Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.716
Filter
1.
Biomolecules ; 14(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927093

ABSTRACT

Special attention is given to cow's milk and its variants, with ongoing discussions about health-related impacts primarily focusing on the A1 variant in contrast to the A2 variant. The difference between these variants lies in a single amino acid alteration at position 67 of ß-casein. This alteration is presumed to make the A1 variant more susceptible to enzymatic breakdown during milk digestion, leading to an increased release of the peptide ß-casomorphin-7 (BCM-7). BCM-7 is hypothesized to interact with µ-opioid receptors on immune cells in humans. Although BCM-7 has demonstrated both immunosuppressive and inflammatory effects, its direct impact on the immune system remains unclear. Thus, we examined the influence of A1 and A2 milk on Concanavalin A (ConA)-stimulated human peripheral blood mononuclear cells (PBMCs), as well as the effect of experimentally digested A1 and A2 milk, containing different amounts of free BCM-7 from ß-casein cleavage. Additionally, we evaluated the effects of pure BCM-7 on the proliferation of ConA-stimulated PBMCs and purified CD4+ T cells. Milk fundamentally inhibited PBMC proliferation, independent of the ß-casein variant. In contrast, experimentally digested milk of both variants and pure BCM-7 showed no influence on the proliferation of PBMCs or isolated CD4+ T cells. Our results indicate that milk exerts an anti-inflammatory effect on PBMCs, regardless of the A1 or A2 ß-casein variant, which is nullified after in vitro digestion. Consequently, we deem BCM-7 unsuitable as a biomarker for food-induced inflammation.


Subject(s)
Caseins , Cell Proliferation , Endorphins , Leukocytes, Mononuclear , Milk , Peptide Fragments , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Cell Proliferation/drug effects , Milk/chemistry , Endorphins/pharmacology , Endorphins/metabolism , Animals , Caseins/pharmacology , Caseins/metabolism , Peptide Fragments/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/cytology , Concanavalin A/pharmacology , Cattle
2.
Cells ; 13(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38891103

ABSTRACT

Patients with chronic hypoxia show a higher tumor incidence; however, no primary common cause has been recognized. Given the similarities between cellular reprogramming and oncogenic transformation, we directly compared these processes in human cells subjected to hypoxia. Mouse embryonic fibroblasts were employed as controls to compare transfection and reprogramming efficiency; human adipose-derived mesenchymal stem cells were employed as controls in human cells. Easily obtainable human peripheral blood mononuclear cells (PBMCs) were chosen to establish a standard protocol to compare cell reprogramming (into induced pluripotent stem cells (iPSCs)) and oncogenic focus formation efficiency. Cell reprogramming was achieved for all three cell types, generating actual pluripotent cells capable for differentiating into the three germ layers. The efficiencies of the cell reprogramming and oncogenic transformation were similar. Hypoxia slightly increased the reprogramming efficiency in all the cell types but with no statistical significance for PBMCs. Various PBMC types can respond to hypoxia differently; lymphocytes and monocytes were, therefore, reprogrammed separately, finding a significant difference between normoxia and hypoxia in monocytes in vitro. These differences were then searched for in vivo. The iPSCs and oncogenic foci were generated from healthy volunteers and patients with chronic obstructive pulmonary disease (COPD). Although higher iPSC generation efficiency in the patients with COPD was found for lymphocytes, this increase was not statistically significant for oncogenic foci. Remarkably, a higher statistically significant efficiency in COPD monocytes was demonstrated for both processes, suggesting that physiological hypoxia exerts an effect on cell reprogramming and oncogenic transformation in vivo in at least some cell types.


Subject(s)
Cell Transformation, Neoplastic , Cellular Reprogramming , Induced Pluripotent Stem Cells , Humans , Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Animals , Mice , Cell Hypoxia , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Male , Female , Middle Aged , Fibroblasts/metabolism , Fibroblasts/pathology , Cell Differentiation/genetics , Aged
3.
J Vis Exp ; (207)2024 May 24.
Article in English | MEDLINE | ID: mdl-38856231

ABSTRACT

Peripheral mononuclear cells (PBMCs) exhibit robust changes in mitochondrial respiratory capacity in response to health and disease. While these changes do not always reflect what occurs in other tissues, such as skeletal muscle, these cells are an accessible and valuable source of viable mitochondria from human subjects. PBMCs are exposed to systemic signals that impact their bioenergetic state. Thus, expanding our tools to interrogate mitochondrial metabolism in this population will elucidate mechanisms related to disease progression. Functional assays of mitochondria are often limited to using respiratory outputs following maximal substrate, inhibitor, and uncoupler concentrations to determine the full range of respiratory capacity, which may not be achievable in vivo. The conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by ATP-synthase results in a decrease in mitochondrial membrane potential (mMP) and an increase in oxygen consumption. To provide a more integrated analysis of mitochondrial dynamics, this article describes the use of high-resolution fluorespirometry to measure the simultaneous response of oxygen consumption and mitochondrial membrane potential (mMP) to physiologically relevant concentrations of ADP. This technique uses tetramethylrhodamine methylester (TMRM) to measure mMP polarization in response to ADP titrations following maximal hyperpolarization with complex I and II substrates. This technique can be used to quantify how changes in health status, such as aging and metabolic disease, affect the sensitivity of mitochondrial response to energy demand in PBMCs, T-cells, and monocytes from human subjects.


Subject(s)
Leukocytes, Mononuclear , Membrane Potential, Mitochondrial , Humans , Membrane Potential, Mitochondrial/physiology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Rhodamines/chemistry , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Oxygen Consumption/physiology , Mitochondria/metabolism , Fluorescent Dyes/chemistry
4.
Stem Cell Res ; 78: 103466, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852425

ABSTRACT

The Rh-negative type O blood group (O Rh-) is considered a universal donor for emergency blood transfusions. Due to the constant shortage of this rare blood group, the production of blood cells from iPSCs derived from the O Rh- donor could potentially serve as a limitless blood source for transfusions. In this report, we establish a MUSIi017-A iPSC line from peripheral blood mononuclear cells of a healthy donor with the O Rh- blood group. The established iPSC line exhibited a normal karyotype, showed identical STR compared to donor peripheral blood mononuclear cells, and could differentiate to all three germ layers.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Cell Line , ABO Blood-Group System , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Cell Differentiation , Blood Donors
5.
STAR Protoc ; 5(2): 103061, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38722740

ABSTRACT

Human alveolar macrophages are a unique myeloid subset critical for understanding pulmonary diseases and are difficult to access. Here, we present a protocol to generate human alveolar macrophage-like (AML) cells from fresh peripheral blood mononuclear cells or purified monocytes. We describe steps for cell isolation, incubation in a defined cocktail of pulmonary surfactant and lung-associated cytokines, phenotype analysis, and validation with human alveolar macrophages. We then detail procedures for quality control and technical readouts for monitoring microbial response. For complete details on the use and execution of this protocol, please refer to Pahari et al.1 and Neehus et al.2.


Subject(s)
Leukocytes, Mononuclear , Macrophages, Alveolar , Monocytes , Humans , Macrophages, Alveolar/cytology , Macrophages, Alveolar/metabolism , Monocytes/cytology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Cell Culture Techniques/methods , Cytokines/metabolism , Cell Separation/methods , Cells, Cultured
6.
STAR Protoc ; 5(2): 103078, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38781075

ABSTRACT

Here, we present a protocol for preclinical evaluation of locoregionally delivered CAR T cells in patient-derived xenograft models of primary, metastatic, and recurrent brain tumors. We provide instructions for isolating peripheral blood mononuclear cells (PBMCs), producing CAR T cells in conjunction with locoregional delivery, and preclinical trial design and analysis involving CAR T cells. Additionally, we describe comprehensive preclinical readouts and guidelines for critical endpoint sample collections. In line with clinical trial procedures, our protocol broadens available treatment modalities for direct clinical translation. For complete details on the use and execution of this protocol, please refer to Donovan et al.1.


Subject(s)
Brain Neoplasms , Immunotherapy, Adoptive , Xenograft Model Antitumor Assays , Humans , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Animals , Mice , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Receptors, Chimeric Antigen/immunology
7.
J Immunol Methods ; 530: 113694, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797273

ABSTRACT

In light of advancements in the field of immuno-oncology, the demand for obtaining mononuclear cells for in vitro assays has surged. However, obtaining these cells from healthy donors remains a challenging task due to difficulties in donor recruitment and the requirement for substantial blood volumes. Here, we present a protocol for isolating peripheral blood mononuclear cells (PBMCs) from leukodepletion filters used in whole blood and erythrocytes by apheresis donations at the Hemonucleus of the Barretos Cancer Hospital, Brazil. The method involves rinsing the leukodepletion filters and subsequent centrifugation using a Ficoll-Paque concentration gradient. The isolated PBMCs were analyzed by flow cytometry, which allowed the identification of various subpopulations, including CD4+ T lymphocytes (CD45+CD4+), CD8+ T lymphocytes (CD45+CD8+), B lymphocytes (CD45+CD20+CD19+), non-classical monocytes (CD45+CD64+CD14-), classical monocytes (CD45+CD64+CD14+), and granulocytes (CD45+CD15+CD14-). In our comparative analysis of filters, we observed a higher yield of PBMCs from whole blood filters than those obtained from erythrocytes through apheresis. Additionally, fresh samples exhibited superior viability when compared to cryopreserved ones. Given this, leukodepletion filters provide a practical and cost-effective means to isolate large quantities of pure PBMCs, making it a feasible source for obtaining mononuclear cells for in vitro experiments. SUMMARY: Here, we provide a detailed protocol for the isolation of mononuclear cells from leukodepletion filters, which are routinely discarded at the Barretos Cancer Hospital's Hemonucleus.


Subject(s)
Leukocytes, Mononuclear , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/cytology , Flow Cytometry , Cell Separation/methods , Cell Separation/instrumentation , Leukapheresis/instrumentation , Leukapheresis/methods , Brazil , Cryopreservation/methods
8.
Stem Cell Res ; 78: 103450, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820865

ABSTRACT

Parkinson's disease is a common neurodegenerative disorder. Here we present a human induced pluripotent stem cells (iPSCs) derived from peripheral blood mononuclear cells (PBMCs) of a 79-year-old female patient diagnosed with sporadic Parkinson's disease using the sendai virus. Generated iPSCs maintain normal karyotype, exhibit pluripotent stem cell markers, and possess differentiation potential. The iPSCs allows for differentiation into various cell subtypes, providing conditions for the research of the pathogenesis and drug development of Parkinson's disease.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Female , Induced Pluripotent Stem Cells/metabolism , Aged , Parkinson Disease/pathology , Parkinson Disease/diagnosis , Leukocytes, Mononuclear/cytology , Cell Line , Karyotype
9.
Methods Cell Biol ; 186: 1-24, 2024.
Article in English | MEDLINE | ID: mdl-38705595

ABSTRACT

Broadly speaking, cell tracking dyes are fluorescent compounds that bind stably to components on or within the cells so the fate of the labeled cells can be followed. Their staining should be bright and homogeneous without affecting cell function. For purposes of monitoring cell proliferation, each time a cell divides the intensity of cell tracking dye should diminish equally between daughter cells. These dyes can be grouped into two different classes. Protein reactive dyes label cells by reacting covalently but non-selectively with intracellular proteins. Carboxyfluorescein diacetate succinimidyl ester (CFSE) is the prototypic general protein label. Membrane intercalating dyes label cells by partitioning non-selectively and non-covalently within the plasma membrane. The PKH membrane dyes are examples of lipophilic compounds whose chemistry allows for their retention within biological membranes without affecting cellular growth, viability, or proliferation when used properly. Here we provide considerations based for labeling cell lines and peripheral blood mononuclear cells using both classes of dyes. Examples from optimization experiments are presented along with critical aspects of the staining procedures to help mitigate common risks. Of note, we present data where a logarithmically growing cell line is labeled with both a protein dye and a membrane tracking dye to compare dye loss rates over 6days. We found that dual stained cells paralleled dye loss of the corresponding single stained cells. The decrease in fluorescence intensity by protein reactive dyes, however, was more rapid than that with the membrane reactive dyes, indicating the presence of additional division-independent dye loss.


Subject(s)
Cell Proliferation , Fluoresceins , Fluorescent Dyes , Staining and Labeling , Succinimides , Humans , Fluorescent Dyes/chemistry , Fluoresceins/chemistry , Succinimides/chemistry , Staining and Labeling/methods , Cell Tracking/methods , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Animals , Cell Membrane/metabolism , Cell Membrane/chemistry
10.
Methods Cell Biol ; 186: 107-130, 2024.
Article in English | MEDLINE | ID: mdl-38705596

ABSTRACT

Mass cytometry permits the high dimensional analysis of cellular systems at single-cell resolution with high throughput in various areas of biomedical research. Here, we provide a state-of-the-art protocol for the analysis of human peripheral blood mononuclear cells (PBMC) by mass cytometry. We focus on the implementation of measures promoting the harmonization of large and complex studies to aid robustness and reproducibility of immune phenotyping data.


Subject(s)
Flow Cytometry , Leukocytes, Mononuclear , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Flow Cytometry/methods , Flow Cytometry/standards , Immunophenotyping/methods , Single-Cell Analysis/methods
11.
Cell Transplant ; 33: 9636897241251619, 2024.
Article in English | MEDLINE | ID: mdl-38761062

ABSTRACT

Pressure injuries, or pressure ulcers, are a common problem that may lead to infections and major complications, besides being a social and economic burden due to the costs of treatment and hospitalization. While surgery is sometimes necessary, this also has complications such as recurrence or wound dehiscence. Among the newer methods of pressure injury treatment, advanced therapies are an interesting option. This study examines the healing properties of bone marrow mononuclear cells (BM-MNCs) embedded in a plasma-based scaffold in a mouse model. Pressure ulcers were created on the backs of mice (2 per mouse) using magnets and assigned to a group of ulcers that were left untreated (Control, n = 15), treated with plasma scaffold (Plasma, n = 15), or treated with plasma scaffold containing BM-MNC (Plasma + BM-MNC, n = 15). Each group was examined at three time points (3, 7, and 14 days) after the onset of treatment. At each time point, animals were subjected to biometric assessment, bioluminescence imaging, and tomography. Once treatment had finished, skin biopsies were processed for histological and wound healing reverse transcription polymerase chain reaction (RT-PCR) array studies. While wound closure percentages were higher in the Plasma and Plasma + BM-MNC groups, differences were not significant, and thus descriptive data are provided. In all individuals, the presence of donor cells was revealed by immunohistochemistry on posttreatment onset Days 3, 7, and 14. In the Plasma + BM-MNC group, less inflammation was observed by positron emission tomography-computed tomography (PET/CT) imaging of the mice at 7 days, and a complete morphometabolic response was produced at 14 days, in accordance with histological results. A much more pronounced inflammatory process was observed in controls than in the other two groups, and this persisted until Day 14 after treatment onset. RT-PCR array gene expression patterns were also found to vary significantly, with the greatest difference noted between both treatments at 14 days when 11 genes were differentially expressed.


Subject(s)
Bone Marrow Cells , Disease Models, Animal , Pressure Ulcer , Wound Healing , Animals , Pressure Ulcer/therapy , Pressure Ulcer/pathology , Mice , Bone Marrow Cells/cytology , Male , Tissue Scaffolds/chemistry , Mice, Inbred C57BL , Bone Marrow Transplantation/methods , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/transplantation
12.
Cell Transplant ; 33: 9636897241256462, 2024.
Article in English | MEDLINE | ID: mdl-38808671

ABSTRACT

Regulatory cell therapies have shown promise in tolerance-induction protocols in living donor organ transplantation. These protocols should be pursued in deceased donor transplantation. Donor peripheral mononuclear cells (PBMCs) are an optimal source of donor antigens for the induction of donor-specific regulatory cells. During the development of a regulatory cell tolerance-induction protocol with organs from deceased donors, we compared 3 methods of obtaining PBMCs from deceased donors focusing on cell yield, viability, and contamination of unwanted cell types. PBMC procurement methods: 1. During organ procurement at the time of cold perfusion, blood was collected from the vena cava and placed into a 10-liter blood collection bag, and thereafter transported to Karolinska University Hospital, where leukapheresis was performed (BCL). 2. Blood was collected via the vena cava into blood donation bags before cold perfusion. The bags underwent buffy coat separation and thereafter automated leukocyte isolation system (BCS). 3. To collect PBMCs, leukapheresis was performed via a central dialysis catheter on deceased donors in the intensive care unit (ICU) prior to the organ procurement procedure (LEU).All 3 methods to obtain PBMC from deceased donors were safe and did not affect the procurement of organs. BCL contained around 50% of NK cells in lymphocytes population. LEU had a highest yield of donor PBMC among 3 groups. LEU had the lower amount of granulocyte contamination, compared to BCS and BCL. Based on these results, we choose LEU as the preferred method to obtain donor PBMC in the development of our tolerance-induction protocol.


Subject(s)
Leukapheresis , Leukocytes, Mononuclear , Tissue Donors , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Adult , Middle Aged , Male , Female , Leukapheresis/methods , Aged , Immune Tolerance
13.
Stem Cell Res ; 77: 103428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696853

ABSTRACT

Peripheral blood mononuclear cells (PBMCs) from a 28-year-old male patient with unipolar depression were reprogrammed with reprogramming factors by electroporation. The pluripotency of transgene-free induced pluripotent stem cells (iPSCs) was verified by immunofluorescence staining for pluripotency markers, and these iPSCs were able to differentiate into the 3 germ layers in vitro. These iPSCs also showed normal karyotypes. Thus, we believe that these iPSCs could be valuable models for exploring the underlying biological mechanism of depression and the safety of antidepressants through the use of iPSCs differentiated into different kinds of neurons or brain organoids.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Humans , Male , Induced Pluripotent Stem Cells/metabolism , Adult , Depression , Cell Line , Cellular Reprogramming , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology
14.
Stem Cell Res ; 77: 103434, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703667

ABSTRACT

The Jra antigen, the only antigen within the JR blood group system, is a high-prevalence red blood cell (RBC) antigen found in over 99 % of the global population. An induced pluripotent stem cell line (YUCMi020-A) was generated from peripheral blood drawn from a Jr(a-) phenotype individual, who was homozygous for a null mutation of ABCG2*01N.01 (rs72552713, c.376C>T; p.Gln126*). The generated line exhibited pluripotent characteristics and no chromosomal aberrations. This cell line will serve as a cell source, enabling us to produce RBCs with the Jr(a-) phenotype in vitro, which can be used for transfusing individuals with anti-Jra antibodies.


Subject(s)
Induced Pluripotent Stem Cells , Leukocytes, Mononuclear , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Female , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Blood Group Antigens/metabolism , Cell Line , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Cell Differentiation
15.
Stem Cell Res ; 77: 103433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718593

ABSTRACT

An induced pluripotent stem cell (iPSC) line (SDUCHi001-A) was established using peripheral blood mononuclear cells (PBMCs) from a healthy 6 years old boy. Reprogramming of the PBMCs was achieved through non-integrating delivery of OCT4, SOX2, KFL4, BCL-XL, and c-MYC. The iPSC line expressed pluripotency markers, had a normal karyotype and trilineage differentiation potential.


Subject(s)
Induced Pluripotent Stem Cells , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Male , Child , Cell Differentiation , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Cell Line , Cellular Reprogramming , Karyotype
16.
Stem Cell Res ; 77: 103437, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723411

ABSTRACT

Human pluripotent stem cells (hiPSC) represent a unique opportunity to model lung development and chronic bronchial diseases. We generated a hiPSC line from a highly characterized healthy heavy smoker male donor free from emphysema or tobacco related disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using integration-free Sendai virus. The cell line had normal karyotype, expressed pluripotency hallmarks, and differentiated into the three primary germ layers. The reported UHOMi007-A iPSC line may be used as a control to model lung development, study human chronic bronchial diseases and drug testing.


Subject(s)
Induced Pluripotent Stem Cells , Leukocytes, Mononuclear , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Male , Cell Line , Cell Differentiation , Smokers , Cellular Reprogramming
17.
Stem Cell Res ; 78: 103451, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820866

ABSTRACT

Hereditary fructose intolerance (HFI) is an autosomal recessive metabolic disease associated with a mutation in the aldolase B gene on chromosome 9q31. In this study, we generated a human-induced pluripotent stem cell (hiPSC) line, FDCHi015-A, from peripheral blood mononuclear cells (PBMCs) of a patient carrying the compound heterozygous mutations c.360_364delCAAA and c.1013C > T in exons 4 and 9 of the ALDOB gene, respectively. The iPSCs with the confirmed patient-specific mutation demonstrate pluripotency markers expression, a normal karyotype, and the ability to differentiate into derivatives of three germ layers.


Subject(s)
Induced Pluripotent Stem Cells , Leukocytes, Mononuclear , Mutation , Humans , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Cell Line , Cell Differentiation , Male , Karyotype
18.
Cytometry A ; 105(6): 430-436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634730

ABSTRACT

We report the development of an optimized 50-color spectral flow cytometry panel designed for the in-depth analysis of the immune system in human blood and tissues, with the goal of maximizing the amount of information that can be collected using currently available flow cytometry platforms. We established and tested this panel using peripheral blood mononuclear cells (PBMCs), but included CD45 to enable its future use for the analysis of human tissue samples. The panel contains lineage markers for all major immune cell subsets, and an extensive set of phenotyping markers focused on the activation and differentiation status of the T cell and dendritic cell (DC) compartment. We outline the biological insight that can be gained from the simultaneous measurement of such a large number of proteins and propose that this approach provides a unique opportunity for the comprehensive exploration of the immune status in human samples with a limited number of cells. Of note, we tested the panel to be compatible with cell sorting for further downstream applications. Furthermore, to facilitate the wide-spread implementation of such a panel across different cohorts and samples, we established a trimmed-down 45-color version which can be used with different spectral cytometry platforms. Finally, to generate this panel, we utilized not only existing panel design guidelines, but also developed new metrics to systematically identify the optimal combination of 50 fluorochromes and evaluate fluorochrome-specific resolution in the context of a 50-color unmixing matrix.


Subject(s)
Dendritic Cells , Flow Cytometry , Immunophenotyping , T-Lymphocytes , Humans , Dendritic Cells/immunology , Dendritic Cells/cytology , Flow Cytometry/methods , Immunophenotyping/methods , T-Lymphocytes/immunology , T-Lymphocytes/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/cytology , Immune System/cytology , Phenotype , Biomarkers
19.
Stem Cell Res ; 77: 103360, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608356

ABSTRACT

We successfully developed an induced pluripotent stem cell (iPSC) line, SYSUSHi001-A, from the peripheral blood mononuclear cells (PBMC) of a patient with Acute Myeloid Leukemia, harboring two genetic mutations (XPO1: c.591-4_591-3dupTT; PALB2: c.3296C > T; p.T1099M). This iPSC line was facilitated through the use of episomal plasmids encoding OCT4, SOX2, KLF4, L-MYC, and human miR-302. The SYSUSHi001-A iPSC line exhibited characteristic embryonic stem cell-like morphology, maintained the XPO1 and PALB2 mutations, expressed key pluripotency markers, preserved a normal karyotype (46, XY), and demonstrated the ability to differentiate into cells from all three germ layers in vitro.


Subject(s)
Induced Pluripotent Stem Cells , Kruppel-Like Factor 4 , Leukemia, Myeloid, Acute , Leukocytes, Mononuclear , Humans , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Adult , Cell Differentiation , Cell Line , Male
20.
Stem Cell Res ; 77: 103422, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631181

ABSTRACT

Human induced pluripotent stem cells (iPSCs) have good multi-lineage differentiation potential, which is an ideal model for studying the pathogenesis of diseases and drug screening.Here, we generated an iPSC line, SHUPLi002-A, from peripheral blood mononuclear cells (PBMCs) of a healthy 28-year-old female individual using episomal vectors. SHUPLi002-A is characterized by expression of classical pluripotent stem cell markers as well as teratoma formation assays to evaluate their differentiation capacity in vivo.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Leukocytes, Mononuclear , Humans , Female , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Adult , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Cell Line , Teratoma/pathology , Teratoma/metabolism , Mice , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...