Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nature ; 631(8019): 164-169, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926580

ABSTRACT

Plants adapt to fluctuating environmental conditions by adjusting their metabolism and gene expression to maintain fitness1. In legumes, nitrogen homeostasis is maintained by balancing nitrogen acquired from soil resources with nitrogen fixation by symbiotic bacteria in root nodules2-8. Here we show that zinc, an essential plant micronutrient, acts as an intracellular second messenger that connects environmental changes to transcription factor control of metabolic activity in root nodules. We identify a transcriptional regulator, FIXATION UNDER NITRATE (FUN), which acts as a sensor, with zinc controlling the transition between an inactive filamentous megastructure and an active transcriptional regulator. Lower zinc concentrations in the nodule, which we show occur in response to higher levels of soil nitrate, dissociates the filament and activates FUN. FUN then directly targets multiple pathways to initiate breakdown of the nodule. The zinc-dependent filamentation mechanism thus establishes a concentration readout to adapt nodule function to the environmental nitrogen conditions. In a wider perspective, these results have implications for understanding the roles of metal ions in integration of environmental signals with plant development and optimizing delivery of fixed nitrogen in legume crops.


Subject(s)
Gene Expression Regulation, Plant , Nitrates , Nitrogen Fixation , Root Nodules, Plant , Transcription Factors , Zinc , Zinc/metabolism , Transcription Factors/metabolism , Nitrates/metabolism , Root Nodules, Plant/metabolism , Nitrogen/metabolism , Medicago truncatula/metabolism , Medicago truncatula/genetics , Symbiosis , Plant Proteins/metabolism , Plant Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 121(8): e2311522121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38363863

ABSTRACT

Symbiosis receptor-like kinase SYMRK is required for root nodule symbiosis between legume plants and nitrogen-fixing bacteria. To understand symbiotic signaling from SYMRK, we determined the crystal structure to 1.95 Å and mapped the phosphorylation sites onto the intracellular domain. We identified four serine residues in a conserved "alpha-I" motif, located on the border between the kinase core domain and the flexible C-terminal tail, that, when phosphorylated, drives organogenesis. Substituting the four serines with alanines abolished symbiotic signaling, while substituting them with phosphorylation-mimicking aspartates induced the formation of spontaneous nodules in the absence of bacteria. These findings show that the signaling pathway controlling root nodule organogenesis is mediated by SYMRK phosphorylation, which may help when engineering this trait into non-legume plants.


Subject(s)
Fabaceae , Root Nodules, Plant , Phosphorylation , Root Nodules, Plant/metabolism , Plant Root Nodulation , Phosphotransferases/metabolism , Symbiosis/genetics , Fabaceae/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
PLoS One ; 18(11): e0291680, 2023.
Article in English | MEDLINE | ID: mdl-37910566

ABSTRACT

For decades, Agrobacterium rhizogenes (now Rhizobium rhizogenes), the causative agent of hairy root disease, has been harnessed as an interkingdom DNA delivery tool for generating transgenic hairy roots on a wide variety of plants. One of the strategies involves the construction of transconjugant R. rhizogenes by transferring gene(s) of interest into previously constructed R. rhizogenes pBR322 acceptor strains; little has been done, however, to improve upon this system since its implementation. We developed a simplified method utilising bi-parental mating in conjunction with effective counterselection for generating R. rhizogenes transconjugants. Central to this was the construction of a new Modular Cloning (MoClo) compatible pBR322-derived integration vector (pIV101). Although this protocol remains limited to pBR322 acceptor strains, pIV101 facilitated an efficient construction of recombinant vectors, effective screening of transconjugants, and RP4-based mobilisation compatibility that enabled simplified conjugal transfer. Transconjugants from this system were tested on Lotus japonicus and found to be efficient for the transformation of transgenic hairy roots and supported infection of nodules by a rhizobia symbiont. The expedited protocol detailed herein substantially decreased both the time and labour for creating transconjugant R. rhizogenes for the subsequent transgenic hairy root transformation of Lotus, and it could readily be applied for the transformation of other plants.


Subject(s)
Agrobacterium , Rhizobium , Transformation, Genetic , Agrobacterium/genetics , Plants/genetics , Rhizobium/genetics , Plant Roots/genetics , Plant Roots/microbiology , Plants, Genetically Modified/genetics
4.
PLoS Biol ; 21(5): e3002127, 2023 05.
Article in English | MEDLINE | ID: mdl-37200394

ABSTRACT

Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined ß-1,3/ß-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.


Subject(s)
Lotus , Mycorrhizae , Rhizobium , Mycorrhizae/genetics , Lotus/genetics , Lotus/metabolism , Lotus/microbiology , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Rhizobium/metabolism , Plant Roots/metabolism , Mutation , Symbiosis/genetics , Phosphotransferases/metabolism , Polysaccharides/metabolism , Glucans/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
6.
Science ; 379(6629): 272-277, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36656954

ABSTRACT

Understanding the composition and activation of multicomponent receptor complexes is a challenge in biology. To address this, we developed a synthetic approach based on nanobodies to drive assembly and activation of cell surface receptors and apply the concept by manipulating receptors that govern plant symbiosis with nitrogen-fixing bacteria. We show that the Lotus japonicus Nod factor receptors NFR1 and NFR5 constitute the core receptor complex initiating the cortical root nodule organogenesis program as well as the epidermal program controlling infection. We find that organogenesis signaling is mediated by the intracellular kinase domains whereas infection requires functional ectodomains. Finally, we identify evolutionarily distant barley receptors that activate root nodule organogenesis, which could enable engineering of biological nitrogen-fixation into cereals.


Subject(s)
Lipopolysaccharides , Lotus , Root Nodules, Plant , Signal Transduction , Single-Domain Antibodies , Symbiosis , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Root Nodules, Plant/metabolism , Symbiosis/physiology , Medicago truncatula , Lipopolysaccharides/metabolism
7.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34716271

ABSTRACT

Plants and animals use cell surface receptors to sense and interpret environmental signals. In legume symbiosis with nitrogen-fixing bacteria, the specific recognition of bacterial lipochitooligosaccharide (LCO) signals by single-pass transmembrane receptor kinases determines compatibility. Here, we determine the structural basis for LCO perception from the crystal structures of two lysin motif receptor ectodomains and identify a hydrophobic patch in the binding site essential for LCO recognition and symbiotic function. We show that the receptor monitors the composition of the amphiphilic LCO molecules and uses kinetic proofreading to control receptor activation and signaling specificity. We demonstrate engineering of the LCO binding site to fine-tune ligand selectivity and correct binding kinetics required for activation of symbiotic signaling in plants. Finally, the hydrophobic patch is found to be a conserved structural signature in this class of LCO receptors across legumes that can be used for in silico predictions. Our results provide insights into the mechanism of cell-surface receptor activation by kinetic proofreading of ligands and highlight the potential in receptor engineering to capture benefits in plant-microbe interactions.


Subject(s)
Fabaceae/genetics , Lipopolysaccharides/metabolism , Symbiosis/physiology , Fabaceae/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Kinetics , Lipopolysaccharides/genetics , Mycorrhizae/physiology , Plant Proteins/genetics , Plants/metabolism , Rhizobium/physiology , Signal Transduction , Symbiosis/genetics
8.
New Phytol ; 230(6): 2459-2473, 2021 06.
Article in English | MEDLINE | ID: mdl-33759450

ABSTRACT

Forward and reverse genetics using the model legumes Lotus japonicus and Medicago truncatula have been instrumental in identifying the essential genes governing legume-rhizobia symbiosis. However, little information is known about the effects of intraspecific variation on symbiotic signalling. Here, we use quantitative trait locus sequencing (QTL-seq) to investigate the genetic basis of the differentiated phenotypic responses shown by the Lotus accessions Gifu and MG20 to inoculation with the Mesorhizobium loti exoU mutant that produces truncated exopolysaccharides. We identified through genetic complementation the Pxy gene as a component of this differential exoU response. Lotus Pxy encodes a leucine-rich repeat receptor-like kinase similar to Arabidopsis thaliana PXY, which regulates stem vascular development. We show that Lotus pxy insertion mutants displayed defects in root and stem vascular organisation, as well as lateral root and nodule formation. Our work links Pxy to de novo organogenesis in the root, highlights the genetic overlap between regulation of lateral root and nodule formation, and demonstrates that natural variation in Pxy affects nodulation signalling.


Subject(s)
Lotus , Mesorhizobium , Gene Expression Regulation, Plant , Lotus/genetics , Lotus/metabolism , Mesorhizobium/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Symbiosis/genetics
9.
Nat Commun ; 11(1): 6179, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33268786

ABSTRACT

Nuclear pore complexes (NPCs) are the main conduits for molecular exchange across the nuclear envelope. The NPC is a modular assembly of ~500 individual proteins, called nucleoporins or nups. Most scaffolding nups are organized in two multimeric subcomplexes, the Nup84 or Y complex and the Nic96 or inner ring complex. Working in S. cerevisiae, and to study the assembly of these two essential subcomplexes, we here develop a set of twelve nanobodies that recognize seven constituent nucleoporins of the Y and Nic96 complexes. These nanobodies all bind specifically and with high affinity. We present structures of several nup-nanobody complexes, revealing their binding sites. Additionally, constitutive expression of the nanobody suite in S. cerevisiae detect accessible and obstructed surfaces of the Y complex and Nic96 within the NPC. Overall, this suite of nanobodies provides a unique and versatile toolkit for the study of the NPC.


Subject(s)
Nuclear Pore Complex Proteins/chemistry , Nuclear Pore/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/ultrastructure , Single-Domain Antibodies/chemistry , Amino Acid Sequence , Animals , Antibody Affinity , Antibody Specificity , Binding Sites , Camelids, New World , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Models, Molecular , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Peptide Library , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Single-Domain Antibodies/genetics , Single-Domain Antibodies/isolation & purification , Single-Domain Antibodies/metabolism
10.
Nat Commun ; 11(1): 3797, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732998

ABSTRACT

Receptor-mediated perception of surface-exposed carbohydrates like lipo- and exo-polysaccharides (EPS) is important for non-self recognition and responses to microbial associated molecular patterns in mammals and plants. In legumes, EPS are monitored and can either block or promote symbiosis with rhizobia depending on their molecular composition. To establish a deeper understanding of receptors involved in EPS recognition, we determined the structure of the Lotus japonicus (Lotus) exopolysaccharide receptor 3 (EPR3) ectodomain. EPR3 forms a compact structure built of three putative carbohydrate-binding modules (M1, M2 and LysM3). M1 and M2 have unique ßαßß and ßαß folds that have not previously been observed in carbohydrate binding proteins, while LysM3 has a canonical ßααß fold. We demonstrate that this configuration is a structural signature for a ubiquitous class of receptors in the plant kingdom. We show that EPR3 is promiscuous, suggesting that plants can monitor complex microbial communities though this class of receptors.


Subject(s)
Lipopolysaccharides/metabolism , Lotus/microbiology , Lotus/physiology , Mesorhizobium/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Mesorhizobium/genetics , Nitrogen Fixation/physiology , Plant Proteins/genetics , Protein Folding , Root Nodules, Plant/microbiology , Root Nodules, Plant/physiology , Symbiosis/physiology
11.
Science ; 369(6504): 663-670, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32764065

ABSTRACT

Plants evolved lysine motif (LysM) receptors to recognize and parse microbial elicitors and drive intracellular signaling to limit or facilitate microbial colonization. We investigated how chitin and nodulation (Nod) factor receptors of Lotus japonicus initiate differential signaling of immunity or root nodule symbiosis. Two motifs in the LysM1 domains of these receptors determine specific recognition of ligands and discriminate between their in planta functions. These motifs define the ligand-binding site and make up the most structurally divergent regions in cognate Nod factor receptors. An adjacent motif modulates the specificity for Nod factor recognition and determines the selection of compatible rhizobial symbionts in legumes. We also identified how binding specificities in LysM receptors can be altered to facilitate Nod factor recognition and signaling from a chitin receptor, advancing the prospects of engineering rhizobial symbiosis into nonlegumes.


Subject(s)
Lotus/enzymology , Plant Proteins/chemistry , Protein Kinases/chemistry , Amino Acid Motifs , Chitin/chemistry , Ligands , Protein Domains
12.
Mol Immunol ; 124: 200-210, 2020 08.
Article in English | MEDLINE | ID: mdl-32599335

ABSTRACT

The complement system represents a powerful part of the innate immune system capable of removing pathogens and damaged host cells. Nevertheless, only a subset of therapeutic antibodies are capable of inducing complement dependent cytotoxicity, which has fuelled the search for new strategies to potentiate complement activation. Properdin (FP) functions as a positive complement regulator by stabilizing the alternative pathway C3 convertase. Here, we explore a novel strategy for direct activation of the alternative pathway of complement using bi-specific single domain antibodies (nanobodies) that recruit endogenous FP to a cell surface. As a proof-of-principle, we generated bi-specific nanobodies with specificity toward FP and the validated cancer antigen epidermal growth factor receptor (EGFR) and tested their ability to activate complement onto cancer cell lines expressing EGFR. Treatment led to recruitment of FP, complement activation and significant deposition of C3 fragments on the cells in a manner sensitive to the geometry of FP recruitment. The bi-specific nanobodies induced complement dependent lysis of baby hamster kidney cells expressing human EGFR but were unable to lyse human tumour cells due to the presence of complement regulators. Our results confirm that FP can function as a surface bound focal point for initiation of complement activation independent of prior C3b deposition. However, recruitment of FP by bi-specific nanobodies appears insufficient for overcoming the inhibitory action of the negative complement regulators overexpressed by many human tumour cell lines. Our data provide general information on the efficacy of properdin as an initiator of complement but suggest that properdin recruitment on its own may have limited utility as a platform for potent complement activation on regulated cell surfaces.


Subject(s)
Antibodies, Bispecific/immunology , Complement Activation/immunology , Complement Pathway, Alternative/physiology , Properdin/immunology , Single-Domain Antibodies/immunology , Animals , Cell Line, Tumor , Cricetinae , ErbB Receptors/immunology , Humans
13.
Bioconjug Chem ; 31(5): 1295-1300, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32320218

ABSTRACT

Chemically modified antigen-binding proteins are widely applied for their targeting abilities in the fields of biotechnology, medicine, and diagnostics. However, the production of site-selectively modified proteins remains a challenge. Here, we have designed a chemical probe for the introduction of a reactive aldehyde on nanobodies by metal-complex-guided conjugation. The probe design allows for purification of the conjugates, and the aldehyde constitutes an efficient handle for further modification of the nanobodies. In vitro experiments confirmed the binding activity and selectivity of fluorescent conjugates toward the native antigen. Furthermore, the modification strategy allowed for production of a nanobody-drug conjugate that was active in vitro.


Subject(s)
Aldehydes/chemistry , Single-Domain Antibodies/chemistry , Staining and Labeling/methods , Fluorescent Dyes/chemistry , Immunoconjugates/chemistry
14.
Proc Natl Acad Sci U S A ; 116(28): 14339-14348, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31239345

ABSTRACT

The establishment of nitrogen-fixing root nodules in legume-rhizobia symbiosis requires an intricate communication between the host plant and its symbiont. We are, however, limited in our understanding of the symbiosis signaling process. In particular, how membrane-localized receptors of legumes activate signal transduction following perception of rhizobial signaling molecules has mostly remained elusive. To address this, we performed a coimmunoprecipitation-based proteomics screen to identify proteins associated with Nod factor receptor 5 (NFR5) in Lotus japonicus. Out of 51 NFR5-associated proteins, we focused on a receptor-like cytoplasmic kinase (RLCK), which we named NFR5-interacting cytoplasmic kinase 4 (NiCK4). NiCK4 associates with heterologously expressed NFR5 in Nicotiana benthamiana, and directly binds and phosphorylates the cytoplasmic domains of NFR5 and NFR1 in vitro. At the cellular level, Nick4 is coexpressed with Nfr5 in root hairs and nodule cells, and the NiCK4 protein relocates to the nucleus in an NFR5/NFR1-dependent manner upon Nod factor treatment. Phenotyping of retrotransposon insertion mutants revealed that NiCK4 promotes nodule organogenesis. Together, these results suggest that the identified RLCK, NiCK4, acts as a component of the Nod factor signaling pathway downstream of NFR5.


Subject(s)
Lipopolysaccharides/genetics , Lotus/genetics , Plant Root Nodulation/genetics , Symbiosis/genetics , Cytoplasm/enzymology , Fabaceae/genetics , Fabaceae/growth & development , Fabaceae/microbiology , Gene Expression Regulation, Plant/genetics , Lotus/growth & development , Lotus/microbiology , Phosphotransferases/genetics , Plant Roots/genetics , Plant Roots/microbiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Rhizobium/genetics , Rhizobium/growth & development , Root Nodules, Plant/genetics , Root Nodules, Plant/growth & development , Root Nodules, Plant/microbiology , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/microbiology
15.
New Phytol ; 220(2): 526-538, 2018 10.
Article in English | MEDLINE | ID: mdl-29959893

ABSTRACT

Nodule primordia induced by rhizobial glycan mutants often remain uninfected. To identify processes involved in infection and organogenesis we used forward genetics to identify plant genes involved in perception and responses to bacterial glycans. To dissect the mechanisms underlying the negative plant responses to the Mesorhizobium loti R7AexoU and ML001cep mutants, a screen for genetic suppressors of the nodulation phenotypes was performed on a chemically mutagenized Lotus population. Two mutant lines formed infected nitrogen-fixing pink nodules, while five mutant lines developed uninfected large white nodules, presumably altered in processes controlling organogenesis. Genetic mapping identified a mutation in the cytokinin receptor Lhk1 resulting in an alanine to valine substitution adjacent to a coiled-coil motif in the juxta-membrane region of LHK1. This results in a spontaneous nodulation phenotype and increased ethylene production. The allele was renamed snf5, and segregation studies of snf5 together with complementation studies suggest that snf5 is a gain-of-function allele. This forward genetic approach to investigate the role of glycans in the pathway synchronizing infection and organogenesis shows that a combination of plant and bacterial genetics opens new possibilities to study glycan responses in plants as well as identification of mutant alleles affecting nodule organogenesis.


Subject(s)
Genetic Testing , Mutation/genetics , Plant Root Nodulation/genetics , Polysaccharides/genetics , Rhizobium/genetics , Alleles , Amino Acid Sequence , Cytokinins/metabolism , Ethylenes/analysis , Genes, Suppressor , Lotus/genetics , Lotus/microbiology , Phenotype , Plant Proteins/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Root Nodules, Plant/growth & development , Root Nodules, Plant/microbiology , Symbiosis
16.
J Biol Chem ; 293(17): 6269-6281, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29497000

ABSTRACT

The complement system is a complex, carefully regulated proteolytic cascade for which suppression of aberrant activation is of increasing clinical relevance, and inhibition of the complement alternative pathway is a subject of intense research. Here, we describe the nanobody hC3Nb1 that binds to multiple functional states of C3 with subnanomolar affinity. The nanobody causes a complete shutdown of alternative pathway activity in human and murine serum when present in concentrations comparable with that of C3, and hC3Nb1 is shown to prevent proconvertase assembly, as well as binding of the C3 substrate to C3 convertases. Our crystal structure of the C3b-hC3Nb1 complex and functional experiments demonstrate that proconvertase formation is blocked by steric hindrance between the nanobody and an Asn-linked glycan on complement factor B. In addition, hC3Nb1 is shown to prevent factor H binding to C3b, rationalizing its inhibition of factor I activity. Our results identify hC3Nb1 as a versatile, inexpensive, and powerful inhibitor of the alternative pathway in both human and murine in vitro model systems of complement activation.


Subject(s)
Antigen-Antibody Complex/chemistry , Complement C3/chemistry , Complement Pathway, Alternative , Single-Domain Antibodies/chemistry , Animals , Antigen-Antibody Complex/immunology , Camelids, New World , Complement C3/immunology , Crystallography, X-Ray , Humans , Mice , Protein Structure, Quaternary , Single-Domain Antibodies/immunology
17.
Acta Crystallogr D Struct Biol ; 73(Pt 10): 804-813, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28994409

ABSTRACT

The generation of high-quality protein crystals and the loss of phase information during an X-ray crystallography diffraction experiment represent the major bottlenecks in the determination of novel protein structures. A generic method for introducing Hg atoms into any crystal independent of the presence of free cysteines in the target protein could considerably facilitate the process of obtaining unbiased experimental phases. Nanobodies (single-domain antibodies) have recently been shown to promote the crystallization and structure determination of flexible proteins and complexes. To extend the usability of nanobodies for crystallographic work, variants of the Nb36 nanobody with a single free cysteine at one of four framework-residue positions were developed. These cysteines could be labelled with fluorophores or Hg. For one cysteine variant (Nb36-C85) two nanobody structures were experimentally phased using single-wavelength anomalous dispersion (SAD) and single isomorphous replacement with anomalous signal (SIRAS), taking advantage of radiation-induced changes in Cys-Hg bonding. Importantly, Hg labelling influenced neither the interaction of Nb36 with its antigen complement C5 nor its structure. The results suggest that Cys-Hg-labelled nanobodies may become efficient tools for obtaining de novo phase information during the structure determination of nanobody-protein complexes.


Subject(s)
Cysteine/chemistry , Mercury/chemistry , Single-Domain Antibodies/chemistry , Animals , Camelids, New World , Complement C5/immunology , Crystallization , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation , Single-Domain Antibodies/immunology
18.
Cell ; 171(4): 904-917.e19, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29033133

ABSTRACT

Nuclear pore complexes (NPCs) are ∼100 MDa transport channels assembled from multiple copies of ∼30 nucleoporins (Nups). One-third of these Nups contain phenylalanine-glycine (FG)-rich repeats, forming a diffusion barrier, which is selectively permeable for nuclear transport receptors that interact with these repeats. Here, we identify an additional function of FG repeats in the structure and biogenesis of the yeast NPC. We demonstrate that GLFG-containing FG repeats directly bind to multiple scaffold Nups in vitro and act as NPC-targeting determinants in vivo. Furthermore, we show that the GLFG repeats of Nup116 function in a redundant manner with Nup188, a nonessential scaffold Nup, to stabilize critical interactions within the NPC scaffold needed for late steps of NPC assembly. Our results reveal a previously unanticipated structural role for natively unfolded GLFG repeats as Velcro to link NPC subcomplexes and thus add a new layer of connections to current models of the NPC architecture.


Subject(s)
Nuclear Pore/chemistry , Saccharomyces cerevisiae/cytology , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Organelle Biogenesis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
19.
Proc Natl Acad Sci U S A ; 114(38): E8118-E8127, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874587

ABSTRACT

The ability of root cells to distinguish mutualistic microbes from pathogens is crucial for plants that allow symbiotic microorganisms to infect and colonize their internal root tissues. Here we show that Lotus japonicus and Medicago truncatula possess very similar LysM pattern-recognition receptors, LjLYS6/MtLYK9 and MtLYR4, enabling root cells to separate the perception of chitin oligomeric microbe-associated molecular patterns from the perception of lipochitin oligosaccharide by the LjNFR1/MtLYK3 and LjNFR5/MtNFP receptors triggering symbiosis. Inactivation of chitin-receptor genes in Ljlys6, Mtlyk9, and Mtlyr4 mutants eliminates early reactive oxygen species responses and induction of defense-response genes in roots. Ljlys6, Mtlyk9, and Mtlyr4 mutants were also more susceptible to fungal and bacterial pathogens, while infection and colonization by rhizobia and arbuscular mycorrhizal fungi was maintained. Biochemical binding studies with purified LjLYS6 ectodomains further showed that at least six GlcNAc moieties (CO6) are required for optimal binding efficiency. The 2.3-Å crystal structure of the LjLYS6 ectodomain reveals three LysM ßααß motifs similar to other LysM proteins and a conserved chitin-binding site. These results show that distinct receptor sets in legume roots respond to chitin and lipochitin oligosaccharides found in the heterogeneous mixture of chitinaceous compounds originating from soil microbes. This establishes a foundation for genetic and biochemical dissection of the perception and the downstream responses separating defense from symbiosis in the roots of the 80-90% of land plants able to develop rhizobial and/or mycorrhizal endosymbiosis.


Subject(s)
Chitin/metabolism , Lotus , Medicago truncatula , Plant Proteins , Plant Roots , Receptors, Pattern Recognition , Amino Acid Motifs , Crystallography, X-Ray , Lotus/chemistry , Lotus/genetics , Lotus/metabolism , Lotus/microbiology , Medicago truncatula/chemistry , Medicago truncatula/genetics , Medicago truncatula/metabolism , Medicago truncatula/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/microbiology , Protein Domains , Reactive Oxygen Species/metabolism , Receptors, Pattern Recognition/chemistry , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism
20.
Nat Commun ; 8: 14534, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230048

ABSTRACT

In Lotus japonicus, a LysM receptor kinase, EPR3, distinguishes compatible and incompatible rhizobial exopolysaccharides at the epidermis. However, the role of this recognition system in bacterial colonization of the root interior is unknown. Here we show that EPR3 advances the intracellular infection mechanism that mediates infection thread invasion of the root cortex and nodule primordia. At the cellular level, Epr3 expression delineates progression of infection threads into nodule primordia and cortical infection thread formation is impaired in epr3 mutants. Genetic dissection of this developmental coordination showed that Epr3 is integrated into the symbiosis signal transduction pathways. Further analysis showed differential expression of Epr3 in the epidermis and cortical primordia and identified key transcription factors controlling this tissue specificity. These results suggest that exopolysaccharide recognition is reiterated during the progressing infection and that EPR3 perception of compatible exopolysaccharide promotes an intracellular cortical infection mechanism maintaining bacteria enclosed in plant membranes.


Subject(s)
Cell Membrane/metabolism , Gene Expression Regulation, Plant , Lotus/genetics , Lotus/microbiology , Plant Proteins/genetics , Rhizobium/physiology , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Colony Count, Microbial , Mutation/genetics , Phenotype , Plant Proteins/metabolism , Plants, Genetically Modified , Polysaccharides/metabolism , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Symbiosis/genetics , Time Factors , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...