiding the mixing of cytotoxic substances in the early stages of compound screening. Traditional high-throughput screening methods suffer from high cost and low efficiency. A computational model based on machine learning provides a novel avenue for cytotoxicity determination. In this study, a microglia cytotoxicity classifier was developed using a machine learning approach. First, we proposed a data splitting strategy based on the molecule murcko generic scaffold, under this condition, three machine learning approaches were coupled with three kinds of molecular representation methods to construct microglia cytotoxicity classifier, which were then compared and assessed by the predictive accuracy, balanced accuracy, F1-score, and Matthews Correlation Coefficient. Then, the recursive feature elimination integrated with support vector machine (RFE-SVC) dimension reduction method was introduced to molecular fingerprints with high dimensions to further improve the model performance. Among all the microglial cytotoxicity classifiers, the SVM coupled with ECFP4 fingerprint after feature selection (ECFP4-RFE-SVM) obtained the most accurate classification for the test set (ACC of 0.99, BA of 0.99, F1-score of 0.99, MCC of 0.97). Finally, the Shapley additive explanations (SHAP) method was used in interpreting the microglia cytotoxicity classifier and key substructure smart identified as structural alerts. Experimental results show that ECFP4-RFE-SVM have reliable classification capability for microglia cytotoxicity, and SHAP can not only provide a rational explanation for microglia cytotoxicity predictions, but also offer a guideline for subsequent molecular cytotoxicity modifications.

4.
Int J Cancer ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949756

ABSTRACT

Gliomas are primary brain tumors and are among the most malignant types. Adult-type diffuse gliomas can be classified based on their histological and molecular signatures as IDH-wildtype glioblastoma, IDH-mutant astrocytoma, and IDH-mutant and 1p/19q-codeleted oligodendroglioma. Recent studies have shown that each subtype of glioma has its own specific distribution pattern. However, the mechanisms underlying the specific distributions of glioma subtypes are not entirely clear despite partial explanations such as cell origin. To investigate the impact of multi-scale brain attributes on glioma distribution, we constructed cumulative frequency maps for diffuse glioma subtypes based on T1w structural images and evaluated the spatial correlation between tumor frequency and diverse brain attributes, including postmortem gene expression, functional connectivity metrics, cerebral perfusion, glucose metabolism, and neurotransmitter signaling. Regression models were constructed to evaluate the contribution of these factors to the anatomic distribution of different glioma subtypes. Our findings revealed that the three different subtypes of gliomas had distinct distribution patterns, showing spatial preferences toward different brain environmental attributes. Glioblastomas were especially likely to occur in regions enriched with synapse-related pathways and diverse neurotransmitter receptors. Astrocytomas and oligodendrogliomas preferentially occurred in areas enriched with genes associated with neutrophil-mediated immune responses. The functional network characteristics and neurotransmitter distribution also contributed to oligodendroglioma distribution. Our results suggest that different brain transcriptomic, neurotransmitter, and connectomic attributes are the factors that determine the specific distributions of glioma subtypes. These findings highlight the importance of bridging diverse scales of biological organization when studying neurological dysfunction.

5.
Infect Genet Evol ; : 105634, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950667

ABSTRACT

BACKGROUND: Aedes albopictus is an important vector of chikungunya, dengue, yellow fever and Zika viruses. Insecticides are often the most effective tools for rapidly decreasing the density of vector populations, especially during arbovirus disease outbreaks. However, the intense use of insecticides, particularly pyrethroids, has led to the selection of resistant mosquito populations worldwide. Mutations in the voltage-gated sodium channel (VGSC) gene are one of the main drivers of insecticide resistance in Ae. albopictus and are also known as "knockdown resistance" (kdr) mutations. Knowledge about genetic mutations associated with insecticide resistance is a prerequisite for developing techniques for rapid resistance diagnosis. Here, we report studies on the origin and dispersion of kdr haplotypes in samples of Ae. albopictus from the Yangtze River Basin, China; METHODS: Here, we report the results of PCR genotyping of kdr mutations in 541 Ae. albopictus specimens from 22 sampling sites in 7 provinces and municipalities in the Yangtze River Basin. Partial DNA sequences of domain II and domain III of the VGSC gene were amplified. These DNA fragments were subsequently sequenced to discover the possible genetic mutations mediating knockdown resistance (kdr) to pyrethroids. The frequency and distribution of kdr mutations were assessed in 22 Ae. albopictus populations. Phylogenetic relationships among the haplotypes were used to infer whether the kdr mutations had a single or multiple origins; RESULTS: The kdr mutation at the 1016 locus had 2 alleles with 3 genotypes: V/V (73.38%), V/G (26.43%) and G/G (0.18%). The 1016G homozygous mutation was found in only one case in the CQSL strain in Chongqing, and no 1016G mutations were detected in the SHJD (Shanghai), NJDX (Jiangsu) or HBQN (Hubei) strains. A total of 1532 locus had two alleles and three genotypes, I/I (88.35%), I/T (8.50%) and T/T (3.14%). A total of 1534 locus had four alleles and six genotypes: F/F (49.35%), F/S (19.96%), F/C (1.48%) and F/L (0.18%); S/S (23.66%); and C/C (5.36%). Haplotypes with the F1534C mutation were found only in Ae. albopictus populations in Chongqing and Hubei, and C1534C was found only in three geographic strains in Chongqing. Haplotypes with the 1534S mutation were found only in Ae. albopictus populations in Sichuan and Shanghai. F1534L was found only in HBYC. The Ae. albopictus populations in Shanghai were more genetically differentiated from those in the other regions (except Sichuan), and the genetic differentiation between the populations in Chongqing and those in the middle-lower reaches of the Yangtze River (Huber, Jiangsu, Jiangxi, and Anhui) was lower. Shanghai and Sichuan displayed low haplotype diversity and low nucleotide diversity. Phylogenetic analysis and sequence comparison revealed that the 1016 locus was divided into three branches, with the Clade A and Clade B branches bearing the 1016 mutation occurring mostly in Jiangsu and the Clade C branch bearing the 1016 mutation occurring mostly in Chongqing, suggesting at least two origins for 1016G. IIIS6 phylogenetic analysis and sequence comparison revealed that F1534S, F1534C and I1532T can be divided into two branches, indicating that IIIS6 has two origins; CONCLUSIONS: Combined with the distribution of kdr mutations and the analysis of population genetics, we infer that besides the local selection of pyrethroid resistance mutations, dispersal and colonization of Ae. albopictus from other regions may explain why kdr mutations are present in some Ae. albopictus populations in the Yangtze River Basin.

6.
Diabetes Metab ; : 101560, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950855

ABSTRACT

AIM: To explore the relationships of multiple reproductive factors with type 2 diabetes mellitus (T2DM) risk and the joint effects of reproductive factors and genetic susceptibility. METHODS: We included 262,368 women without prevalent T2DM from the UK biobank. Cox proportional hazards regression models were employed to estimate the relationships of reproductive factors with T2DM risk and the joint effects of reproductive factors and genetic susceptibility. RESULTS: During a mean follow-up of 12.2 years, 8,996 T2DM cases were identified. Early menarche (< 12 years, hazard ratio (HR) 1.08 [95% confidence interval (CI) 1.02;1.13]), late menarche (≥ 15 years, HR 1.11 [1.04;1.17]), early menopause (< 45 years, HR 1.20 [1.12;1.29]), short reproductive lifespan (< 30 years, HR 1.25 [1.16;1.35]), hysterectomy (1.31, HR [1.23;1.40]), oophorectomy (HR 1.28 [1.20;1.36]), high parity (≥ 4, HR 1.25 [1.17;1.34]), early age at first live birth (< 20 years, HR 1.23 [1.16;1.31]), miscarriage (HR 1.13 [1.07;1.19]), stillbirth (HR 1.14 [1.03;1.27]), and ever used hormonal replacement therapy (HR 1.19 [1.14;1.24]) were related to a higher T2DM risk, while ever used oral contraceptives (HR 0.93 [0.89;0.98]) was related to a lower T2DM risk. Furthermore, women with reproductive risk factors and high genetic risk had the highest T2DM risk compared to those with low genetic risk and without reproductive risk factors. CONCLUSION: Our findings show that multiple reproductive factors are related to T2DM risk, particularly in women with high genetic risk.

7.
J Asthma Allergy ; 17: 601-609, 2024.
Article in English | MEDLINE | ID: mdl-38947955

ABSTRACT

Purpose: To investigate the patterns of allergens in allergic conjunctivitis (AC) and the association with allergic comorbidity. Methods: This retrospective cross-sectional study enrolled 2972 children with AC. Clinical data, including sex, age, allergic comorbidities (allergic asthma, allergic rhinitis, and atopic dermatitis), and serum allergen-specific immunoglobulin E (sIgE), were collected from the electronic medical record (EMR). The categorical variables were compared with the chi-square test. The characteristics of allergens in children of different ages and comorbidities were analyzed by trend chi-square. The sensitivity level of HDM associated with AC and comorbidities was assessed by odds ratios (ORs) with 95% confidence intervals of logistic regression analysis. Results: A total of 2972 children (2015 boys and 957 girls) with AC were included in the study. The mean age was 3.78 (0.5~12) years. The most common allergen was house dust mite(HDM) (43.41%). With age, the positive rate for inhaled allergens gradually increased, and the positive rate for ingested allergens decreased. With the number of comorbidities increasing, the positive rates of sensitization were 38.33%, 74.51%, 80.72%, and 89.05%, and the incidence of polysensitization was 44.66%, 56.48%, 59.54%, and 74.59%, respectively. With the increase of HDM-sIgE level, the number of comorbidities and the risk increased gradually. Conclusion: HDM is the most common allergen in AC children of different ages. High levels of HDM-sIgE may be a predictor for allergic comorbidities. Children with polysensitization and high levels of HDM sIgE will be an important target population for future intervention in other allergy-related disease prevention.

8.
Adv Med Educ Pract ; 15: 599-607, 2024.
Article in English | MEDLINE | ID: mdl-38948484

ABSTRACT

Objective: To investigate the effectiveness of flipped classrooms (FC) based on outcomes-based education (OBE) on clinical ophthalmology clerkships. Methods: Ninety-nine undergraduates were non-randomly assigned to the FC based on the OBE (FC-OBE) group or traditional lecture (TL) group in the ophthalmology clerkship. Pre- and post-tests were performed to assess student learning outcomes. Anonymous questionnaires were collected to compare students' attitudes and classroom engagements between the two groups. Results: More participants agreed FC-OBE was helpful in developing teamwork ability and knowing the work standard. Teaching staff in the FC-OBE classroom received higher evaluations. More participants in the FC-OBE group had higher classroom engagement in skills and emotions than in the TL group. The post-class test scores, mainly case analysis scores were higher in the FC-OBE group than in the TL group. Conclusion: FC-OBE classroom improves student engagement and clinical analysis competence in undergraduate ophthalmology clerkship.

10.
Foods ; 13(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928776

ABSTRACT

Baijiu is a renowned Chinese distilled liquor, notable for its distinctive flavor profile and intricate production process, which prominently involves fermentation and distillation. Ethyl carbamate (EC), a probable human carcinogen, can be potentially formed during these procedures, thus prompting significant health concerns. Consequently, the contamination of EC during Baijiu production has become an increasingly pressing issue. In this study, we developed a rapid and easily operable immunoassay for determining EC in the fermented materials used in Baijiu production. The development of a high-quality antibody specific to EC facilitated a streamlined analytical procedure and heightened method sensitivity. Furthermore, we systematically evaluated other essential parameters. Following optimization, the method achieved an IC50 value of 11.83 µg/kg, with negligible cross-reactivity against EC analogs. The recovery study demonstrated the method's good accuracy and precision, with mean recovery rates ranging from 86.0% to 105.5% and coefficients of variation all below 10%. To validate the feasibility of the technique, we collected and analyzed 39 samples simultaneously using both the proposed immunoassay and confirmatory gas chromatography-mass spectrometry (GC-MS). A robust correlation was observed between the results obtained from the two methods (R2 > 0.99). The detected EC levels ranged from 2.36 µg/kg to 7.08 µg/kg, indicating an increase during the fermentation process.

11.
Foods ; 13(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928827

ABSTRACT

Raman spectroscopy for rapid identification of foodborne pathogens based on phenotype has attracted increasing attention, and the reliability of the Raman fingerprint database through genotypic determination is crucial. In the research, the classification model of four foodborne pathogens was established based on t-distributed stochastic neighbor embedding (t-SNE) and support vector machine (SVM); the recognition accuracy was 97.04%. The target bacteria named by the model were ejected through Raman-activated cell ejection (RACE), and then single-cell genomic DNA was amplified for species analysis. The accuracy of correct matches between the predicted phenotype and the actual genotype of the target cells was at least 83.3%. Furthermore, all anticipant sequencing results brought into correspondence with the species were predicted through the model. In sum, the Raman fingerprint database based on Raman spectroscopy combined with machine learning was reliable and promising in the field of rapid detection of foodborne pathogens.

12.
Plants (Basel) ; 13(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931142

ABSTRACT

Computer-aided design usually gives inspirations and has become a vital strategy to develop novel pesticides through reconstructing natural lead compounds. Patulin, an unsaturated heterocyclic lactone mycotoxin, is a new natural PSII inhibitor and shows significant herbicidal activity to various weeds. However, some evidence, especially the health concern, prevents it from developing as a bioherbicide. In this work, molecular docking and toxicity risk prediction are combined to construct interaction models between the ligand and acceptor, and design and screen novel derivatives. Based on the analysis of a constructed patulin-Arabidopsis D1 protein docking model, in total, 81 derivatives are designed and ranked according to quantitative estimates of drug-likeness (QED) values and free energies. Among the newly designed derivatives, forty-five derivatives with better affinities than patulin are screened to further evaluate their toxicology. Finally, it is indicated that four patulin derivatives, D3, D6, D34, and D67, with higher binding affinity but lower toxicity than patulin have a great potential to develop as new herbicides with improved potency.

13.
Inorg Chem ; 63(26): 12309-12315, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38889441

ABSTRACT

Separation of C2H6/C2H4 mixtures is of significant importance in the chemical industry but remains a challenge due to the physicochemical similarities of C2H6 and C2H4. Herein, a metal-organic framework (MOF), [Zn4(µ4-O)(PCTF)3]n (Zn-PCTF) (PCTF2-= 5-trifluoromethyl-1H-pyrazole-4-carboxylic), is provided for the removal of C2H6 from C2H6/C2H4 mixtures. Zn-PCTF displays a three-dimensional framework featuring one-dimensional pore channels with periodic bottleneck segments. The well-balanced C2H6 adsorption capacity (79.0 cm3 g-1 at 298 K) and C2H6/C2H4 selectivity (1.8) for Zn-PCTF under ambient conditions boost Zn-PCTF with highly promising potentials for efficient purification of C2H4 from C2H6/C2H4 mixtures, which is verified by the dynamic column breakthrough experiments. The well-matched caged pores and suitable pore chemistry (particularly the presence of abundant Lewis base sites (N, O, and F) on the pore surfaces) for C2H6 account for the high-performance C2H6/C2H4 separation of Zn-PCTF unveiled by computational simulations.

14.
Org Lett ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941533

ABSTRACT

A novel photocatalytic palladium-induced 6-endo-selective alkyl Heck reaction of unactivated alkyl iodides and alkyl bromides has been described. This strategy facilitates the gentle and efficient synthesis of a variety of 5-phenyl-1,2,3,6-tetrahydropyridine derivatives. It demonstrates a broad substrate tolerance and excellent 6-endo selectivity. Unlike the high-temperature requirements of traditional alkyl Heck reactions, this transformation efficiently proceeds at room temperature and shows significant promise for industrial-scale applications. Mechanistic investigations reveal that this alkyl Heck reaction proceeds via a hybrid palladium-radical process.

15.
Aging (Albany NY) ; 162024 Jun 18.
Article in English | MEDLINE | ID: mdl-38944813

ABSTRACT

Cathepsin L (CTSL) has been implicated in aging and age-related diseases, such as cardiovascular diseases, specifically atherosclerosis. However, the underlying mechanism(s) is not well documented. Recently, we demonstrated a role of CUT-like homeobox 1 (CUX1) in regulating the p16INK4a-dependent cellular senescence in human endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) via its binding to an atherosclerosis-associated functional SNP (fSNP) rs1537371 on the CDKN2A/B locus. In this study, to determine if CTSL, which was reported to proteolytically activate CUX1, regulates cellular senescence via CUX1, we measured the expression of CTSL, together with CUX1 and p16INK4a, in human ECs and VSMCs undergoing senescence. We discovered that CUX1 is not a substrate that is cleaved by CTSL. Instead, CTSL is an upstream regulator that activates CUX1 transcription indirectly in a process that requires the proteolytic activity of CTSL. Our findings suggest that there is a transcription factor in between CTSL and CUX1, and cleavage of this factor by CTSL can activate CUX1 transcription, inducing endothelial senescence. Thus, our findings provide new insights into the signal transduction pathway that leads to atherosclerosis-associated cellular senescence.

16.
Int J Biol Macromol ; : 133428, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936576

ABSTRACT

We present a hyaluronic acid (HA)-based nanoplatform (CMGH) integrating starvation therapy (ST), chemodynamic therapy (CDT), and photothermal therapy (PTT) for targeted cancer treatment. CMGH fabrication involved the encapsulation of glucose oxidase (GOx) within a copper-based metal-organic framework (CM) followed by surface modification with HA. CMGH exerts its antitumor effects by catalyzing glucose depletion at tumor sites, leading to tumor cell starvation and the concomitant generation of glucuronic acid and H2O2. The decreased pH and elevated H2O2 promote the Fenton-like reaction of Cu ions, leading to hydroxyl radical production. HA modification enables targeted accumulation of CMGH at tumor sites via the CD44 receptor. Under near-infrared light irradiation, CM exhibits photothermal conversion capability, enhancing the antitumor effects of CMGH. In vitro and in vivo studies demonstrate the effective inhibition of tumor growth by CMGH. This study highlights the potential of CMGH as a targeted cancer therapeutic platform.

17.
J Phys Chem A ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937133

ABSTRACT

Metal oxide clusters with atomic oxygen radical anions are important model systems to study the mechanisms of activating and transforming very stable alkane molecules under ambient conditions. It is extremely challenging to characterize the activation and conversion of methane, the most stable alkane molecule, by metal oxide cluster anions due to the low reactivity of the anionic species. In this study, using a ship-lock type reactor that could be run at relatively high pressure conditions to provide a high number of collisions in ion-molecule reactions, the rate constants of the reactions between (MoO3)NO- (N = 1-21) cluster anions and the light alkanes (C1-C4) were measured under thermal collision conditions. The relationships among the reaction rates of different alkanes were obtained to establish a model to predict the low rate constants with methane from the high rate constants with C2-C4 alkanes. The model was tested by using available experimental results in literature. This study provides a new method to estimate the relatively low reactivity of atomic oxygen radical anions with methane on metal oxide clusters.

18.
Nanomaterials (Basel) ; 14(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38921920

ABSTRACT

In the field of perovskite optoelectronics, developing hole-transporting materials (HTMs) on the spiro[fluorene-9,9'-xanthene] (SFX) platform is one of the current research focuses. The SFX inherits the merits of spirobifluorene in terms of the configuration and property, but it is more easily derivatized and regulated by virtue of its binary structure. In this work, we design and synthesize four isomeric SFX-based HTMs, namely m-SFX-mF, p-SFX-mF, m-SFX-oF, and p-SFX-oF, through varying the positions of fluorination on the peripheral aniline units and their substitutions on the SFX core, and the optoelectronic performance of the resulting HTMs is evaluated in both perovskite solar cells (PSCs) and light-emitting diodes (PeLEDs) by the vacuum thermal evaporating hole-transporting layers (HTLs). The HTM p-SFX-oF exhibits an improved power conversion efficiency of 15.21% in an inverted PSC using CH3NH3PbI3 as an absorber, benefiting from the deep HOMO level and good HTL/perovskite interface contact. Meanwhile, the HTM m-SFX-mF provides a maximum external quantum efficiency of 3.15% in CsPb(Br/Cl)3-based PeLEDs, which is attributed to its perched HOMO level and shrunken band-gap for facilitating charge carrier injection and then exciton combination. Through elucidating the synergistic position effect of fluorination on aniline units and their substitutions on the SFX core, this work lays the foundation for developing low-cost and efficient HTMs in the future.

19.
Int J Biol Macromol ; 274(Pt 2): 133374, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925182

ABSTRACT

KRAS G12D is the most common oncogenic mutation identified in several types of cancer. Therefore, design of inhibitors targeting KRAS G12D represents a promising strategy for anticancer therapy. MRTX1133 is a highly potent inhibitor (approximate experiment Kd ≈ 0.0002 nM) of KRAS G12D and is currently in Phase 1/2 study, however, pathways of the compound binding to KRAS G12D has remained unknown, and the mechanism underlying the complicated dynamic process are challenging to capture experimentally, which hinder the structure-based anti-cancer drug design. Here, using MRTX1133 as a probe, unbiased molecular dynamics (MD) was used to simulate the process of MRTX1133 spontaneously binding to KRAS G12D. In six of 42 independent MD simulation (a total of 99 µs), MRTX1133 was observed to successfully associate with KRAS G12D. The kinetically metastable states refer to the potential pathways of MRTX1133 binding to KRAS G12D were revealed by Markov state models (MSM) analysis. Additionally, 8 key residues that are essential for MRTX1133 recognition and tight binding at the preferred low energy states were identified by MM/GBSA analysis. In sum, this study provides a new perspective on understanding the pathways and mechanism of MRTX1133 binding to KRAS G12D.

20.
J Integr Neurosci ; 23(6): 123, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38940081

ABSTRACT

OBJECTIVE: Perioperative neurocognitive disorders (PND) are a group of prevalent neurological complications that often occur in elderly individuals following major or emergency surgical procedures. The etiologies are not fully understood. This study endeavored to investigate novel targets and prediction methods for the occurrence of PND. METHODS: A total of 229 elderly patients diagnosed with prostatic hyperplasia who underwent transurethral resection of the prostate (TURP) combined with spinal cord and epidural analgesia were included in this study. The patients were divided into two groups, the PND group and non-PND group, based on the Z-score method. According to the principle of maintaining consistency between preoperative and intraoperative conditions, three patients from each group were randomly chosen for serum sample collection. isobaric tags for relative and absolute quantification (iTRAQ) proteomics technology was employed to analyze and identify the proteins that exhibited differential expression in the serum samples from the two groups. Bioinformatics analysis was performed on the proteins that exhibited differential expression. RESULTS: Among the 1101 serum proteins analyzed in the PND and non-PND groups, eight differentially expressed proteins were identified in PND patients. Of these, six proteins showed up-regulation, while two proteins showed down-regulation. Further bioinformatics analysis of the proteins that exhibited differential expression revealed their predominant involvement in cellular biological processes, cellular component formation, as well as endocytosis and phagocytosis Additionally, these proteins were found to possess the RING domain of E3 ubiquitin ligase. CONCLUSION: The iTRAQ proteomics technique was employed to analyze the variation in protein expression in serum samples from patients with PND and those without PND. This study successfully identified eight proteins that exhibited differential expression levels between the two groups. Bioinformatics analysis indicates that proteins exhibiting differential expression are primarily implicated in the biological processes associated with microtubules. Investigating the microtubule formation process as it relates to neuroplasticity and synaptic formation may offer valuable insights for enhancing our comprehension and potential prevention of PND. CLINICAL TRIAL REGISTRATION: Registered (ChiCTR2000028836). Date (20190306).


Subject(s)
Transurethral Resection of Prostate , Humans , Male , Aged , Transurethral Resection of Prostate/adverse effects , Proteomics , Prostatic Hyperplasia/surgery , Prostatic Hyperplasia/blood , Neurocognitive Disorders/etiology , Neurocognitive Disorders/blood , Neurocognitive Disorders/metabolism , Postoperative Cognitive Complications/etiology , Postoperative Cognitive Complications/blood , Perioperative Period , Aged, 80 and over , Blood Proteins/metabolism , Blood Proteins/analysis , Computational Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...